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For almost 2 decades, results from Chlamydia pathogenesis investigations have been conceptualized using a cytokine polariza-
tion narrative. Recent viral immunity studies identifying protective tissue-resident memory T cells (Trm) suggest an alternative
paradigm based on localized immune networks. As Chlamydia vaccines enter the preclinical pipeline and, in the case of an atten-
uated trachoma vaccine, are given to human subjects, it may be useful to ask whether cytokine polarization is the appropriate
framework for understanding and evaluating vaccine efficacy. In this review, we revisit C. trachomatis pathogenesis data from
mice and humans using a Trm narrative and note a comfortable concordance with the Chlamydia pathogenesis literature.

Chlamydia trachomatis infections of ocular and genital tract
mucosal epithelia elicit host responses that include formation

of submucosal lymphoid aggregates that persist at the site of in-
fection after infectious bacteria are no longer present. In tra-
choma, these aggregates, called follicles, are easily visible without
magnification on routine physical examination and are used to
make the clinical diagnosis. Lymphoid aggregates have also been
documented in uterine and cervical samples of women with C.
trachomatis genital tract infections and are seen in the C. muri-
darum mouse model of genital tract infections (detailed below).
Investigators have speculated about a role for local lymphoid ag-
gregates in protective immunity to Chlamydia. Most presciently,
Morrison and Morrison concluded that the “persistence of CD4�-
T-cell clusters long after infection had resolved (day 70) may pro-
vide for a readily mobilizable T-cell response by which previously
infected animals can quickly respond to and control a secondary
infectious challenge” (1). Strikingly, this concept is not featured in
working models of Chlamydia immunopathogenesis. Instead,
CD4 T cell cytokine polarization (Th1, Th2, Th17, . . .) has served
as theoretical scaffolding for describing immunoprotection and
immunopathology associated with infection. It is unclear whether
cytokine polarization is the appropriate framework for under-
standing Chlamydia pathogenesis. Recent work in viral pathogen-
esis has identified semiautonomous tissue-localized lymphoid
structures containing memory T cells as being critical for protec-
tive antiviral immunity (2, 3). The available data suggest that the
tissue-resident memory T cells (Trm) in lymphoid aggregates
formed in response to C. trachomatis infection play a central role
in protective and pathological immune responses in the eye and
genital tract.

TISSUE-RESIDENT MEMORY T CELLS

Trm were originally described for CD8 T cells in the setting of
recurrent herpes simplex virus (HSV) reactivations. HSV infects
peripheral sensory nerves at the site of infection and travels in a
retrograde manner up nerve axons to set up a latent infection in
the associated sensory ganglion. When HSV reactivates due to UV
exposure or stress, it travels back down the nerve axon and infects
the stromal cells adjacent to nerve endings at the site of the original
infection. This reactivation event can happen multiple times but
typically becomes less and less frequent over time, suggesting the

slow acquisition of acquired immunity. In 2007, Zhu et al. ele-
gantly showed that HSV-specific CD8 T cells appeared in the skin
during clearance of HSV lesions and then persisted in the skin
adjacent to nerve endings for months after the HSV lesion had
healed (4). A more complete description of the unique tissue-
resident memory CD4 and CD8 T cell immunobiology followed,
including local expansion in nonlymphoid tissue dependent on
recruitment of monocytes from blood (5), lack of circulation of
CD8 Trm through blood and conventional lymphoid compart-
ments (6), and partial phenotypic definition of the subset (7, 8). It
was recently shown that the mechanism underlying attenuated
HSV (tk- mutant virus) infections and providing protection to
mice from subsequent lethal virulent HSV challenge depends on
the presence of CD4 Trm in vaginal tissues. The protective CD4
Trm were found in macrophage-organized “memory lymphocyte
clusters” (MLC) that developed after vaginal but not systemic at-
tenuated infection. Interestingly, parabiotic experiments per-
formed in the same study showed some communication of the
circulating CD4 T cell pool with the preformed MLC in vaginal
tissue but also showed that MLC structures were stable without
access to circulating CD4 T cells. MLC preservation was depen-
dent on macrophage production by the Ccl5 gene likely driven by
low-level basal secretion of gamma interferon (IFN-�) by CD4
Trm (9). Despite the elegance of these experiments, it remains
unclear whether macrophages need to present a persistent cognate
antigen to maintain the MLC and retain CD4 Trm. This informa-
tion is essential to vaccine design.

CHLAMYDIA Trm

While not specifically using the term “Trm,” literature in the Chla-
mydia immunology field has described tissue-resident memory T
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cells and a variant of MLC since the mid-1980s, when Kiviat et al.
described lymphoid follicles with transformed lymphocytes and
plasma cells in cervical and endometrial samples from women
with C. trachomatis infections (10–12). Shortly thereafter, Reacher
et al. described CD4 and CD8 infiltrates in chronic trachoma con-
junctival biopsy specimens (13), and compelling trachoma follicle
immunohistochemistry done by Abu el-Asrar et al. showed con-
junctival follicle architecture consisting of a prominent B cell
component with addition of CD4/CD8 T cells and macrophages
(14). Similarly, baboons transcervically infected with C. trachoma-
tis serovar E and macaque salpingeal pockets repeatedly infected
with C. trachomatis serovar D showed germinal center formation
(follicles) that included plasma cells on routine histology of the
cervix and salpingeal tissue, respectively (15, 16). An immunohis-
tochemistry study in the C. muridarum mouse model by Morrison
and Morrison is a virtual case study in Trm immunobiology (1).
In that study, more than 1 month postresolution of a genital tract
infection, there was a new (not seen in naive mice) CD8 intraepi-
thelial lymphocyte population lining the epithelium in the vagina
and there were new CD4 T cell clusters predominantly in the en-
dometrium and localized in the stroma immediately beneath the
epithelium. The CD4 clusters in the endometrium had a signifi-
cant B cell component early and some macrophages with rare CD8
T cells. B cells were no longer detectable in clusters at late time
points based on staining for B220 and CD19, which do not detect
plasma cells. The authors concluded that the CD4 T cell clusters
induced by infection “may provide for a readily mobilizable T-cell
response by which previously infected animals can quickly re-
spond to and control a secondary infectious challenge” (1). It is
notable that B cells are a prominent feature of Chlamydia infec-
tion-induced lymphoid follicles in trachoma and genital tract in-
fections of humans and that their morphology is like that of
plasma cells, suggesting that they are antigen-experienced mem-
ory B cells. Using transgenic B cell approaches, it is well-estab-
lished in mice that B cells activated with T cell help lose B220
expression (17) and that B220-negative B cells exist in the perito-
neum in much higher levels than seen in peripheral blood (PB)
(18, 19). These data suggest that there are tissue-resident B cells,
likely plasma cells, as well as Trm in mucosal compartments, in-
cluding the genital tract. The B cell-centered architecture docu-
mented in human Chlamydia infections, and inferred in mice,
differs significantly from the macrophage-centered architecture
associated with protection from experimental HSV infections of
the genital tract and may represent an alternative memory lym-
phocyte architecture specific to intracellular bacterial pathogens
such as C. trachomatis.

CYTOKINE POLARIZATION

Chlamydia pathogenesis research has shown that the IFN-� path-
way plays an important role in protective immunity. Mice defi-
cient in interleukin-12 (IL-12) or IFN-� action have prolonged
shedding of bacteria from the genital tract and dissemination to
organs outside the genital tract (20). In the mid-1990s, it was
shown that IFN-� and T cell contact resulted in upregulated epi-
thelial inducible nitric oxide synthase (iNOS) genes and nitric
oxide production sufficient to kill intracellular mouse and human
Chlamydia (21–23). These results fit naturally into a Th1/Th2 par-
adigm, with protective immunity ascribed to CD4 T cells making
IFN-�. This narrative was reinforced by the findings that adoptive
transfer of Chlamydia-specific Th2 cells (24) and Chlamydia in-

fections experimentally skewed toward Th2 responses were ac-
companied by prolonged and disseminated infection (25–28). As
the cytokine polarization paradigm evolved, these results were
extended to include detrimental effects of Th17-skewed responses
(29). A major finding suggesting that Th1 responses may not be
sufficient to understand Chlamydia pathogenesis was that iNOS
gene knockout mice cleared C. muridarum genital tract infections
(30, 31). This result suggested that clearance of Chlamydia from
the genital tract might not be adequately explained by IFN-� re-
sults and, by extension, the Th1/Th2 paradigm.

We subsequently showed that there was a second CD4 T cell
mechanism independent of nitric oxide and relatively indepen-
dent of IFN-� capable of terminating Chlamydia replication in
reproductive tract epithelial cells (32). Following up those results,
we showed that a mechanism dependent on the Plac8 gene was
sufficient to clear the mouse genital tract in the absence of nitric
oxide production (33). The Plac8 gene-dependent mechanism
does not appear to depend on IFN-� beyond its role in upregulat-
ing major histocompatibility complex (MHC) class II expression
on reproductive tract epithelial cells (antigen presentation). iNOS
gene knockout mice clear C. muridarum because they still have the
Plac8 gene-dependent mechanism and vice versa. Other indepen-
dent lines of investigation also raised questions about whether
Th1 is a sufficient descriptor for protective immunity. The earliest
came from adoptive transfer of Chlamydia-specific T cell clones,
where a Chlamydia-specific CD4 T cell clone producing only
IFN-� was not protective whereas a Chlamydia-specific CD4 T cell
clone producing tumor necrosis factor alpha (TNF-�) and IFN-�
was capable of clearing chronic C. muridarum infections in nude
mice (34). In our investigations of vaccine-induced immunity, we
found that antigens and adjuvants that generated multifunctional
cytokine responses (IFN-� and TNF-�) were protective whereas
those generating a conventional Th1 response (IFN-� only) were
not (35–37), in agreement with studies done in Leishmania (38)
and Mycobacterium tuberculosis (39). These results changed the
vocabulary of protection from “Th1” to “multifunctional Th1,”
and at that point the Th1/Th2/Th17 model appeared to be trans-
forming itself to explain existing data.

HUMAN STUDIES, IFN-�, AND IL-13

Early human clinical investigations supported a protective Th1
narrative for Chlamydia infections. In a study comparing women
with histories of pelvic inflammatory disease (PID) or multiple
Chlamydia infections to seropositive women with neither, protec-
tion correlated with enhanced peripheral blood mononuclear
(PBM) IFN-� responses to Chlamydia hsp60, consistent with pro-
tective Th1 immunity (40). Although early trachoma immunoepi-
demiology suggested the importance of the Th1/Th2 framework
(41), later studies failed to support the concept (42, 43). Strikingly,
IL-13 production as measured by transcriptomics was epidemio-
logically correlated with protection in the latter study. In 2005, we
did a clinical investigation of incident Chlamydia genital tract in-
fections in a high-risk sex worker cohort. In that study, we found
two independent immune correlates for remaining free of inci-
dent infection (protection) (44). The first was peripheral blood
mononuclear cell (PBMC) production of IFN-� when activated
by Chlamydia hsp60, consistent with a protective Th1 response.
The second predictor of protection was PBMC production of
IL-13 when activated by Chlamydia elementary bodies. IL-13 is a
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quintessential Th2 cytokine. At that time, we were unable to rec-
oncile those results.

CHLAMYDIA Trm AS AN ALTERNATIVE PARADIGM

We now propose to reconcile the results by considering an alter-
native narrative not centered on Th1/Th2/Th17 cytokine polar-
ization. We propose that Chlamydia-specific lymphoid aggregates
persisting after clearance of bacteria are central to Chlamydia im-
munobiology and that Chlamydia pathogenesis data can be com-
fortably explained by the presence of tissue-resident memory T
cells unconstrained by the cytokine polarization vocabulary.
There are two major predictions that come directly from a Trm
model for Chlamydia pathogenesis. The first is demonstrable ef-
fective local versus systemic immunity. The second is challenge-
induced expansion of the numbers of Chlamydia-specific T cells
within genital tract tissues, a recognized feature of Trm during
protective immune responses.

Older studies in the guinea pig inclusion conjunctivitis (GPIC;
Chlamydia caviae) model of trachoma demonstrated a local im-
munity effect. Guinea pigs that clear a GPIC ocular infection can-
not be reinfected ocularly and have no immunopathology on re-
challenge. Guinea pigs originally infected at non-ocular sites
develop ocular infections on rechallenge that are cleared more
quickly but with significant immunopathology (45). The most
straightforward interpretation of these data is that the primary
ocular infections left behind a local memory response that was
very effective at preventing reinfection, consistent with the pres-
ence of Trm.

A characteristic feature of Trm is expansion in their nonlym-
phoid tissue residence during recall responses. This phenomenon
was seen in a C. muridarum mouse model during an investigation
focused on homing. �4�7, the lymphocyte receptor for the mu-
cosal addressin MadCam-1, is expressed by a large majority of
Chlamydia-specific CD4 T cell clones isolated in the C. muri-
darum mouse model (46) (our unpublished data), even though
those clones came from immune splenocytes, which represent a
central immune compartment. Cell surface expression of �4�7 by
T cells in mucosal immune compartments is upregulated during
activation (47). In 1997, Kelly and Rank found increased �4�7
intensity and numbers of �4�7 CD4 T cells in the genital tract but
not in iliac lymph nodes or spleen during secondary infectious
genital challenge (48). Although these findings were interpreted as
representing recruitment to the genital tract during secondary in-
fections, in retrospect they more likely represent expansion of the
numbers of Chlamydia-specific �4�7 CD4 Trm in the genital
tract. In support of this conjecture, Stary et al. (49) showed that
mucosal but not systemic immunization with an experimental
Chlamydia vaccine resulted in the seeding of the mucosa with
effector T cells that established Trm and protective immunity.

We propose a working model for protective immunity to Chla-
mydia infections of the eyes and genital mucosal surfaces based on
Trm. A central feature of the model is infection-induced forma-
tion of lymphoid aggregates based on immune B cells rather than
on the macrophages described in the experimental HSV vaginal
infections. This is based on memory lymphocyte clusters (MLC)
containing plasma cells in endometrial and cervical samples from
infected women and specific immunohistochemistry of trachoma
follicles showing a B cell-predominant MLC infrastructure. In the
C. muridarum mouse model, Morrison and Morrison demon-
strated an infection-induced CD8 intraepithelial lymphocyte

population as well as endometrial MLC-containing B cells midin-
fection but not late in infection. We attribute the latter discrep-
ancy to staining with B220 and CD19, which are not reliable mark-
ers for plasma cells. In support of that conjecture, Kelly and Rank
found �4% B cells (and 0% macrophages) in genital tract single-
cell suspensions 49 days post-primary infection using an Ig kappa
chain-specific antibody (which stains plasma cells) and flow cy-
tometry rather than B220 immunohistochemistry. This model re-
solves several contradictory observations that haunt Th1/Th2 cy-
tokine polarization determinism.

First among the resolved inconvenient truths is that we can
believe our data. In a Trm model, it is acceptable for CD4 T cells to
make IFN-� and IL-13. We hypothesize that dual IFN-�/IL-13
CD4 T cells specific for Chlamydia explain the protection seen in
our sex worker cohort study in 2005. The alternative cytokine
polarization narrative would be that protected individuals harbor
separate Chlamydia-specific Th1 and Th2 responses. Instead, we
favor a model in which protective immunity is mediated by Trm
and IL-13 is simply a biomarker for CD4 Trm in peripheral blood.
(We have unpublished mouse data demonstrating a subset of
CD4�13 T cells that localize to the genital tract mucosa). A Trm
model comfortably explains why multiple infections and/or a pro-
longed time course may be required to establish protective immu-
nity in humans. The surface area of the human reproductive tract
is immense. Trm represent local immunity with limited circula-
tion and require a supporting infrastructure that develops as a
consequence of local infection. The experimental-mouse analogy
is the difference between cellular immunity generated by C. mu-
ridarum and that generated by human C. trachomatis strains. C.
muridarum causes a very productive genital tract infection with
extensive surface area involvement and a robust immune response
that sets up a protective immune state after a single infection. In
contrast, C. trachomatis strains inoculated into mice at very high
levels of inclusion-forming units (IFU) caused a minimally pro-
ductive (minimal surface area involvement) infection, with re-
peated infections required to generate demonstrable T cell-medi-
ated protection. The length of time that it takes for C. trachomatis
infection to result in expansion of Trm numbers under the muco-
sal surface of the reproductive tract could explain the epidemio-
logical observations indicating that early antimicrobial treatment
arrests immunity (50).

THE c-MLC

The ontogeny of Chlamydia-specific MLC is entirely unknown
and likely differs in the eye versus the genital tract. CD4 T cells are
the dominant T cell subset, with CD8 T cells as a significant mi-
nority subset, in human trachoma follicles; the most abundant cell
type is B cells (51). T cell subset data for human genital tract
Chlamydia memory lymphocyte clusters (c-MLC) are nonexis-
tent, but uterine c-MLC contain almost exclusively CD4 T cells in
the C. muridarum mouse model (1). Before dismissing this differ-
ence as a mouse anomaly, note that Chlamydia pathogenesis in the
eye and that in the genital tract differ. Clinical trachoma isolates
(serovars A to C) have nonfunctional tryptophan synthesis oper-
ons (52), suggesting that the presence of IFN-�-induced in-
doleamine 2,3-dioxygenase (tryptophan starvation defense path-
way) is not consequential to Chlamydia replication in the eye.
Furthermore, while CD8 T cells are not critical for clearing C.
muridarum genital tract infections (53), they appeared to play an
important role in protective eye immunity in a nonhuman pri-
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mate trachoma model (54). Speculation about how c-MLC assem-
ble is beyond the scope of this review, with little published data to
inform a discussion. In broad terms, the genital tract consists of
nonpermissive tissue to which circulating central memory T cells
have limited access (9). For HSV and Chlamydia, it is clear that
MLC formation requires a local immune response in the genital
tract. Based on data from other systems (see the excellent recent
reviews in references 3, 55, and 56), c-MLC formation likely re-
quires recruitment (specific chemokines), activation, immobiliza-
tion (MadCam-1 and CD69 downregulation of S1PR1, a promi-
gratory receptor), and then maintenance of antigen-presenting
cells (APC) (specifically, immune B cells) and effector T cells that
may or may not require antigenic stimulation. Our untested bias
based on the persistence of PmpG1 gene antigen in splenic APC
long after clearance of genital tract infections (57) is that antigen
stimulation will be central to c-MLC maintenance. Viable aber-
rant chlamydial forms in APC could serve as a source for persis-
tent presentation of a subset of chlamydial antigens that include
that encoded by the PmpG gene. A unique feature of c-MLC is that
immune B cells may be a (or the) critical APC.

A B cell-centered c-MLC model (see Fig. 1) would predict that
B cell-deficient mice would have impaired recall immune re-
sponses due to an altered MLC. This is the case. It was the defect in
the secondary response of B cell-deficient mice to C. muridarum
challenge that suggested a role for antibody in adaptive immunity
(58), with subsequent investigations identifying the antibody-de-
pendent T cell-independent protective immune response (59).
The antibody-dependent protection mechanism requires CD4 T
cells during the primary infection, consistent with a B cell-cen-
tered model and also with T cell help for establishing adaptive B
cell immunity.

SUMMARY

A Trm model for protective immunity does not exclude a role for
MLC in immunopathology, nor does it dictate a CD4 or CD8 T
cell response. Based on recent data in the macaque model for
trachoma showing a protective role for CD8 T cells (54), it is
possible that the Trm within MLC induced by trachoma and gen-
ital tract infections are different, possibly mirroring different mi-

croenvironments, as reflected by the presence of tryptophan syn-
thesis operons in all clinical isolates from the genital tract (used to
escape IFN-�-induced tryptophan depletion) and the absence of
tryptophan operons in clinical trachoma isolates, suggesting that
the IFN-�-induced immunity is less relevant in the eye (52). This
model raises several interesting theoretical challenges for vaccine
development. There are little to no data regarding c-MLC ontog-
eny and an incomplete understanding of B cells in the balance
between immunoprotection and immunopathology. High Chla-
mydia-specific antibody titers are associated with detrimental re-
productive outcomes in women, while in mouse vaccine studies,
antibodies (importantly, when specific for a protective T cell
epitope-source protein, i.e., major outer membrane protein
[MOMP]) contribute to protection. It is not immediately clear
how vaccines other than attenuated strains delivered to the eye or
genital tract would be able to establish Chlamydia-specific Trm/
MLC using conventional vaccination techniques. Perhaps muco-
sal delivery of subunit vaccines with novel mucosal adjuvants
could elicit the protective Trm/MLC response (60).
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