
1H NMR Metabolomics Study of Spleen from C57BL/6 Mice 
Exposed to Gamma Radiation

X Xiao1,2, M Hu1, M Liu2, and JZ Hu1,*

1

2

Abstract

Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the 

biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics 

combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 

mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal 

component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are 

employed for classification and identification potential biomarkers associated with gamma 

irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and 

spectral deconvolution) are combined with normalize to constant sum and unit weight before 

multivariate data analysis, respectively. The combination of spectral deconvolution and 

normalization to unit weight is the best way for identifying discriminatory metabolites between the 

irradiation and control groups. Normalized to the constant sum may achieve some pseudo 

biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the 

control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, 

creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are 

significantly elevated while ADP is decreased significantly. These significantly changed 

metabolites are associated with multiple metabolic pathways and may be potential biomarkers in 

the spleen exposed to gamma irradiation.
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Introduction

In our daily life, the potential risk of accidental exposure to ionized radiation is increasing 

[1]. For example, the nuclear energy landscape is expanding rapidly all over the world, and 

some of these nuclear energy plants are located in earthquake-prone zones or near seashores 

[2], like the Fukushima Daiichi nuclear power plant in Japan which suffered major damage 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.
*Corresponding author: Hu JZ, Pacific Northwest National Laboratory, Richland, WA 99352, USA, Tel: 509-371-6544; Fax: 
509-371-6546; Jianzhi.Hu@pnnl.gov. 

HHS Public Access
Author manuscript
Metabolomics (Los Angel). Author manuscript; available in PMC 2016 March 25.

Published in final edited form as:
Metabolomics (Los Angel). 2016 ; 6(1): 1–11. doi:10.4172/2153-0769.1000165.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the earthquake and tsunami hit in 2011. Gamma radiation is a major component of 

ionized radiation from the nuclear accident. Understand the biological impact of gamma 

radiation to mammal is importance for developing medical counter measures to mitigate the 

damage from gamma radiation. To achieve this goal, it’s critical to understand thoroughly 

the biological respond at molecular level, including identify potential biomarkers of 

radiation exposed creatures for accurate assessment. Gamma radiation disturbances have 

serious consequences on the whole immune system [3] and the spleen plays important roles 

in immune system.

Metabolomics is a holistic systems approach capable quantitative measurement metabolic 

responses of a living system during exposure to external stimuli [4]. 1H NMR based 

metabolomics is a conventional method to explore systematic biochemistry due to almost all 

metabolites is hydrogen containing molecules [5] and the nature abundance of 1H is 

99.985%.

As an integrated part of metabolomics, multivariate statistical analysis methods are used for 

exploring the latent structures embedded within a set of complex data [6]. Generally, there 

are two pattern recognition methods have widely used in the field of metabolomics, e.g. 

principal component analysis (PCA) and orthogonal projections to latent structures analysis 

(OPLS). As an unsupervised pattern recognition method, PCA is the basis of all multivariate 

data analysis, and the aim is to reduce the dimensionalities of the metadata so that the linear 

latent variables are orthogonal to each other and keep most information [7]. As an extension 

of partial least squares (PLS), orthogonal projection to latent structures analysis (OPLS) has 

received more and more attention since it has been proposed due to its powerful capability in 

classification and interpretation [8]. In OPLS model, variables in X-matrix are separated into 

two parts, one is predictive to Y-matrix and the other is orthogonal to Y-matrix, therefore 

improve the model interpretability of PLS by emphasizing the predictive component [9], and 

eliminating orthogonal component that is often related to systematic errors associated with, 

e.g. spectrometer drift, sample storage and processing, etc. Based on OPLS model, a 

powerful visualization and interpretation tool named S-plot was proposed for multivariate 

classification model [10], enabling identifying and extracting statistically and significant 

biomarkers from multivariable data via correlation coefficients.

Usually, the pattern recognition methods in the field of NMR based metabolomics are 

constructed using a reduced variables dataset obtained by binning the original NMR spectra 

[11]. The method of spectral binning is very expeditious for large scale sample matrix and 

can be easily automated and pre-processed [12]. However, to identify biologically 

significant metabolites conventional 2D NMR spectra are needed to assign the signal peaks, 

a time consuming process for both spectra acquisition and interpretation [13,14].

Recently, mass spectrometry based metabolomics has been successfully utilized for 

assessing potential biomarkers in urine [15] and plasma [16], meanwhile 1H NMR based 

metabolomics has been utilized for serum [17] from mice exposed to gamma radiation, and 

interesting results have been obtained. Despite the attractive nature of non-invasive or 

minimal invasive, these earlier efforts are all reflections of whole system response. Efforts 

are still needed to assess individual organ or tissue damaged. The reasoning behind is that 
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different genes are active in different kinds of cells in the organism, and the metabolome is 

also depend on individual, organ and cell type [18]. In this study, the metabolic changed in 

mouse spleen after whole body exposure to different dosages of gamma irradiation is 

investigated via 1H NMR based metabolomics. Specifically, 1H NMR spectroscopy was 

used to detect the hydrophilic metabolites extracted from the excised spleens of the control 

and exposed mice. Both spectral binning and spectral deconvolution methods are used for 

generating the data for multivariate data analysis. Two normalization strategies are used, one 

is the constant sum (i.e., the integration of a metabolite peak/binned data point or peaks 

related to one metabolite divided the total spectral area) and the other one is unit weight of 

spleen tissue before extraction. Multivariate data analysis methods (both PCA and OPLS) 

are used for pattern recognition and identifying a series of metabolites that are statistically 

and significantly changed as a result of whole body exposure to gamma irradiation in the 

spleens. Based on these findings, the metabolites pathways that are affected by gamma 

irradiation are discussed. In addition, the advantages and disadvantages of different pre-

process strategies of the NMR spectra and the different approaches of normalization are 

discussed.

Materials and Method

Animal experiments and sample preparation

A total of 17 seven-week-old C57BL/6 female mice were purchased from the Jackson 

Laboratory (Bar Harbor, ME). After acclimation for one week at the animal facility of 

Pacific Northwest National Laboratory (PNNL), they were randomly grouped before whole 

body gamma irradiation using a high activity gamma source (1250 keV 60Co). The linear 

energy transfer (LET) associated with these fields is in the range of 0.2–2 keV/µm. For the 

whole body gamma radiation, the animals were isolated to the corner of their polymer cages, 

placed at a minimum of 100 cm from the collimated 6000 Ci 60Co source, and then 

irradiated to the proposed dosage. After irradiation the isolation barrier was removed and 

animals transferred to PNNL animal facility. The 60Co radiation field at the position of mice 

was measured beforehand using a reference class ionization chamber that was calibrated at 

the National Institute of Standards and Technology. The resulting absorbed dose rate at 

approximately 600 mg/cm2 depth was 0.83 Gy/min relative to tissue. Groups of mice were 

exposed to radiation doses of 0 Gy (control, n=8), 3.0 Gy (n=5) and 7.8 Gy (n=4, lethal 

radiation doses [19]). After 4 days post exposure, mice were sacrificed with 70/30 CO2/O2 

and the spleen from each mouse was excised and cut the same part immediately for each 

spleen, snap-frozen in liquid nitrogen, then weighted and stored at −80 °C freezer until 

NMR analysis. All animal work was approved by the Institutional Animal Care and Use 

Committee (IACUC) at PNNL.

Hydrophilic metabolites were extracted from spleen tissue using a modified Folch method 

by following the established protocol [20], which was recognized as being able to generate 

the highest yields under mild extraction conditions [21,22]. It has been generally accepted 

that about 95% or more of tissue lipids are extracted during the first step [23]. The extraction 

procedures are briefly described as below:
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Step 1: Weight each intact frozen spleen tissue sample about 10 mg. Add 0.25 ml methanol, 

0.053 ml deionized water and 0.125 ml chloroform for each tissue sample. All solvents/

water used for extraction were placed inside ice bath. Homogenize the mixture while the 

glass vial was placed inside ice bath using the Tissue Tearor (Model 985-370, BioSpec 

Products, Inc.). Follow by vortexing for 2 minutes. Step 2: Add 0.125 ml chloroform and 

0.125 ml deionized water into the sample then vortex again for 2 minutes. Leave glass vial 

containing the mixture on ice for 15 minutes, followed by centrifuging at 6,000 rpm for 16 

minutes at 4°C. Transfer the lipid and the water soluble layers into glass vials separately 

with syringes. Finally, the solvents for the water soluble, i.e., the MeOH/H2O layer 

(hydrophilic metabolites) were removed by lyophilizer. And the extracts were stored at 

−80°C freezer before NMR measurements.

1H NMR spectroscopy

The hydrophilic metabolites were reconstituted in 500 µl of D2O containing 0.05 mM 4, 4-

dimethyl-4-silapentane-1-sulfonic acid (DSS) as chemical shift reference and internal 

concentration standard, and 0.2 % sodium azide as bacteriostatic agent to prevent 

biodegradation. About 450 µl of the prepared sample was loaded into a standard 5 mm NMR 

tube (Wilmad, Vineland, NJ, USA). All 1H NMR spectra were acquired on a Varian 600 

MHz NMR spectrometer equipped with a Z axis-gradient 5mm HCN probe at 20°C. One-

dimension 1H NMR spectra were acquired from each sample using the standard Varian 

PRESAT pulse sequence with a single pulse excitation and 1s low power presaturation at the 

water peak position to suppress the residual water signal. The acquisition time and recycle 

delay (RD) of a single scan was 3 s and 1 s, respectively, and the spectral width was 7200 

Hz. A total of 20 k transients were accumulated, corresponding a total measuring time of 

about 22 hours for each sample, to ensure that a high quality 1H spectrum was obtained with 

sufficient signal to noise ratio for metabolites with concentration as low as about 0.5 µM or 

even lower in the NMR tube.

NMR data processing and multivariate data analysis

All free induction decays (FIDs) were multiplied by an exponential function with a line 

broadening factor of 0.5 Hz. Prior to Fourier transformation (FT), all FIDs was zero-filled to 

128 k data points. Then all 1H NMR spectra were phased and baseline corrected manually 

using the Processor module of Chenomx (NMR suite 8.1, Professional) and referenced to the 

chemical shift of DSS (CH3 peak) at 0 ppm. Two strategies were used to reduce the original 

spectral data points, i.e., spectral binning and spectral deconvolution. For each approach, 

two different normalization methods were employed prior to multivariate statistical analysis, 

i.e., normalization to constant sum [24] and normalization to unit weight of each tissue that 

was used for extraction [25].

Spectral binning

NMR-based metabolomics data contain multidimensional metadata points. In particular, the 

number of data points associated with the spectral dimension is large (i.e., 64 k or more). To 

analysis large number of spectra by statistics, the method of metadata point reduction such 

as spectral binning is often used to reduce the number of variables that must be considered 

[26]. As a conventional data pre-processing method in metabolomics, spectral binning is a 
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rapid and consistent method to produce a reduced set of variables for modeling purpose, 

where the effect of binning width in a 1H spectra of bio-samples to the statistical outcomes 

was extensively investigated previously [9]. Due to its tremendous advantage of fast 

automation with short response time, spectral binning has been successfully applied in 

metabolic profiling in clinical settings to access the disease status of a patient [27]. As a 

representative bin width, 0.04 ppm is frequently used or recommended for 1H spectra owing 

to it’s a good balance between resolution and the chemical shift influenced by the pH and 

ionic strength of samples [12]. In the present study, for the hydrophilic extracts of spleen the 

spectral regions at 0.5–9.0 ppm are segmented into discrete bins with equal width of 0.04 

ppm using the Profiler module of Chenomx (NMR suite 8.1, Professional). Spectral regions 

at δ 0.60–0.66, 1.72–1.80, and 2.88–2.94 (internal standard DSS), 3.28–3.42 (residual 

methanol) and 4.6–5.15 (residual water), are discarded.

In the present study, we compare two normalization methods for spectral binning data, i.e. 

relative bin area percent (normalization to constant sum of entire spectrum) and absolute bin 

areas (normalization to unit weight of spleen tissue before extraction). The relative bin area 

for each bin data point (i.e., normalization to constant sum) is calculated by dividing each 

bin area by the total summed bin area in the spectrum. This method is a conventional 

method when the detailed bio-sample information (i.e., bio-fluids volumes or tissues weight) 

is not known or ambiguous and credible statistical results can still be achieved as reported 

previously [28,29]. However, it is not known whether the decrease or increase of the signal 

intensities of the relative bins is true reflections of the biological pathway modulation. On 

the other hand, the absolute bin area is calculated by normalizing the bin area to per unit 

weight of spleen tissue before extraction. As NMR is quantitative, it is expected that the up 

or down regulate of the bins are true reflections of biological pathway modulations. The 

normalized NMR spectral bins based on both the absolute and the relative bins are imported 

into SIMCA (Version 13.0.3, Umetrics, Sweden) for multivariate data analysis (i.e., PCA 

and OPLS), respectively. One task of the present study is to clarify the advantages or 

disadvantages of the absolute and the relative bins that has not yet been discussed in 

literatures so far. Considering every variable of equal importance for statistical analysis, 

prior to PCA spectral binning data associated with the two normalization strategies 

discussed above are further mean-centered and unit-variance scaled [30]. PCA is firstly 

performed to obtain an overview of the data and detect the potential outliers. Subsequently, 

OPLS is conducted using the auto-scaled data as X-matrix (each row represent a sample, 

each column represent a variable) and class information as Y-matrix (e.g. 0 for control and 1 

for treatment) to find statistically significant variables, i.e., chemical shift integral regions, 

responsible for the discrimination of the two different classes. The number of principal 

components obtained from PCA and OPLS analysis is determined by the seven-fold cross-

validation. Model quality can be assessed by the parameters R2 and Q2 that reveal the 

interpretability of the model and indicate the predictability of the model, respectively. The 

correlation coefficient plot (i.e., the S-line plot in SIMCA-13) is tailor-made for NMR 

spectroscopy data based on OPLS model. It visualizes the loading colored according to the 

absolute value of the correlation coefficient, and can obtain a list of potential variables 

(spectral bins) that are statistically significant. To obtain the bins that are statistically 

significant, the cutoff value (Pearson correlation coefficient) depending on the degree of 
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freedom and the discrimination significance (i.e., 95% confidence level, p<0.05) plays a 

critical role. And the diagnostic tool CV-ANOVA (cross validation analysis of variance) test 

is further used to evaluate the reliability of the OPLS model (p<0.05).

Spectral deconvolution

The spectral binning is a powerful and fast method for preprocessing an NMR spectral data 

set as it can be fully automated. However, spectral binning requires acquiring high quality 

NMR spectra with each of the spectra having exactly the same residual water peak, baseline 

and peak shifts for each metabolite that are often very difficult to achieve experimentally 

[31]. Another even more serious drawback related to spectral binning is that no established 

technology exists for dealing with overlapping peaks from different metabolites. Therefor a 

novel method based on spectral deconvolution by using standard spectra on a library of 

known metabolites has been proposed for mixture analysis, and is defined as “targeted 

profiling”. The advantages of spectral deconvolution technique are validated against the 

traditional spectral binning analysis on the basis of sensitivity to water suppression and 

baseline shift [32]. To avoid the puzzler related to overlapping peaks, in the present study 

we decide to apply targeted profiling (i.e. the spectral deconvolution). We will compare the 

results obtained from spectral deconvolution with those obtained from spectral binning 

method. The method of spectral deconvolution not only assigns spectral peaks with chemical 

identity but is also able of identifying metabolites with concentrations higher than the 

detection limits, i.e. 0.3 µM in the NMR tube. By taking advantages of the spectral peak 

features from resolved peaks of various metabolites, the overlapped signal peaks can be 

adequately deconvoluted. In this way, the chemical identities associated with the statistically 

significant metabolites rather than the abstract chemical shift regions are obtained. Similar to 

the spectral binning data, two normalization strategies (i.e., normalization to constant sum 

and normalization to unit weight) are used before multivariate data analysis.

The strategy of spectral deconvolution offers us the advantage of determining the estimated 

absolute concentration of each metabolite in the tissue. In general, achieve the assignments 

of spectral peaks are cross validated using a suit of conventional 2D NMR spectra such 

as 1H-1H correlation spectroscopy (COSY), 1H-1H total correlation spectroscopy 

(TCOSY), 1H J-resolved spectroscopy (JRES), 1H-13C heteronuclear single quantum 

correlation spectroscopy (HSQC) and 1H-13C heteronuclear multiple bond correlation 

spectroscopy (HMBC) as previously reported [33,34]. In the present study the procedures 

described below. First, the NMR spectrum is deconvoluted and the concentration of each 

metabolite is determined by the well-established method provided by Chenomx (NMR suite 

8.1, professional) using the known concentration of DSS as internal standard. The spectral 

deconvolution is performed on the Profiler module of Chenomx with database containing 

more than 330 common metabolites associated with mammals and bacteria. Secondly, the 

concentration of each metabolite is further normalized to per milligram of spleen tissue 

before extraction. In parallel, a second data set with normalization to constant sum is 

obtained using a simple calculation, i.e., dividing the concentration of each metabolite by the 

sum of the concentrations of all metabolites. Multivariate data analysis (e.g. PCA and 

OPLS) are carried out in exactly the same way as described earlier for spectral binning data.
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Results and Discussion

NMR spectra of metabolites from spleen tissue extracts

Examples of typical 1H NMR spectra of hydrophilic extracts obtained from a control mouse, 

mice exposed to 3 Gy and 7.8 Gy whole body gamma irradiation are shown in Figure 1. In 

the plot, the peak intensities are normalized to unit weight of spleen tissue before extraction, 

so the peak intensities in the spectra of radiation group and those of the control group can be 

directly compared visually.

A total of 61 metabolites are assigned with good confidence according to the literature 

reports [35,36] and the database of Chenomx. These assignments are further confirmed by 

2D NMR spectra (e.g. COSY and JRES, Figures S2 and S3). The peaks assignment and 

basic statistical parameters associated with each detectable metabolite from spectral 

deconvolution are listed in Table 1, including the mean concentrations and standard 

deviation. A variety of amino acids, carbohydrates, glycolysis and citrate acid cycle 

intermediates are detected. And other metabolites include choline metabolites, ethanolamine 

metabolites, organic bases were observed. Visual inspection of the 1H NMR spectra 

indicates apparent metabolism alterations induced by gamma irradiation. For example, the 

radiation exposure mice have higher level of leucine, 2-aminobutyrate, threonine, valine, 

lactate, alanine, arginine, myo-inositol, malate, taurine, 2-oxoglutarate, glycerol and 

glutathione in the radiation groups (3Gy and 7.8Gy) in Figure 1, while the bottom trace 

spectrum (control) shows evidently higher level of isocitrate, o-phosphoethanolamine, 

betaine, UDP-glucose, ascorbate and inosine. To discern statistically and significantly 

changed metabolites, PCA and OPLS statistical analyses on the entire spectral sets 

containing a total of 17 mice from both control and gamma-irradiated groups are performed.

Statistical results based on spectral binning

Data sets consisting of relative bin area (normalization to constant sum) and absolute bin 

area (normalization to unit weight) are subjected to multivariate data analysis (e.g. PCA and 

OPLS). The PCA scores plot shown that the three groups (control, 3 Gy and 7.8 Gy) are 

clearly separated without any outliers based on relative bin area (Figure 2b). In order to 

maximize the correlation between X-matrix (the integral area of spectral bins) and Y-matrix 

(the class information) as well as the variation in X-matrix, OPLS is performed to evaluate 

and identify discriminatory variables responsible for separation between different groups. 

The variables shown significance difference between control and treatment groups are 

extracted from the correlation coefficients-coded loadings plot of the OPLS model 

constructed. The parameters R2X and Q2 shown good quality of the generated OPLS model, 

and CV-ANOVA results further confirm the model validity (p<0.05) (Figure 3). Obviously, 

spectral binning is a rapid and easily automated data reduction strategy, especially for large 

scale of samples. It is applicable in evaluating changes between two groups where decisions 

have to be made within a shortly time. And the results of statistical perform on the relative 

bin area percent is better than the absolute bin, primarily because the integral area is prone to 

the influence by the inconsistent baseline shifts between samples. In addition, there is an 

inherent drawback related to spectral binning. As shown in S-plot (Figure 3), the significant 

variables are chemical shift values (the small chemical shift regions) rather than the 
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chemical identities of specific metabolites. The corresponding “bins” that cannot be 

assigned to the specific metabolites are from bins related to spectral peaks with heavy 

overlap from different metabolites.

For example, in Figure 3, variables with δ around 1.3 and 4.1 are considered significant 

because the absolute values of their corresponding correlation coefficients are large than the 

Pearson correlation coefficient, and they can be easily identified as lactate due to no overlap 

with other high intensity peaks. However, in spectral regions such as variables with δ 2.4–

2.5 (glutathione, isocitrate and β-alanine with metabolites key 15, 19 and 20, respectively, in 

Table 1), and variables with δ 4.2–4.3 (threonine and malate with metabolites key 8 and 16, 

respectively, in Table 1), many metabolites contribute to the same peak. Obviously, these 

variables cannot be assigned to any individual metabolite due to severe metabolites peaks 

overlapped.

Statistical results based on spectral deconvolution

Considering the inherent disadvantage related to the spectral binning, spectral deconvolution 

is further to identify specific metabolites responsible for separating the gamma-radiation 

exposed groups from the control group. Multivariate data analysis methods (e.g. PCA and 

OPLS) are performed directly on the absolute concentrations of metabolites that are 

normalized to per milligram of tissue before extraction and relative concentration percent 

that normalized to constant sum of all metabolites concentration, respectively. Multivariate 

data analyses are carried out in exactly the same way as mentioned before in spectral 

binning section. PCA scores plots (Figures 2c and 2d) has shown clear classification of the 

control and treatment groups based on both absolute and relative concentrations.

Since no outliers are detected by PCA, all 17 samples are kept for OPLS model analysis. In 

the PCA scores plot (Figure 2), the control, 3 Gy and 7.8 Gy groups are better separated than 

those of spectral binning results. The OPLS model statistical analysis parameters, i.e. the 

R2X explains the variance in X-matrix and Q2 explains the predictive performance, both 

also show better statistical performance than the corresponding spectral binning results 

(Table S6). Moreover, the p-values (<0.05) from CV-ANOVA show that the OPLS models 

are valid using either multivariate data normalization strategy. Based on these statistical 

parameters, we conclude that spectral deconvolution is better than spectral binning for 

dealing with overlapping spectral peaks and for identifying the chemical identities of 

discriminatory metabolites between the control and the treatment groups in addition to better 

separating them.

The method of normalization to estimated absolute tissue concentration is the common 

method in the field of biology and also in metabolomics applications [37,38]. The use of 

relative concentration (i.e., normalization to constant sum) for multivariate data analysis is 

the conventional way when the weight of tissue before extraction is not known [39]. 

However, the relative concentration is prone to take the risk of achieving pseudo 

biomarkers. We will emphasize this pitfall late by using the known metabolite 

concentrations given in Table 1.
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With normalization to constant sum, there are 16 metabolites found statistically and 

significantly different between the 3 Gy exposed and the control group (Table S3) while 

there are 21 metabolites found statistically different when the method of normalization to 

unit weight is used on the same data set. Although there are 14 metabolites found 

statistically significant regardless of the normalization method used, there are metabolites 

with no statistical importance associated with one method become statistically important 

with the other method. For example, taurine, a high concentration metabolite (with 

metabolite key of 38 in Table 1) is of high statistical significance when normalization to unit 

tissue weight is used but shows no statistical importance when normalization to constant 

sum is used. The same finding applies to 2-oxoglutarate, glutathione, glycerol, glycine, 

malate, and π-methylhistidine with metabolite concentration across a wide range. In 

contrast, o-phosphoethanolamine and sn-glycero-3-phosphocholine are not statistically 

significant with normalization to unit weight but become statistically important with 

normalization to constant sum. Similar observations are found for the 7.8 Gy data shown in 

Table S4, where there are 15 statistically important metabolites with normalization to 

constant sum while there are 22 metabolites with normalization to unit tissue weight. 

Considering normalization to unit weight tissue mass is the gold standard for traditional 

biology, using the method of normalization to constant sum should be very careful due to 

the following potential shortcomings. (i) Metabolites that are statistically important by 

natural may be overlooked or missing; (ii) There may be pseudo biomarkers mistaken as up 

or down regulated in biological pathways. Therefore, in the following we will use the 

method of normalization to unit weight of tissue mass to discuss the statistically important 

metabolites and relate them to the biological pathways. Also to simplify the discussion, only 

the metabolites that are statistically important to both the 3.0 Gy and 7.8 Gy groups when 

compared with the controls are discussed below.

It can conclude from the Table 1 and Table 2 based on the estimated absolute metabolite 

concentrations in tissues that compared with the control group, in the radiation groups the 

concentrations of ADP is decreased statistically and significantly, while the concentrations 

of leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, 

tyrosine, phenylalanine, π-methylhistidine, taurine, myo-inositol, glycerol and uracil are 

increased statistically and significantly. All these statistically significant changed 

metabolites can be considered as potential biomarkers of metabolism disturbance induced by 

gamma radiation in spleen.

Discussion

It is known that gamma irradiation damages DNA via double strand break, induces oxidative 

stress [40] and increases protein turnover [41] (Table S6). The genes in DNA encode protein 

molecules that are the "workhorses" of all cells, carrying out all the functions necessary for 

life. Such as almost all enzymes, including those that metabolize nutrients and synthesize 

new cellular constituents, are proteins [42]. The metabolites are the end or intermediate 

products of cellular regulatory processes and most of biochemistry reaction catalyzed by 

enzyme [43]. So the gamma radiation damaged the DNA double strand and induced the 

metabolic disturbed.
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In this study, it is shown that the 3 Gy and 7.8 Gy irradiation groups are separated from the 

control group based on PCA analysis. Sixteen metabolites have been found statistically 

different between the control and the treatment groups. Up-regulated metabolites included 

leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, 

tyrosine, phenylalanine, π-methylhistidine, taurine, myo-inositol, glycerol and uracil. Down 

regulated metabolite is ADP.

Clearly, many of the statistically significant metabolites in spleen arising from gamma-

radiation damage belong to the amino acid family, including leucine, valine, arginine, 

tyrosine, phenylalanine, π-methylhistidine and taurine, etc. The up regulation of leucine, 

valine, arginine, tyrosine, and phenylalanine have been previously attributed to the result of 

DNA double strand break and double strand break induced mutation in codon [44], and the 

increased protein turnover will release of these amino acids [45]. The carbon skeletons of 

leucine and tyrosine are degraded to produce acetyl-CoA that enters into the critic acid 

cycle. It has been reported that leucine is capable of protecting animals against oxidative 

stress [46]. Tyrosine can be used as an effective radio protector against protein damage [47]. 

The unmodified tyrosine could protect DNA against radiation induced strand breaks [48]. 

Phenylalanine is a precursor for tyrosine that yields fumarate into the citric acid cycle by a 

specific organic catalyst called phenylalanine hydroxylase. A genetic defect in 

phenylalanine hydroxylase has been reported as the most common cause of elevated levels 

of phenylalanine [49]. The carbon skeletons of valine can be combined with other amino 

acids to yield succinyl-CoA, an intermediate of the citric acid cycle. The increase of valine 

level reflects radiation induced valine-rich protein breakdown and inactivate some enzymes, 

regulating pathway that produce succinyl-CoA [50]. Arginine plays an important role in cell 

division, removing ammonia from body and immune function; the radiation can induced 

immune dysfunction [51]. The carbon skeletons of arginine enter the citric acid cycle as 2-

oxoglutarate. Taurine is an organic acid widely distributed in animal tissues and the 

regulation of oxidative stress [52]. Glutathione is the major endogenous antioxidant in 

animal cells, and can be used in metabolic and biochemical reactions such as DNA synthesis 

and repair [53]. Creatine is an important substrate of creatine kinase that constitutes a 

complex cellular energy buffer. The administration of creatine stabilizes the mitochondrial 

creatine kinase and prohibits opening of the mitochondrial transition pores [54]. It has been 

reported that the administration of creatine can protect radiation exposed mice from 

increasing in biochemical indices of oxidative stress [55]. Therefore, creatine has been 

suggested as a new therapeutic drug for treating gamma radiation. Oxidative stress can 

induce tryptophan metabolism disturbance and the increased tryptophan level could 

attenuate the oxidative stress of the spleen [56].

Other metabolites that show statistically and significant differences between the control and 

the gamma-radiation exposed groups are related to the energy metabolism of the citrate acid 

cycle, including 2-aminobutyrate, 2-oxoglutarate and lactate with all of them found up-

regulated. The increased 2-aminobutyrate indicates that the cells suffer oxidative stress [57]. 

2-oxoglutarate plays a critical role in DNA double strand break synthesis that damaged by 

the irradiation. A kind of DNA repair enzyme is a 2-oxoglutarate dependent Fe2+ binding 

dioxygenase that removes methyl lesions from DNA. Formation of a fully folded and the 

catalytically competent enzyme only occurs when both 2-oxoglutarate and Fe2+ are bound 
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[58]. Gamma radiation induces energy metabolism disturbance, resulting in high levels of 

lactate production. Lactate is then transferred from these glycolytic fibroblasts to adjacent 

cells and be used as fuel for oxidative mitochondrial metabolism [59].

Oxidative stress causes the inactivation of several key enzymes so that the inhibition of 

glycolysis and beta-oxidation leads to the metabolism towards glycerol production [60]. 

Irradiation induces damage to DNA via double-strand breaks, oxidative base lesions in DNA 

are mainly repaired by base excision [61]. Uracil is the main substrate of uracil-DNA 

glycosylases. The increased uracil is the result of DNA repair [61]. Myo-inositol is a 

versatile compound and plays an important role in generating diversified derivatives upon 

phosphorylation. Phosphatidylinositol form one such group of myo-inositol derivatives that 

act both as membrane structural lipid molecules and as signals. The increased myo-inositol 

indicates synthetized cell membrane that is damaged by irradiation. The energy metabolism 

disturbance and the DNA damage repair need more ATP, resulting in a decreased ADP level 

[62].

Conclusion

We have shown that the combined application of 1H NMR metabolomics and multivariate 

data analysis (e.g. PCA and OPLS) is a powerful tool for exploring gamma irradiation 

induced metabolites changed in mouse spleen (Figure 4). Both PCA and OPLS shown that 

the groups exposed to whole body 3.0 and 7.8 Gy radiation at 4 days post exposure are well 

separated from the control group. A total of 61 metabolites with estimated absolute 

concentration in spleen tissues ranged from 20 µM to 28.26 mM are identified in the 

hydrophilic extracts of spleen. Various data pre-process methods are investigated, including 

spectral analysis involving spectral binning and spectral deconvolution, and normalization 

methods involving normalize to constant sum or normalize to unit weight. It is found that 

spectral deconvolution offers better statistical results than spectral binning for identifying 

the potential biomarkers in mouse exposed to gamma-radiation. While the method of 

normalization to tissue weight (i.e., the estimated absolute concentration) generate more 

metabolites that are statistically important than those the constant sum. Normalization to 

constant sum is also demonstrated at the risk of achieving pseudo biomarkers that could be 

mistaken as up or down regulated metabolites in biological pathway analysis. Using the 

combination of spectral deconvolution and normalization to unit tissue weight, it is found 

that gamma radiation induced metabolic changes in mouse spleen tissue, resulting in 

statistically and significantly up regulated leucine, 2-aminobutyrate, valine, lactate, arginine, 

glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, 

myo-inositol, glycerol and uracil, and statistically and significantly down regulated ADP. 

These statistically significant changed metabolites may be potential biomarkers for gamma 

radiation creature in spleen.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
600 MHz liquid state 1H NMR metabolites spectra of the hydrophilic extracts of spleens 

excised from the control and the radiation exposure mice. The peak intensities were 

normalized to per unit weight of spleen before extraction. In this plot, spectral regions 

between different chemical shifts are vertically expanded by different times to highlight the 

peaks of varied spectral intensities. Black: control, red: 3 Gy, blue: 7.8 Gy.
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Figure 2. 
PCA scores plots of spleen tissue extracts from the control (green dots), 3 Gy (blue dots) and 

7.8 Gy (red dots) irradiation groups:

(a) binning results of 1H NMR spectra with normalization to unit weight,

(b) binning results of 1H NMR spectra with normalization to constant sum,

(c) metabolites concentrations obtained by spectral deconvolution and normalization to unit 

weight,

(d) metabolites concentrations obtained by spectral deconvolution and normalization to 

constant sum.
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Figure 3. 
OPLS scores (left) and coefficients-coded loading plot (right) of the model discriminating 

the control (green dots) and the radiation (blue dots) groups.

(a) Data derived from binning results of control and 3 Gy and normalization to unit weight,

(b) Data derived from binning results of control and 7.8 Gy and normalization to unit 

weight,

(c) Data derived from binning results of control and 3 Gy and normalization to constant 

sum,
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(d) Data derived from binning results of control and 7.8 Gy and normalization to constant 

sum.

CV-ANOVA results gave p values of 0.095, 0.046, 0.02 and 0.005 for models (a), (b), (c) 

and (d), respectively.
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Figure 4. 
Proposed metabolic pathway networks associated with the significantly altered metabolites 

after exposed to gamma radiation based on the findings from this work and the diverse 

metabolic fates depicted in the small molecule pathway database (SMPDB) (http://

www.smpdb.ca/). Metabolites colored green are not detected.
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Table 2

Gamma radiation induced metabolic changes in spleen tissue extracts.

Key Metabolites
Correlation coefficient

3 Gy 7.8 Gy

1 Leucine 0.867 0.92

2 2-Aminobutyrate 0.962 0.898

3 Valine 0.953 0.958

8 Threonine 0.877 0.870*

9 Lactate 0.973 0.985

11 Alanine 0.768* 0.937

12 Arginine 0.936 0.955

13 γ-Glutamylphenylalanine 0.448* 0.906

15 Glutathione 0.839 0.911

16 Malate 0.875 0.726*

18 2-Oxoglutarate 0.872 0.941

20 β-Alanine 0.563* 0.894

24 Tyramine 0.782* 0.945

26 Creatine 0.969 0.967

27 Creatinine 0.084* 0.956

28 Tyrosine 0.951 0.99

29 Phenylalanine 0.913 0.943

33 π-Methylhistidine 0.813 0.928

38 Taurine 0.949 0.922

40 myo-Inositol 0.95 0.961

41 Tryptophan 0.923 0.873*

44 Glycerol 0.871 0.936

45 Glycine 0.851 0.253*

54 3-Hydroxybutyrate 0.019* −0.913

54 ADP −0.914 −0.899

57 Uracil 0.939 0.937

60 Oxypurinol −0.863 0.276*
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