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During epithelial infections, pathogenic bacteria employ an array of strategies to attenuate and evade host immune responses,
including the influx of polymorphonuclear leukocytes (PMN; neutrophils). Among the most common bacterial infections in
humans are those of the urinary tract, caused chiefly by uropathogenic Escherichia coli (UPEC). During the establishment of
bacterial cystitis, UPEC suppresses innate responses via multiple independent strategies. We recently described UPEC attenua-
tion of PMN trafficking to the urinary bladder through pathogen-specific local induction of indoleamine 2,3-dioxygenase (IDO),
a tryptophan catabolic enzyme previously shown to have regulatory activity only in adaptive immunity. Here, we investigated
the mechanism by which IDO induction attenuates PMN migration. Local tryptophan limitation, by which IDO is known to in-
fluence T cell longevity and proliferation, was not involved in its effect on PMN trafficking. Instead, metabolites in the IDO path-
way, particularly L-kynurenine, directly suppressed PMN transepithelial migration and induced an attached, spread morphology
in PMN both at rest and in the presence of chemotactic stimuli. Finally, kynurenines represent known ligands of the mammalian
aryl hydrocarbon receptor (AHR), and UPEC infection of Ahr�/� mice recapitulated the derepressed PMN recruitment observed
previously in Ido1�/� mice. UPEC therefore suppresses neutrophil migration early in bacterial cystitis by eliciting an IDO-medi-
ated increase in local production of kynurenines, which act through the AHR to impair neutrophil chemotaxis.

Indoleamine 2,3-dioxygenase (IDO) is a conserved mammalian
metabolic enzyme that catalyzes the first step in tryptophan deg-

radation along the kynurenine pathway. In addition to this role in
nutrient utilization, IDO has been implicated in a number of bi-
ological processes related to regulation of local immunity such as
fetal tolerance, autoimmunity, organ transplantation, and tumor-
igenesis (1). The immunomodulatory capacity of IDO has been
best studied in the context of the adaptive immune response,
where induction of this enzyme in dendritic cells restricts the pro-
liferation and survival of T effector cells (1–4). This activity is
driven by the breakdown of tryptophan, which both reduces the
supply of this essential amino acid available to local T cells and
generates an array of bioactive downstream metabolites collec-
tively referred to as kynurenines (1, 5, 6).

Recent studies have identified components of the cellular ma-
chinery involved in IDO-dependent responses in lymphocytes.
IDO-mediated degradation of tryptophan promotes T cell apop-
tosis and suppresses proliferation, in part because tryptophan
starvation activates the GCN2 pathway, which responds to amino
acid insufficiency by initiating a stress response that results in
general repression of translation (7, 8). The details of how activa-
tion of this stress-response pathway alters the T cell activation
program are not fully elucidated but likely involve translational
regulation of cell cycle progression. In addition to IDO-mediated
immune suppression through tryptophan depletion, several
kynurenine metabolites act as regulators of T cells, dendritic cells,
and microglia and alter the responsiveness of macrophages in vitro
(9–12). The kynurenine-responsive aryl hydrocarbon receptor
(AHR) has been strongly implicated in these adaptive immune
phenotypes. Kynurenine is recognized as an endogenous ligand of
AHR (13, 14), a transcription factor best known for its regulation
of an adaptive xenobiotic response to exogenous environmental
pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
(15). AHR resides in the cytoplasm of mammalian cells, in a mul-
tiprotein complex that includes HSP90 (16) and AHR-interacting

protein (AIP) (17). Upon ligation by diverse external and endog-
enous ligands, AHR is translocated into the nucleus, where it
binds the AHR nuclear translocator ARNT and influences gene
transcription by binding to motifs termed dioxin-responsive ele-
ments (DREs) as well as by nonclassical mechanisms (reviewed in
reference 18). The net effects of AHR ligation by an array of acti-
vating ligands are variable but largely immunosuppressive (19).
While emerging evidence supports the hypothesis of kynurenine-
mediated activation of AHR in the context of cancer (14) and
autoimmune disease (reviewed in reference 20), the relevance of
this mechanism to the immune control of infections is unclear.

Polymorphonuclear leukocytes (PMN; neutrophils) are the
first responders to most bacterial infections and therefore repre-
sent an important cellular component of the innate immune re-
sponse. In the case of urinary tract infections (UTIs), PMN re-
cruitment likely contributes to symptomatology and ultimately to
bacterial clearance (21, 22), and the presence of PMN in urine
(pyuria) is a diagnostic hallmark. Uropathogens have evolved
strategies for modulating host inflammatory responses, shifting
the balance to favor colonization and disease progression. In ad-
dition to directly influencing host cell processes through the se-
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cretion of toxins and other exoproteins, bacterial pathogens may
activate host anti-inflammatory pathways in order to survive and
persist. We recently demonstrated that uropathogenic Escherichia
coli (UPEC; the chief cause of community onset and health care-
associated UTIs), in contrast to nonpathogenic E. coli, induced
local expression of the mammalian IDO1 gene (encoding in-
doleamine 2,3-dioxygenase), both in vitro and in a murine model
of bacterial cystitis. In turn, local activation of IDO was found to
inhibit PMN trafficking into infected bladder tissue (23). PMN
therefore represent the first identified innate cellular components
regulated by IDO activity. In addition, these results illustrate how
early induction of IDO by UPEC arriving in the bladder leads to
local immune suppression, providing a window of opportunity
for UPEC to establish a protected niche by invading superficial
epithelial cells of the bladder (24, 25). This niche then provides a
haven for rapid bacterial replication while protecting the bur-
geoning bacterial colony from neutrophils that are subsequently
recruited to the bladder in response to multiple chemoattractants.

In order to further define the mechanism by which induction
of IDO suppresses PMN recruitment and thereby enhances UPEC
survival early in infection, we utilized several models of host-
pathogen interaction. We show that, rather than tryptophan lim-
itation, it is local production of kynurenine metabolites that at-
tenuates PMN migration across the infected uroepithelium. These
kynurenines exhibited a direct effect on PMN motility, as demon-
strated by morphological analysis of adherent neutrophils in vitro.
Furthermore, the derepressed PMN influx into the infected blad-
der that we observed in Ido1�/� mice (23) was here recapitulated
in mice lacking expression of Ahr, implicating this transcriptional
regulator in control of PMN chemotaxis. In total, our data further
elucidate an emerging role for IDO in innate cellular defense and
microbial pathogenesis.

MATERIALS AND METHODS
Reagents. Fibrinogen (Fbg; catalog no. F4883), L-tryptophan (TRP; cata-
log no. T8491), L-kynurenine (KYN; catalog no. K8625), 3-hydroxy-DL-
kynurenine (HK; catalog no. H1771), 3-hydroxyanthranilic acid (HAA;
catalog no. 148776), CH-223191 (catalog no. C8124), f-Met-Leu-Phe
(fMLF; catalog no. F3506), 1-methyl-D/L-tryptophan (1-MT; catalog no.
860646), dimethyl sulfoxide (DMSO; catalog no. D5879), and fetal bovine
serum (FBS; catalog no. F2442) were purchased from Sigma-Aldrich (St.
Louis, MO). Recombinant human tumor necrosis factor alpha (TNF-�)
was purchased from R&D Systems (Minneapolis, MN).

Bacterial strains and culture. Uropathogenic Escherichia coli (UPEC)
isolate UTI89 was isolated from a patient with cystitis (26), while MG1655
is a type 1 piliated K-12 nonpathogenic strain of E. coli (27). For infection
of mammalian cells in vitro, bacteria were grown overnight in standing
Luria-Bertani (LB) broth at 37°C. Cells were pelleted by centrifugation
and resuspended in sterile phosphate-buffered saline (PBS) to an optical
density at 600 nm (OD600) of approximately 1.0 and further diluted in
RPMI 1640 to achieve a multiplicity of infection (MOI) of approximately
40:1 bladder cell or 10:1 PMN.

Murine cystitis. C57BL/6, Tnf�/� (The Jackson Laboratory), or
Ahr�/� (kind gift of K. Moley) female mice, 8 to 10 weeks of age, were
transurethrally inoculated with �2 � 107 CFU of UPEC strain UTI89,
and bladders were harvested and homogenized at the indicated time
points (detailed protocols are published in references 25 and 28). All an-
imal experiments received prior review and approval of the Animal Stud-
ies Committee at Washington University School of Medicine. To quantify
tissue myeloperoxidase (MPO) activity, a measure of neutrophils present
in bladder tissue (29), bladder homogenates stored at �80°C were thawed
and cleared by centrifugation, and the lysates were analyzed using a Fluoro

MPO kit (Cell Technology, Mountain View, CA) per the manufacturer’s
instructions.

Cell culture and isolation. A human bladder epithelial cell line (5637,
HTB-9; American Type Culture Collection, Manassas, VA) was cultured
in RPMI 1640 medium (Life Technologies, Grand Island, NY) supple-
mented with 10% FBS. Peripheral blood neutrophils were purified from
the venous blood of healthy volunteers by dextran sedimentation and
density gradient centrifugation as described previously (29), with in-
formed consent and in accordance with a protocol approved by the Wash-
ington University Human Research Protection Office. Independent ex-
periments utilized PMN from different adult donors.

Transwell chemotaxis assay. A model of PMN transepithelial migra-
tion has been described previously (29–31). Briefly, inverted uroepithelial
cell layers were grown to confluence on Transwell permeable supports
(Costar catalog no. 3472; Corning, New York, NY) (pore size, 3 �m). The
cells were washed with RPMI 1640 and mock infected or infected for 1 h
with 60 �l of bacterial suspension (E. coli UTI89 or MG1655 at an MOI of
approximately 40:1) in RPMI medium with TRP (200 �g/ml) or an ap-
propriate DMSO vehicle control as indicated in Results and in the figure
legends. Following infection, the inserts were transferred to a 24-well plate
in which the lower reservoir contained 0.6 ml of RPMI 1640, with TRP
(200 �g/ml), fMLF (100 nM), KYN (0.125 to 12.5 �M), fMLF (100 nM)
plus KYN (0.125 to 12.5 �M), or an appropriate vehicle control as noted.
Approximately 106 neutrophils were then added to the upper reservoir in
100 �l RPMI 1640, with TRP (200 �g/ml) or an appropriate DMSO ve-
hicle control as indicated. Samples were incubated at 37°C in 5% CO2 for
1 h to allow transepithelial migration. The top chambers were removed
and rinsed, and neutrophils in the lower reservoir were enumerated using
a hemacytometer. Neutrophil transepithelial migration is expressed as a
percentage of input cells (counted from control wells bearing no Trans-
well insert). Statistically significant differences were assessed using an un-
paired Student t test.

Cytotoxicity assays. The effect of kynurenine treatment on eukaryotic
cell integrity was assessed by the use of a fluorescent assay for lactate
dehydrogenase (LDH) release (CytoTox-ONE; Promega, Madison, WI)
according to the instructions of the manufacturer. Approximately 106

neutrophils were incubated in a 96-well plate for 1 h at 37°C in 5% CO2

with RPMI 1640 alone or RPMI 1640 containing the indicated concentra-
tions of KYN or vehicle control. Relative fluorescence was measured in a
microplate reader (Synergy 2; BioTek, Winooski, VT), and percent cyto-
toxicity was calculated in comparison to the maximum fluorescence mea-
sured with detergent-lysed cells.

Immunofluorescent staining and morphology analysis. Approxi-
mately 1.5 � 105 neutrophils were plated on Fbg-coated glass coverslips
(10 �g/ml) and incubated in the presence of fMLF (100 nM), KYN (12.5
�M), fMLF plus KYN, TNF-� (25 ng/ml), TNF-� plus 1-MT (10 �M), or
a medium-only control as indicated for 30 min at 37°C in 5% CO2. Cells
were fixed, permeabilized, stained for actin with rhodamine phalloidin
(1:1,000), and counterstained with 4=,6-diamidino-2-phenylindole
(DAPI) (1:10,000) (both stains from Life Technologies) as described pre-
viously (31). The coverslips were sealed with an anti-fade reagent (Pro-
Long Gold; Life Technologies) and imaged using a 63� oil-immersion
lens on a Zeiss Axioskop 2 MOT Plus fluorescence microscope. Identical
exposure times were used for each sample within an individual experi-
ment, and images were acquired with an Axiocam MRm Monochrome
camera using Axiovision software. At least 10 random fields of view were
imaged after selection with the DAPI channel only, and the morphology of
all cells in each image for each condition was assessed (50 to 150 total cells
per condition in each of 3 to 4 independent experiments). Images were
numbered to blind the analyst to the treatment group. Small, symmetrical
cells with no protrusions were categorized as “round.” Elongated cells
with asymmetric actin staining and protrusions in a single direction were
categorized as “polarized.” Cells that assumed a larger diameter on the
surface, contained a ruffled edge or multiple focal adhesions around the
cell circumference, and exhibited symmetric actin staining were catego-
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rized as “spread.” Statistically significant differences were assessed using
an unpaired Student t test.

Gene expression analysis. The abundance of CYP1A1 transcript has
been used as a measure of aryl hydrocarbon receptor activation under
various conditions (32). Cultured bladder epithelial cells or human PMN
were treated in 24-well plates, and the contents of 4 wells were pooled to
isolate sufficient RNA for gene expression analysis. Approximate total
numbers of cells per condition were 106 for bladder epithelial cells and 107

for PMN. Conditions included KYN (12.5 �M), KYN (12.5 �M) plus
CH-223191 (10 �M), or vehicle-only (DMSO) treatment for 2 h at 37°C
in 5% CO2. Cell lysates were prepared and homogenized (Qiashredder;
Qiagen, Valencia, CA). Total RNA was isolated by silica membrane bind-
ing (RNeasy minikit; Qiagen) according to the instructions of the kit
manufacturer. RNA integrity was assessed by spectrophotometry, and
first-strand cDNA was synthesized using random primer hexamers
(Superscript II; Life Technologies). Real-time PCR was performed in a
10-�l reaction mixture containing approximately 0.1 �g template
cDNA, 1� TaqMan assay mix (CYP1A1 assay identification [ID] no.
Hs00153120_m1, GAPDH [glyceraldehyde-3-phosphate dehydroge-
nase] gene assay ID no. Hs99999905_m1; Life Technologies), and Taq-
Man Fast PCR master mix (Life Technologies) on an Applied Biosys-
tems 7500 Fast instrument (standard cycling conditions: 1 cycle of 2
min at 50°C, 1 cycle of 10 min at 95°C, and 40 cycles of 15 s at 95°C and
1 min at 60°C) using SDS v1.4 software with automatic threshold and
baseline corrections. The transcript abundance of the CYP1A1 target
gene was normalized to that seen with the endogenous GAPDH con-
trol gene, and relative levels of target expression were calculated by the
threshold cycle (�CT) method (33), where fold change in expression is
equal to 2��(�CT). Data are presented as fold change in transcript abun-
dance under the experimental condition relative to the mock-treated cal-
ibrator condition and represent the means and standard errors of the
means (SEM) of results from triplicate assays performed with RNA from
three independent experiments. Statistically significant differences were
assessed using an unpaired Student’s t test.

Ido1 transcript abundance was measured in bladder homogenates of

infected C57BL/6 and Tnf�/� mice in analogous fashion (Ido1 assay ID
no. Mm00492586_m1, GAPDH gene assay ID no. Mm99999915_g1; Life
Technologies), with RNA prepared as previously described (23). Aggre-
gate data from three independent experiments are presented as fold
change in transcript abundance in infected mice relative to mock-infected
mice of the same strain and represent the means and SEM of results of
triplicate assays performed with RNA from at least 8 mice total per group.
Statistically significant differences were assessed using the Mann-Whitney
U test.

Statistical analysis. Statistical tests for significance were performed
using Prism software version 6 for Windows (GraphPad, San Diego, CA).
P values of �0.05 were considered significant.

RESULTS
UPEC suppression of neutrophil migration is not mediated by
tryptophan limitation. We reported previously that epithelial in-
fection with UPEC (but not with nonpathogenic E. coli) induces
local expression of the tryptophan catabolic enzyme IDO1, result-
ing in suppression of PMN migration in both in vitro and in vivo
models of the early inflammatory response (23). To determine if
this immunomodulatory mechanism was dependent on local al-
teration in tryptophan availability (as reported for T lymphocytes
[7]), we measured the effect of tryptophan supplementation on
PMN transepithelial migration in vitro. We observed that excess
tryptophan did not restore PMN transepithelial migration across
UPEC-infected epithelial layers (and similarly had no effect on
migration in response to nonpathogenic E. coli; Fig. 1).

Kynurenine metabolites inhibit transepithelial neutrophil
migration. While suppression of neutrophil migration was not
due to tryptophan limitation, the possibility remained that an
increased local concentration of the IDO1 reaction product
(namely, L-kynurenine) or of one or more of its downstream me-
tabolites was important for this effect. To test this hypothesis, we
measured neutrophil transepithelial migration upon the addition
of L-kynurenine or one of several metabolites downstream in the
kynurenine pathway of tryptophan degradation (Fig. 2). Starting
concentrations of kynurenine metabolites were based on superna-
tant concentrations after UPEC infection of cultured bladder ep-
ithelial cells (10 to 15 �M; data not shown) and on observations
with multiple other cell types (see, e.g., references 34, 35, and 36).
The addition of L-kynurenine (KYN) or 3-hydroxykynurenine

FIG 1 Tryptophan depletion is not required for UPEC suppression of neu-
trophil transepithelial migration. Neutrophils (approximately 106) were
added to the upper chamber of a 3-�m-pore-size Transwell insert seeded with
an inverted layer of bladder epithelial cells that were first infected for 1 h with
uropathogenic E. coli (UTI89) or with nonpathogenic E. coli (MG1655) or
were mock infected with PBS. The experiment was carried out in either un-
modified RPMI 1640 (which contains minimal tryptophan) (RPMI) or RPMI
1640 supplemented with 200 �g/ml L-tryptophan (RPMI	TRP). The number
of PMN migrating to the bottom chamber after 1 h is shown as a percentage of
input. Data represent the means and SEM of sample results from 4 experi-
ments with different PMN donors, each with 2 to 3 assays per condition. No
significant difference (ns) was observed between samples from cells infected
with the same strain in the presence or absence of excess tryptophan. Consis-
tent with our previous data, the expected difference between samples infected
with UTI89 and those infected with MG1655 was significant under both media
conditions (**, P � 0.01 [by unpaired Student’s t test]).

FIG 2 The kynurenine pathway of tryptophan catabolism. Indoleamine 2,3-
dioxygenase (IDO) catalyzes the rate-limiting step of the pathway. Major me-
tabolites present along the pathway are indicated, and the metabolites assayed
as described for Fig. 3A are shown here in bold.
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(HK) resulted in a significant decrease in PMN transepithelial
migration toward the chemoattractant fMLF compared to the ve-
hicle control results (Fig. 3A). Neutrophil migration upon addi-
tion of an equivalent concentration of 3-hydroxyanthranilic acid
(HAA) trended similarly but did not reach statistical significance

(Fig. 3A). In addition, the suppressive effect of L-kynurenine was
dose dependent (Fig. 3B). Of note, the measured effect of
L-kynurenine on neutrophil migration in this in vitro model was
not due to neutrophil cytotoxicity, as determined by a standard
assay for membrane integrity (Fig. 3C).

Kynurenine exposure alters neutrophil morphology. Be-
cause neutrophil polarization and rearrangement of the actin cy-
toskeleton are critical to the process of neutrophil chemotaxis, we
characterized neutrophil morphology on a fibrinogen-coated sur-
face in response to L-kynurenine in the presence or absence of the
chemoattractant fMLF. The majority of unstimulated PMN were
small and round in appearance, with minimal, evenly distributed
f-actin staining (Fig. 4; Untreated). Upon exposure to fMLF, neu-
trophils have been shown to exhibit a polarized morphology fea-
turing localization of f-actin filaments to the leading edge or pseu-
dopod, correlating with chemotactic activity (31, 37). Our fMLF
treatment also yielded this expected cellular morphology (Fig. 4;
fMLF). In contrast to fMLF, treatment with L-kynurenine alone
resulted in a significant percentage of cells adopting an attached,
spread morphology (Fig. 4; KYN). Furthermore, kynurenine
treatment in the presence of fMLF resulted in a significant de-
crease in the percentage of polarized cells and a significant increase
in the percentage of spread cells compared to fMLF treatment
alone (Fig. 4; fMLF	KYN). These data suggest that kynurenine
directly alters neutrophil morphology and impairs chemotaxis.

In addition, the spread morphology of kynurenine-treated

FIG 3 Kynurenines inhibit neutrophil transepithelial migration. (A and B)
Approximately 106 neutrophils were added to the upper chamber of a 3-�m-
pore-size Transwell insert seeded with an inverted layer of bladder epithelial
cells. The lower chamber contained unmodified RPMI 1640 (Mock), RPMI
1640 plus fMLF (100 nM), or RPMI 1640 with fMLF plus the indicated kynure-
nine metabolite (12.5 �M) or vehicle control (A) or unmodified RPMI 1640
(Mock), RPMI 1640 with fMLF (100 nM), or RPMI 1640 with fMLF plus the
indicated concentration of L-kynurenine (KYN) or vehicle control (B). The
number of PMN migrating to the bottom chamber after 1 h is shown as a
percentage of input. Data represent the means and SEM of sample results from
3 experiments with different PMN donors, each performed with 2 to 3 assays
per condition. Statistical significance compared to the vehicle control is indi-
cated (ns, not significant; *, P � 0.05; **, P � 0.01 [by unpaired Student’s t
test]). (C) As assessed by LDH release assay, no significant cytotoxicity to PMN
was observed in the presence of the indicated concentrations of L-kynurenine.

FIG 4 Kynurenine exposure alters neutrophil morphology. Neutrophils were
allowed to adhere on fibrinogen-coated slides in unmodified RPMI 1640 (Un-
treated) or RPMI 1640 with L-kynurenine (KYN; 12.5 �M), fMLF (fMLF; 100
nM), or both (fMLF	KYN) for 30 min at 37°C and 5% CO2. Samples were
processed as described in Materials and Methods and stained for actin with
rhodamine phalloidin (red). Nuclei were labeled with DAPI (blue). The mor-
phology of all cells in 10 random fields of view was categorized as round,
spread, or polarized (as described in Materials and Methods), and the number
of cells in each category is shown as a percentage of total cells counted. Data
represent the means and SEM of sample results from 4 experiments with PMN
from different donors, each with 50 to 150 cells counted per condition. Signif-
icant differences (Untreated versus KYN and fMLF versus fMLF	KYN) are
indicated (*, P � 0.05; **, P � 0.01 [by unpaired Student’s t test]). A repre-
sentative example of each morphological type is shown below the graph; scale
bar, 10 �m.
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PMN was reminiscent of that observed upon neutrophil treat-
ment with TNF-�, previously proposed to provide a “stop signal”
that counters PMN chemotaxis (38). As TNF-� has been demon-
strated to induce IDO activity in various mammalian cell types
(reviewed recently in reference 39), we wondered whether TNF-�
served as an intermediary in the UPEC-dependent IDO induction
that we previously observed in the murine bladder during bacte-
rial cystitis (23). Indeed, IDO induction was sharply reduced in
TNF-�-deficient mice within the UPEC-infected bladder 6 h
postinfection (hpi; Fig. 5A). Of note, IDO induction was evident
by 24 hpi in these Tnf�/� mice (Fig. 5A), complementing our
earlier studies showing that other IDO inducers, specifically inter-
ferons, are important at this later interval (23). However, treat-
ment with the IDO inhibitor 1-MT did not block TNF-� effects on
PMN morphology (Fig. 5B), suggesting that TNF-� influences
PMN chemotaxis via an alternative mechanism.

The kynurenine-responsive aryl hydrocarbon receptor par-
ticipates in IDO modulation of neutrophil function. It has been
previously shown in other cell types (e.g., T cells and brain tumor

cells) that L-kynurenine is an endogenous ligand for the aryl hy-
drocarbon receptor (AHR) (13, 14). AHR-ligand interaction is
complicated, in that ligands can behave as agonists, antagonists, or
both depending on context (40); furthermore, receptor stimula-
tion and downstream effects are dependent on cell type and par-
ticipation of other components in a multimeric transcription fac-
tor complex (18). We sought first to demonstrate a relationship
between L-kynurenine treatment and cellular expression of the
canonical AHR-responsive CYP1A1 gene (32), which encodes a
cytochrome P450-associated hydroxylase acting on aryl hydrocar-
bons. In both human bladder epithelial cells and primary neutro-
phils, the normalized abundance of CYP1A1 transcript was up-
regulated upon L-kynurenine treatment; this response was
prevented by the addition of a specific inhibitor of AHR (CH-
223191; Fig. 6A). In order to demonstrate a role for AHR in mod-
ulation of neutrophil function, we introduced UPEC into the
bladders of AHR-deficient mice and measured bladder tissue
MPO levels, a surrogate for neutrophil influx (23, 29), at 6 hpi. As
we observed previously in Ido1�/� mice (23), PMN influx (as
reflected by tissue MPO content) was significantly higher in

FIG 5 TNF-� mediates IDO induction in the infected bladder but impairs
chemotaxis independently of IDO. (A) C57BL/6 (WT) or TNF-�-deficient
mice were inoculated transurethrally with 107 CFU of E. coli strain UTI89.
Bladder homogenates prepared at the indicated times (hpi [hours postinfec-
tion]) were subjected to RNA isolation and quantitative PCR for Ido1 tran-
script analysis. Data are represented as fold change compared to mock-in-
fected mice. (B) Human PMN were allowed to adhere on fibrinogen-coated
slides in unmodified RPMI 1640 (Untreated) or in RPMI 1640 with TNF-� (25
ng/ml) or TNF-� plus 1-MT (10 �M), with processing and morphological
classification as round, spread, or polarized performed as described for Fig. 4.
Data represent the means and SEM of the results of 3 experiments performed
with different donors. TNF-� treatment induced a predominantly spread
morphology (**, P � 0.01 [versus Untreated]), which was unaffected by 1-MT
treatment (ns, not significant).

FIG 6 Kynurenine activates the aryl hydrocarbon receptor (AHR), suppress-
ing neutrophil migration. (A) Neutrophils or cultured bladder epithelial cells
were treated with L-kynurenine (KYN; 12.5 �M) plus either an AHR antago-
nist (CH-223191; 10 �M) or vehicle control for 2 h. Transcript abundance of
the AHR-responsive CYP1A1 gene normalized to that of the GAPDH gene is
shown relative to cells treated with DMSO vehicle only. Data represent the
means and SEM of sample results from 3 experiments performed with differ-
ent PMN donors, analyzed in triplicate. Kynurenine treatment of either blad-
der epithelial cells or PMN increased CYP1A1 transcription 4-fold to 5-fold
compared with vehicle control results. Addition of CH-223191 resulted in
statistically significant decreases in CYP1A1 transcript abundance (*, P � 0.05;
***, P � 0.001 [by unpaired Student’s t test]). (B) Wild-type C57BL/6 mice or
Ahr�/� mice were infected transurethrally with UPEC strain UTI89; at 6 hpi,
bladders were homogenized and analyzed by fluorescent myeloperoxidase as-
say. Aggregate data from three independent experiments are shown. Bladder
MPO content, shown in relative fluorescence units (RFU), was significantly
higher in Ahr�/� mice (***, P � 0.001).
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Ahr�/� mice than in wild-type BL/6 mice (Fig. 6B). Meanwhile,
there was no decrement in bladder bacterial load in Ahr�/� mice 6
hpi (data not shown), matching what was seen in Ido1�/� mice at
this time point (23).

DISCUSSION

Alteration of local immune function within the host is a common
theme in bacterial pathogenesis; though bacterial effectors and
mechanistic strategies vary widely, many pathogens have evolved
specific capacity to modulate host immunity in a variety of niches.
Within the mammalian bladder, UPEC employs an array of dis-
tinct strategies to attenuate the initial recruitment of PMN, pro-
viding an opportunity for the pathogen to establish residence
within uroepithelial cells (41). The PMN that ultimately respond
to infection specifically locate and surround these infected epithe-
lial cells, but the replicating UPEC within are sheltered (42). We
previously reported one such strategy, namely, UPEC-specific in-
duction of local IDO1 activity (23). In the present study, we de-
lineate the mechanism by which IDO1 activity regulates PMN
chemotaxis in response to epithelial bacterial infection. A large
body of work has examined the role of IDO in adaptive immune
regulation; this topic is not exhaustively reviewed here, but in
brief, IDO activity can attenuate T effector cell proliferation by
limiting the available tryptophan pool (5) and also generates
broadly bioactive kynurenine metabolites (18). Here, we demon-
strate that in the regulation of innate cellular responses, PMN
transepithelial migration is inhibited via the action of kynure-
nines, rather than by tryptophan limitation. Of note, one recent
study showed diminished PMN recruitment to infected cecum in
Ido1-deficient mice (43). In that paper, L-kynurenine was found
to promote apoptosis of murine bone marrow-derived neutro-
phils, though only in tryptophan-deficient media. Our in vitro
experiments revealed no cytotoxicity to human PMNs upon ex-
posure to physiologically relevant concentrations of kynurenine
metabolites. In total, our current findings suggest that the influ-
ence of IDO and L-kynurenine in PMNs relates to chemotaxis
more than to apoptosis.

Kynurenines are known endogenous ligands for AHR (13, 14),
and this interaction acts to modulate inflammatory responses by
promoting the generation of regulatory T cells (44, 45). Here, we
found that expression of the canonical AHR-regulated CYP1A1
target gene increased in the presence of kynurenine and that in-
fections of Ahr�/� mice recapitulated the augmented PMN influx
previously observed in Ido1�/� mice. Our findings indicate that
kynurenine ligation of AHR leads to impaired PMN chemotaxis,
though it is notable that data in other systems are not uniformly
congruent with this concept. For example, pretreatment of mice
with TCDD suppressed neutrophil recruitment to the murine
lung following intranasal inoculation with Streptococcus pneu-
moniae (46). However, in potential contrast, TCDD activation of
AHR-dependent signaling in respiratory epithelial cells appeared
to increase neutrophil recruitment to the lungs of influenza virus-
infected mice, while neutrophil numbers were not increased sys-
temically or in hematopoietic tissue (7, 47). These apparently in-
compatible results may arise from effects of dosage, host and
microbial contexts, relative contributions of multiple cell types to
the phenotypic results, and the presence of additional AHR li-
gands in the respective model systems. Our findings add to the
rapidly expanding body of literature on AHR function in health,
pregnancy, cancer, and immunology that has begun to reveal a

highly complex set of ligand-AHR and AHR-target interactions—
including the integration of endogenous and exogenous ligands
(48), potential allosteric effects, and multiple noncanonical means
by which AHR may regulate gene expression (18). An intriguing
future direction will be to define how AHR signaling in human
PMN might intersect with that triggered by ligation of formyl
peptide receptors (which recognize fMLF and influence multiple
PMN functions [reviewed recently in reference 49]) to exert a net
effect on chemotaxis. Finally, our data do not discount the possi-
bility that suppression of PMN migration by kynurenines is also
mediated in parallel via mechanisms distinct from AHR.

The observed alteration in PMN morphology upon kynure-
nine treatment recapitulates a PMN phenotype reported previ-
ously with TNF-� treatment. Specifically, TNF-� was shown to
initiate a p38 mitogen-activated protein kinase (MAPK)-depen-
dent “stop signal” that induces neutrophil adhesion and not po-
larization, resulting in diminished PMN motility toward che-
moattractants (38). Existing data indicate that UPEC induces local
TNF-� secretion during cystitis (21, 50), and we show that in the
bladder as a whole, TNF-� influences early IDO induction in re-
sponse to UPEC (Fig. 5A). However, our present data (Fig. 5B)
indicate that TNF-� effects on neutrophil chemotaxis are not at-
tributable to IDO induction, as chemical inhibition of IDO did
not abrogate the TNF-� “stop signal” (Fig. 7). Another piece of
this model that remains to be specified is the UPEC-specific effec-
tor or attribute that promotes IDO activation; of note, the recently
identified PMN migration suppressor YbcL (51, 52) does not rely
on IDO for its action (unpublished data).

In summary, our findings support the idea of an expanded role
for IDO in innate cellular responses through the AHR-mediated
effects of kynurenine metabolites on neutrophil function, in ad-
dition to the previously identified roles in adaptive immune reg-
ulation. Beyond this, our data illuminate a mechanism by which a
prototypic bacterial pathogen leverages these innate host path-
ways to facilitate the establishment of epithelial infection.

FIG 7 Model for UPEC suppression of PMN chemotaxis. In the acute phase of
bladder infection, UPEC induces the expression of IDO1, first via TNF-� and
later via interferons. Enzymatic activity of IDO1 catabolizes tryptophan (TRP)
to L-kynurenine (KYN), which can be further metabolized to other down-
stream bioactive compounds. TNF-� dampens PMN chemotaxis in an IDO-
independent way, as chemical inhibition of IDO did not reverse the PMN
morphological change induced by TNF-�. L-Kynurenine, via ligation of AHR
(but potentially also through alternative mechanisms), impairs early PMN
chemotaxis, which offers UPEC sufficient opportunity to establish a replicative
niche (the intracellular bacterial community) within uroepithelial cells that is
protected from subsequently arriving PMN.
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