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Abstract

Oxidative stress has many implications in the pathogenesis of lung diseases. In this review, we 

provide an overview of Reactive Oxygen Species (ROS) and nitrogen (RNS) species and 

antioxidants, how they relate to normal physiological function and the pathophysiology of 

different lung diseases, and therapeutic strategies. The production of ROS/RNS from endogenous 

and exogenous sources is first discussed, followed by antioxidant systems that restore oxidative 

balance and cellular homeostasis. The contribution of oxidant/antioxidant imbalance in lung 

disease pathogenesis is also discussed. An overview of therapeutic strategies is provided, such as 

augmenting NO bioactivity, blocking the production of ROS/RNS and replacement of deficient 

antioxidants. The limitations of current strategies and failures of clinical trials are then addressed, 

followed by discussion of novel experimental approaches for the development of improved 

antioxidant therapies.
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Introduction

Oxidant/antioxidant imbalance has been implicated in the pathogenesis of diseases affecting 

every organ system, including the lung and pulmonary vasculature. The field has 

significantly evolved from the early investigations that defined the source of excess 

production of Reactive Oxygen Species (ROS), identified the antioxidant systems, both 

enzymatic and non-enzymatic, and established that oxidative stress damages cell structures. 

These early studies were followed by the discovery of nitric oxide (NO•) as a biologic 

signaling molecule, and the emerging field of redox biology, the study of reactive oxygen 

and nitrogen species as signaling molecules through specific, regulated and targeted 

modifications. Numerous clinical trials have tested different strategies to protect against 

oxidative stress or restore physiologic NO activity in lung and pulmonary vascular diseases, 
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though the results have overall been disappointing. This review article will highlight the 

major oxidant and antioxidant systems in the lung; provide a framework to understand 

redox-regulated signaling; review the clinical trials aimed to restore NO bioactivity, 

scavenge ROS or replete deficient antioxidants in a range of lung diseases; speculate on the 

reason for the overall insufficient clinical responses; and provide an overview of new 

therapeutic strategies currently under investigation designed to overcome the limitations 

with current therapies.

Overview of ROS/Antioxidants in the Lung

ROS/RNS production from endogenous sources and their role in lung diseases

Endogenous oxidant-antioxidant systems have an important role in lung diseases. Reactive 

radical species are ubiquitous in nature, produced from endogenous and exogenous sources. 

Cellular organelles such as mitochondria and peroxisomes are major sources of reactive 

oxygen (ROS) and nitrogen species (RNS) [1,2]. In the mitochondrial electron transport 

chain, unpaired electrons are generated by oxidative phosphorylation, which reduces 

molecular oxygen, leading to the production of superoxide anion (O2
•−). Superoxide is 

rapidly reduced to hydrogen peroxide (H2O2). Peroxisomes are cell organelles that contain 

oxidases and catalases. These enzymes play a key role in normal metabolic pathways that 

contribute to the catalysis of ROS and RNS byproducts, implicating peroxisomes as a major 

source of oxidative stress. Some of the major enzymatic sources of ROS and RNS include 

flavoproteins that produce H2O2, and xanthine oxidase and the nitric oxide synthases that 

produce O2
•− and NO• [3–5]. A number of other important cellular enzymes such as 

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase, lipooxygenases, 

uncoupled endothelial nitric oxide synthase (eNOS), and cytochrome P450, contribute to the 

production of ROS/RNS that play a role in lung diseases [6–9]. Non-enzymatic production 

of reactive species also occurs through metal-catalyzed oxidation such as the Fenton 

reaction (Fe2+ + H2O2 → Fe3+ + OH− + OH•) or thermodynamic reactions of NO• with O2
•− 

to form peroxynitrite (ONOO−) [10,11].

ROS/RNS production from exogenous sources and their role in lung diseases

Production of reactive species from exogenous sources such as environmental toxins and 

diet promote the onset of lung diseases. Classical examples of lung injury caused by 

environmental toxins include exposure to paraquat (a commonly used herbicide) and chronic 

ethanol consumption. Paraquat poisoning has been shown to induce oxidative stress and 

increased expression of cystine/glutamate transporter, Nrf-2 regulated mitochrondrial 

dysfunction, and inflammation in the lung [12–14]. While dietary phenols (i.e. resveratrol) 

have shown to inhibit paraquat-induced oxidative stress [15], phenols (curcumin and 

resveratrol) can also regulate oxidative stress and inflammation by activation of nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 

(AP-1) [16]. Chronic ethanol consumption is associated with increased incidence of Acute 

Respiratory Syndrome (ARDS), where one proposed mechanism is the up-regulation of 

epithelial sodium channel (ENaC) activity via ROS-induced cysteine modification in the 

lungs [17]. Other examples include the induction of oxidative stress by numerous 

environmental toxins due to disruption in cytochrome P450 (CYP) metabolism. Sulfur 
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mustard inhibits NADPH CYP reductase [18]; diesel exhaust particles induce CYP and 

NADPH quinone oxidoreductase-1 expression, and nuclear factor erythroid 2–related factor 

2 (Nrf2) nuclear translocation [19]; and arsenic, asbestos, and tobacco carcinogens elevate 

CYP expression and activity. These changes affect pulmonary immune/inflammatory 

responses or contribute to the development of lung cancer [20–22].

Antioxidant systems

Antioxidants exist as enzymatic or non-enzymatic systems that help restore oxidative 

balance to maintain cell homeostasis. Superoxide dismutases present in the cytoplasm 

(SOD1), mitochondria (SOD2), or extracellular compartments (SOD3) catalyze the 

dismutation of O2
•− into oxygen (O2) and H2O2. Catalases, present in the cytoplasm and 

peroxisomes, further catalyze the breakdown of H2O2 into O2 and water, while 

peroxiredoxins catalyze the reduction of H2O2. Another class of enzymes in the thioredoxin 

and glutathione systems includes reductases and peroxidases that detoxify compounds such 

as ROS and lipid peroxides. These enzymes have been shown to have important protective 

roles in lung diseases [23–31]. Non-enzymatic antioxidants, present endogenously or by 

dietary intake, are small molecular weight compounds that scavenge free radicals. Of 

importance to hypertension, ARDS, asthma, cystic fibrosis, Chronic Obstructive Pulmonary 

Disease (COPD), infections and cancer are: Glutathione (GSH), a cysteinyl tripeptide; uric 

acid, an oxypurine produced from xanthine/xanthine oxidase; ascorbic acid (vitamin C), a 

monosaccharide redox catalyst; and tocopherols/tocotrienols (vitamin E), fat-soluble vitamin 

that protect membranes from lipid peroxidation radicals [32–38].

Physiologic function – oxidants and antioxidants in homeostasis—Endogenous 

oxidant-antioxidant systems have physiologic functions important in cell homeostasis and 

cellular adaptation to environmental stress. ROS production as part of the respiratory burst 

in inflammatory cells has been long recognized to protect against invading organisms; 

individuals with Chronic Granulomatous Disease are immunocompromised due to defects in 

the leukocyte to generate O2
•− via NADPH oxidase (gp91phox or NOX2). The role of NO• 

as a biologic signaling molecule has also been clearly established, with a role in maintaining 

vascular tone, neurotransmission and normal immune function. Accumulating new data 

implicates a key role for ROS in signaling pathways important in multiple processes 

including proliferation, differentiation, immune function, and vasoregulation. Examples 

include ROS and 4-hydroxy-2-nonenal (HNE) induced vascular cell proliferation and 

angiogenesis [39,40], H2O2 regulation of bone marrow-derived stem and progenitor cell 

function [41], ROS/RNS regulation of neutrophil and monocyte function [42,43], and ROS 

signaling that regulate pulmonary vessel tone, kinase-modulated vascular function, and 

mechanical stretch-induced vascular remodeling [44–46].

Pathophysiologic function – oxidants/antioxidant imbalance in disease pathogenesis

The pathophysiology of oxidative stress occurs when there is an imbalance in oxidant-

antioxidant systems. An accumulation of highly reactive molecules causes generalized 

damage to DNA, lipids, proteins and carbohydrates. There are well-established methods to 

measure oxidative stress in disease states, shown for example by increased lipid 

peroxidation products, DNA oxidation, and protein carbonyl formation in lung tissue. While 
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lipid peroxidation can be a marker of excess ROS production, oxidized lipids are also potent 

signaling molecules. Isoprostanes, for example, are byproducts of membrane lipid 

peroxidation that provoke bronchoconstriction and airway hyper-responsiveness in asthma, 

and powerful vasoconstriction in pulmonary arterial hypertension and acute lung injury 

[47,48]. Certain highly reactive ROS are associated with indiscriminant oxidative or 

nitrosative stress, such as hydroxyl radical (•HO) or ONOO−. In contrast, H2O2, NO•, and 

O2
•− have relatively longer half-lives, and specific cellular targets that enable them to 

function as signaling molecules. Sustained or increased production of these ROS/RNS 

promotes alterations in cell signaling responsible for disease progression. These species can 

regulate enzyme function including kinases and phosphatases, G-protein or tyrosine kinase 

receptors, ion channel function, and transcription factors, resulting in an impact on 

numerous downstream pathways.

Overview of redox-regulated signaling

Redox regulated signaling pathways are increasingly recognized as a major mechanism to 

regulate cellular function. As signaling molecules, ROS and RNS have specific targets that 

impart their signaling properties and determine their biologic effects. It is well-established 

that NO• activates guanylate cyclase by binding to the heme moiety, leading to increased 

cyclic guanosine monophosphate (cGMP)-dependent vasorelaxation. NO• can also lead to 

vasorelaxation via cGMP-independent mechanisms, for example, by inhibiting the effects of 

serotonin or alpha-adrenergic agonists on their respective G-protein coupled receptors to 

blunt vasoconstriction [49]. Both ROS and RNS can directly modify reactive cysteine 

residues, which represents a major mechanism for redox regulated signaling [50]. Post-

translational modifications include disulfide bond formation, reduction, oxidation, 

nitrosylation, and glutationylation, which alter protein function. Important to lung diseases is 

S-glutathionylation that uncouples eNOS [51,52] which regulates vascular tone, and S-

nitrosylation caused by smoke or chronic airway inflammation in asthma [53,54]. 

Downstream consequences include modulation a number of cell signal transduction 

pathways that disturb cell homeostasis [55]. Reactive oxygen or nitrogen species usually 

have specific targets that are tightly regulated. The reactions are also usually rapid, 

reversible and occur in specific tissue and cellular compartments. Pathways relevant to lung 

diseases include regulation of kinase and phosphatase activity on growth factors and growth 

factor receptors that affect smooth muscle cell proliferation [56,57] or endothelin-1 that 

mediates pulmonary vasoconstriction [58]; regulation of transcription factors such as nuclear 

factor kappaB (NFκB), tumor suppressor p53 and hypoxia-inducible factor 1-alpha 

(HIF-1α) that control expression of genes involved in pulmonary vascular inflammation and 

remodeling [59–61]; and regulation of molecular adaptors and chaperones such as heat 

shock protein 90 (HSP90) interactions with eNOS that contribute to endothelial dysfunction 

associated with pulmonary hypertension [62–64].

NADPH- and GSH-dependent enzymes also play an important role in redox regulated 

signaling in lung diseases. ROS produced by lipoxygenases and NOX regulate pro-

inflammatory responses in allergic airway inflammation [6], while NADPH:quinone 

oxidoreductase 1 (NQO1) upregulation is a Nrf2-dependent process relevant to macrophage-

derived oxidants involved in the pathogenesis of ozone-induced oxidative stress, airway 
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inflammation, and emphysema [65,66]. GSH peroxidases, S-transferase, and reductase 

modulate GSH and NADP homeostasis which, when altered, induce signaling pathways that 

promote airway inflammation in COPD and asthma [67–71].

Strategies to restore redox balance in human disease

Multiple clinical trials have tested a range of therapies designed to restore oxidant/

antioxidant imbalance. These strategic approaches can broadly be classified as agents that 

restore NO• bioactivity in the setting of deficient NO•; block NO• production in the setting 

of excess NO•; replace deficient antioxidants, in particular GSH and non-enzymatic 

antioxidants including vitamins and micronutrients; or scavenge ROS (Figure 1). We 

provide important examples of trials that represent each of these categories of therapeutic 

approaches, most of which have ultimately had limited or no success in treating lung or 

pulmonary vascular disease. We propose that there are a number of general problems with 

the current therapeutic approaches related to the dose and half-life of delivered antioxidants; 

targeting of the treatment to the proper tissue or cellular compartment; selection of patients 

based on disease rather than antioxidant status; and disruption of the physiologic role of the 

oxidants.

Strategies to augment NO• bioactivity

Based on the role of NO• dysregulation in pulmonary vascular disease and promise in 

animal studies, a number of therapeutic approaches have been developed to restore NO• 

homeostasis in the lung and pulmonary circulation including inhaled NO• (iNO), 

phosphodiesterase inhibitors, and recombinant SOD1. iNO has been studied in pulmonary 

hypertension as a selective pulmonary vasodilator, in ARDS to improve ventilation-

perfusion matching, and in preterm infants to prevent chronic lung disease. While iNO does 

decrease the need for rescue therapy with extracorporeal life support in full term infants with 

persistent pulmonary hypertension, it does not improve mortality [72,73]. This remains the 

only currently FDA approved indication for iNO. iNO failed to improve meaningful clinical 

outcomes in other clinical settings. iNO treatment for ARDS in adult and pediatric patients 

showed no change in vent free days or mortality outcomes, and in premature infants, iNO 

failed to influence later development of bronchopulmonary dysplasia (BPD) [74]. Another 

strategy is the use of phosphodiesterase 5 (PDE5) inhibitors such as sildenafil, to block 

breakdown of cGMP, enhancing the activity of the second messenger of NO• responsible for 

smooth muscle relaxation in airways and vasculature. Sildenafil is an approved therapy for 

adults with pulmonary arterial hypertension, though its use in pediatric pulmonary 

hypertension is not recommended due to safety concerns [75–80]. Human recombinant 

SOD1 has also been tested as a means to increase NO• bioavailability by preventing the 

inactivation of NO• by O2
•−. In preterm infants, human recombinant SOD was ineffective at 

improving 28 day mortality infants, though modestly decreased later development of 

reactive airway disease and possibly decreased retinopathy of prematurity [81–83]. Overall, 

despite abundant research demonstrating loss of NO• bioactivity in a number of settings, the 

clinical utility of the current available therapies has been quite limited and may require 

alternative strategies.
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Strategies to block ROS/RNS production

Though some pulmonary vascular diseases are associated with deficient NO• production, 

other diseases are characterized by overproduction of ROS or NO•, leading to oxidative and 

nitrosative stress. Numerous laboratory studies of lung and pulmonary vascular disease 

demonstrate protection when ROS/RNS production is ablated, thus this is another strategy 

that has also been considered in the clinical research arena. A variety of inhibitors are 

available that block ROS/RNS production via NOX, xanthine oxidase, NOS, or 

mitochondria. In the clinical setting, human circulatory shock is characterized by excess 

production of NO• by inducible NOS, which contributes to catecholamine-refractory 

hypotension. One multicenter randomized controlled study evaluated a non-specific nitric 

oxide synthase inhibitor, 546C88 to test its ability to improve hypotension and organ 

perfusion. Unfortunately, this strategy not only failed to protect, but in fact increased 

mortality in this patient population [84].

Strategies to scavenge oxidants

Numerous studies have tackled the problem of oxidative stress by delivering enzymatic or 

non-enzymatic antioxidant therapies. N-Acetyl cysteine (NAC) is perhaps the most well 

studied antioxidant, used for over 40 years and possessing multiple antioxidant effects. It 

acts as a direct powerful free radical scavenger, replenishes depleted GSH stores and also 

imparts anti-inflammatory effects [85]. Despite these potential beneficial effects, clinical 

trials using inhaled or intravenous NAC have failed to demonstrate mortality benefit in 

many diseases such as asthma, ARDS, systemic inflammatory response syndrome or sepsis. 

However, in some studies, potential improvements in secondary clinical outcomes were 

observed with NAC, such as faster recovery in ALI [86], improved oxygenation and 

decreased ventilator [87], and less frequent exacerbations in COPD [88]. In contrast, other 

studies have raised concerns about cardiac depressant effects of NAC, particularly in 

patients with sepsis [89]. The utility of NAC in lung injury remains uncertain, with no clear 

indications for use.

Antioxidant scavenging can be augmented by modifying nutrition, particularly vitamins, 

trace elements and specific amino acids that have either direct antioxidant effects, serve as 

precursors or cofactors for antioxidant enzymes, or support immune function. Deficiencies 

in several antioxidant vitamins including zinc and selenium, and amino acids have been 

observed in critically ill adult and pediatric patients, and the degree of deficiency often 

correlates with severity of disease, as is the case with selenium deficiency in severe sepsis 

[90–93].

Although these dietary factors are promising, readily accessible and easily modifiable 

targets, results in clinical trials have generally been discouraging. For example, although 

initial meta-analysis evaluating multiple smaller RCT’s of combination antioxidant 

micronutrient supplementation suggested an improvement in outcomes, particularly those at 

high risk of death [94], a subsequent large randomized controlled study showed harm with 

early glutamine supplementation and no improvement with antioxidants in critically ill 

patients [95]. Interestingly, in this study the subset of patients randomized to receive 

selenium were not deficient in selenium, as described in multiple other studies.
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Why have antioxidants failed to cure lung disease?

Despite abundant evidence that oxidative stress is not mere epiphenomena of disease 

processes, these studies highlight the lack of efficacy with the current antioxidant 

therapeutic approach in numerous clinical trials. There are a number of reasons why these 

therapies failed to improve outcomes in human lung diseases. These relate to the selection of 

the appropriate dose, targeting of the antioxidant to the appropriate tissue or cellular 

compartment, impact on physiologic function of ROS/RNS, or failing to account for genetic 

or epigenetic factors or selecting the appropriate patient population. We will review each of 

these limitations and challenges below.

Inadequate dose of antioxidants

The ability to deliver the appropriate dose of antioxidant with a suitable half-life poses the 

first challenge. First, little is known about specific therapeutic levels of antioxidants in 

which to base dosing regimens. Secondly, due to the need for compensatory increase in 

antioxidants during times of high oxidative burden, a “therapeutic” level is likely to be a 

dynamic target depending on the disease state. Guidance for intake of some antioxidant 

vitamins or nutrients is provided in the form of recommended daily allowances. However, 

these “allowances” are unlikely to achieve a truly therapeutic level during critical illness, 

due to higher requirements due to metabolic demands, unpredictable absorption of enteral 

antioxidants, altered volume of distribution due to capillary leak, and general increased 

production of ROS/RNS during critical illness. A third challenge in the delivery of 

antioxidants is the short half-life of endogenous and exogenously supplemented 

antioxidants, as is the case with recombinant SOD1 [81,83]. This presents a significant 

challenge in the development of antioxidant enzymatic therapies so that they can be not only 

safe and efficacious but also appropriately dosed.

Inadequate tissue delivery

Another consideration in adequately delivering antioxidants is ensuring delivery to the tissue 

compartment where oxidative stress is occurring. For example, replacing SOD1 

intravenously, with a half-life of only a few minutes is unlikely to effectively and adequately 

restore SOD to the lung tissue [81,83]. In addition, SOD1, due to its negative charge, does 

not bind to cell surfaces or penetrate tissue well, while SOD3 or the chimeric protein 

SOD2/3, which are positively-charged, bind to the cell surface and extracellular matrix 

which improves tissue content and half-life, offering a potential advantage in certain disease 

settings.

Inadequate timing of delivery

In addition to delivering a therapeutic antioxidant dose and targeting a specific vulnerable 

tissue compartment, delivery of antioxidant therapy during a therapeutic window is equally 

as important. Mechanistically, antioxidants are more likely to be beneficial if started earlier 

in the course, before the development of irreversible tissue damage occurs.
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Disruption of physiologic function of ROS/RNS

Although antioxidants provide benefit by mitigating damage caused by oxidative stress, 

interference with the extensive physiologic roles of ROS or RNS by antioxidants may be 

harmful.

ROS modulate both physiologic and pathophysiologic functions in phagocytosis and 

immune defense. For example, in a mouse model of systemic inflammatory response 

syndrome, NOX2 was found to be protective against inflammation, lung injury and 

mortality [96], while a mouse model of E. coli peritonitis showed increased morbidity and 

mortality in mice supplemented with vitamin C, GSH and NAC [97]. In contrast, in a mouse 

model of influenza A pneumonia, NOX2 inhibition resulted in decreased viral titers, 

decreased airway inflammation, and decreased production of ROS with decreased mortality 

[98].

ROS/RNS also play a key role in cell growth, accounting for recent evidence that 

antioxidant therapy can increase cancer risk in both human and animal studies. In the Beta 

Carotene and Retinal Efficacy Trial (CARET), men and women at high risk for lung cancer 

who received beta-carotene and vitamin A had a higher incidence of lung cancer versus 

those receiving placebo [99–102]. In a mouse model of lung cancer, mice supplemented 

with NAC and vitamin E showed increased tumor progression and decreased survival due to 

loss of ROS-induced expression of the p53 tumor suppression gene [103]. These examples 

demonstrate potential detrimental effects on important physiologic processes due to excess 

scavenging of ROS.

Lack of consideration of individual factors

The suggestion of potential harm with antioxidants in some patients does not necessarily 

imply that antioxidant therapy in lung disease should be abandoned, rather that we may need 

to implement a more individualized approach to the use of antioxidants. Such an approach 

will require knowledge of individual genetic variations in antioxidant enzymes, epigenetic 

regulation, and potentially biomarker profiles that identify specific patients vulnerable to 

oxidative stress and guide patient-specific treatments.

Polymorphisms and genetic variations in numerous antioxidant enzymes have been 

described. Many of these variations alter antioxidant gene expression, antioxidant protein 

function or protein distribution, and impact development and progression of respiratory 

diseases. For example, in premature infants, certain variations in SOD isoforms and catalase 

are protective against development of neonatal respiratory distress syndrome [104]. In 

COPD, polymorphisms in antioxidant genes related to GSH function and all isoforms of 

SOD alter susceptibility to COPD and impact disease progression [105–107]. Genetic 

variations in antioxidant enzymes have also been implicated in susceptibility to asthma 

[108] and acute lung injury. Interestingly, a particular polymorphism may have the opposite 

effect on risk, depending on the disease state. For example, the polymorphisms in SOD3, 

such as the R213G single nucleotide polymorphism, which shifts the distribution of SOD3 

from the tissue to the extracellular fluids, decreases the risk for COPD while increasing the 

risk for pulmonary vascular disease [109–111]. Knowledge of specific polymorphisms and 
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genetic variations would allow clinicians to target particular vulnerable patients with patient 

specific antioxidant therapy, rather than large populations with a particular disease. Though, 

the feasibility of a large study using this more selective approach is difficult, there are small 

studies that support the notion that those with genetic susceptibility to oxidative stress are 

more likely to benefit from targeted antioxidant therapy. This was demonstrated by a study 

of ARDS in which NAC did not offer an overall mortality benefit, however in selected 

patients with a single nucleotide polymorphism in GSH S-transferase, NAC improved 

mortality [112].

New experimental approaches

There are numerous promising approaches currently under investigation that are designed to 

more effectively restore NO• bioactivity, block excess ROS/RNS production, scavenge 

ROS/RNS, or address individual variations in antioxidant levels to improve treatment for 

lung and pulmonary vascular diseases. Many of these therapies are still being tested in the 

laboratory setting in relevant animal models but will be the foundation for new drug 

development and study design to treat infants, children and adults with a wide range of lung 

diseases. This review aims to highlight these general concepts, though is not able to cite the 

multitude of important investigations in this field.

Augment NO bioactivity

New approaches to augment NO• bioactivity hold great promise in the treatment of lung and 

vascular diseases [113]. These approaches include agents that improve delivery or 

bioavailability of NO•, enhance cGMP-dependent NO• signaling, or improve eNOS activity. 

One of the concerns with NO• delivered as a gas is its high reactivity with O2 in the gaseous 

phase and with O2
•− when in the liquid extracellular and intracellular mileau. Delivery of 

NO• bioactivity through the use of S-nitrosothiols allows for targeted delivery of this 

important bioactive form of NO•. This has widely been done in the laboratory setting using 

S-nitrosothiols like S-nitrosocysteine, while one potential therapeutic agent is ethyl nitrite, a 

gas that largely functions as an S-NO donor [55,114–116]. There is also significant interest 

in the therapeutic use of nitrite to augment NO• bioactivity [117–119]. iNO increases 

formation of nitrite, nitrate and S-nitrosthiols, while nitrite also is a precursor promoting 

formation of S-nitrosothiols, which may explain its beneficial effects [120,121]. In addition 

to new PDE5 inhibitors, guanylate cyclase activators are also under investigation to prolong 

the biologic activity of NO• [122–126]. Strategies that augment eNOS function to generate 

NO• include supplementation of substrate or essential co-factors, L-arginine, L-citrulline, or 

tetrahydrobiopterin (BH(4)) [127–129]. The modulation of BH(4), an essential cofactor in 

NOS coupling, has also been explored in which BH(4), BH(4) analogs and sepiapterin 

supplementation was used to increase NO• production and inhibit hypoxia-induced 

vasoconstriction [130], pulmonary endothelial dysfunction [131,132], and restoring 

angiogenesis in persistent pulmonary hypertension [133,134]. In addition, inhibition of 

arginase is another strategy to enhance L-arginine availability for eNOS [135].

Block ROS/RNS production

Other strategies to selectively block ROS/RNS production by specific enzyme isoforms are 

being developed experimentally. NOX inhibitors, such as NOX4 inhibitor, have been used 

Villegas et al. Page 9

J Pulm Respir Med. Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to attenuate gene transcripts involved in hypoxia-mediated vascular remodeling and 

pulmonary fibrosis in rodents [136], and apocynin has been used to inhibit activation of 

redox transcription factors NFκB and AP-1 and production of pro-inflammatory cytokines 

TNF-α, IL-1β, and IL-6 in experimental animal models of asthma airway inflammation 

[137]. Studies have also shown that inhibitors of xanthine oxidase, such as allopurinol, 

reduce the production of nitrotyrosine in the airways of COPD patients, although exhaled 

nitric oxide was increased [138]. Potentially a specific NOS2 inhibitor may have benefit in 

inflammatory states associated with nitrosative states and prevent the issues observed with 

the general NOS inhibitor described above in the Triumph trial.

Scavenge oxidants by increasing endogenous antioxidant defenses

A new approach is the induction of endogenous catalytic antioxidants, SOD and catalase, as 

an antioxidant therapy [139]. This approach has been studied in healthy human subjects that 

were given a composition of extracts from five medicinal plants (Protandim). Each 

ingredient has been reported to increase SOD and catalase activity while decreasing plasma 

TBARS, an indication of decreased lipid peroxidation. The Protandim study evaluated the 

additive effects of the five-ingredient composition, and showed that after 30 days of 

supplementation TBARS was decreased by 40%, and after 120 days erythrocyte SOD 

increased by 30% and catalase increased by 54%. Protandim functioned by increasing 

endogenous Nrf2 antioxidant defenses. Nuclear factor (erythroid-derived 2)-like 2, Nrf2, is a 

master regulator of the human Antioxidant Response Element (ARE), serving as a 

transcription factor for the genes of a number of antioxidant enzymes. In normal conditions, 

Nrf2 resides in the cytoplasm bound to Kelch like-ECH-associated protein 1 (Keap1) and 

Cullin3, and is ultimately ubiquinated and degraded. As a stress response, cysteine residues 

in Keap1 disrupted, causing Nrf2 to be released and translocate into the nucleus to bind to 

ARE. When Nrf2 is activated, antioxidant-related genes involved in several lung related 

diseases such as lung inflammation, pulmonary fibrosis, pulmonary hypertension, acute 

mountain sickness, and lung cancer are expressed. In addition to Protandim, other approved 

therapeutic agents may also increase Nrf2 activation [140–143].

Targeted therapies

An increased understanding of the pathophysiology of lung diseases related to oxidative 

stress has lead to the development of therapies that have potential to be more effective and 

efficient by targeting specific lung compartments and cell types. Administration of 

therapeutics by inhalation for localized effects in the lung has long been a conventional 

method. Related to direct lung delivery of antioxidants, both aerosolized recombinant SOD3 

and a novel SOD2/3 chimeric protein delivered intratracheally in rodents showed protection 

from hyperoxia or acute hypoxia [144,145]. Recent progress in the development of inhalable 

delivery systems include micro- and nanoparticles that show increased, stable, or sustained 

release of encapsulated drug in the lung [146–148], which provide the promise of applying 

these technologies to antioxidant delivery to the lung [149]. Furthermore, advancements in 

pharmaceutical biotechnology has allowed the development of other lung targeted delivery 

systems [150] that can be administered systemically, and novel antioxidant therapies with 

improved targeting capacities in the lung. Antibody conjugated proteins and nanoparticles 

that target ICAM-1 or PECAM-1 receptors on pulmonary endothelium has been used to 
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deliver NOX inhibitors, SOD and catalase to protect against oxidative stress in the 

pulmonary vasculature [151–154]. Other modern drug delivery strategies utilize redox-

responsive carriers to target and release drug within redox microenvironments [155].

Harnessing Personalized Medicine

As discussed above, many studies of antioxidant therapies selected patients broad groups of 

patients who were all vulnerable to oxidative stress from lung disease, but it is plausible that 

a more personalized and targeted approach to antioxidant therapy using known genetic 

variations in antioxidants, known epigenetic changes and perhaps particular biomarker 

profiles would better target patient-specific therapies to improve outcomes. Knowledge of 

polymorphisms and genetic variations that affect antioxidant expression, function, and tissue 

distribution may allow targeted therapy to the appropriate individuals to replete deficient 

antioxidants.

Another approach to better target antioxidant therapies is to utilize available biomarker 

profiles to tailor specific therapy. There are multiple measurable markers of both oxidative 

stress and antioxidant enzyme activity. There is clearly no benefit in augmenting antioxidant 

defenses if they are not deficient, and there may in fact be harm, as discussed above. 

Although there are challenges with this approach, knowledge of particular antioxidants or 

particular markers of oxidative stress will likely prove to be clinically relevant and guide 

therapy. The application of exhaled nitric oxide (eNO) measurements provides an example 

of how this approach may be useful. Noninvasive measurements of eNO reflect 

derangements in NO• and inflammation [156]. In asthma, where eNO has been most well 

studied, elevations in eNO correlate with degree of airway inflammation and bronchial 

hyperreactivity, and helps guide use of asthma controller medications [157]. In sickle cell 

disease, eNO inversely correlates with the degree of severe airway obstruction and 

pulmonary hypertension [158], as well as inflammatory pulmonary diseases including Cystic 

Fibrosis (CF) and non-CF related bronchiectasis, bronchopulmonary dysplasia, and 

bronchiolitis [159–161]. Other biomarkers of oxidative stress can be assessed through 

exhaled breath condensates and this is an area of active research that may guide other 

antioxidant therapies [161].

In conclusion, an imbalance between production of ROS/RNS and scavenging capabilities 

through enzymatic and non-enzymatic defenses is implicated in diverse lung and pulmonary 

vascular diseases. The therapeutic approach to treat oxidative stress has encountered major 

barriers that we propose are complicated by the inadequate delivery of the proper 

antioxidant in the right concentration to the appropriate tissue or cell compartment. It is now 

clear that since ROS/RNS are critical biologic signaling molecules essential to cell 

homeostasis and adaptation to stress, indiscriminant scavenging of these molecules may 

decrease ROS levels but actually worsen the disease process by disrupting normal cellular 

functions. Furthermore, as personalized medicine evolves, it will be essential to consider 

individual genetic or epigenetic factors impacting the oxidant/ antioxidant system to more 

appropriately guide therapy. Novel therapeutic agents bring exciting opportunities to harness 

new knowledge and utilize targeted and patient specific therapies in the future to treat lung 

and pulmonary vascular diseases.
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Figure 1. 
Therapeutic approaches to restore redox balance. 1) Augment NO• bioactivity catalyzed by 

nitric oxide synthase; 2) Block production of ROS produced by mitochondrial electron 

transport chain, NADPH oxidase, xanthine oxidase or uncoupled NOS; 3) Scavange toxic 

oxidants by replacing deficient enzymatic and non-enzymatic antioxidants such as SOD, 

catalase, GSH, ascorbic acid, tocopherol, and carotenoids.
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