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Atherosclerosis is a complex disease that remains a leading cause of death and disability. 

The formation of vascular plaques arises from the interaction of dyslipidemia with the 

altered function of blood vessels and immune cells. The exact cause of atherosclerosis is not 

known but from the 1950s onward, oxidative modifications of lipids and proteins were 

detected in vascular lesions and the degree of oxidation was found to correlate with the 

severity of disease1. Based on these findings, a logical hypothesis emerged that suppression 

of these oxidative modifications might prevent atherosclerosis. Based on promising 

preclinical data, antioxidant therapies, which employ a broad spectrum approach to suppress 

the actions of many oxidants, were introduced with much promise for the treatment of 

atherosclerosis as well as cancer and aging. The results of numerous clinical trials have been 

clear, broad spectrum antioxidant therapies do not provide protection against 

atherosclerosis 2, 3.

There are many sources of reactive oxygen species (ROS) within atherosclerotic lesions and 

one of the most prominent reasons cited for the failure of antioxidant therapies is a lack of 

specificity1. A highly specialized and abundant source of ROS is the family of 

transmembrane NADPH-dependent oxidoreductases (Nox enzymes) that synthesize 

superoxide (O2
−). There are 7 related isoforms, and 4 (Nox1, Nox2, Nox4 and Nox5) are 

expressed in vascular and immune cells4. Much evidence exists to connect increased 

expression and activity of the Nox1 and 2 isoforms with the development of atherosclerosis 

in mouse and primate models as well as in humans 5, 6. ROS production from Nox2 is 

stimulated by interaction with the subunits p47phox and p67phox whereas Nox1 is activated 

by complex formation with NOXO1 and NOXA1 as well as with p47phox 7. Genetic 

deletion of p47phox protects against lesion formation in the aorta of mouse models which 

suggests that either Nox1 or Nox2 or both are important for the development of 

atherosclerosis 8, 9. Studies with Nox2 knockout mice point to an important role of this 

isoform in the development of atherosclerosis in the aorta 10. In contrast, the deletion of 

Nox1 does not impact atherosclerosis in the aorta at baseline11, 12, but it does in the presence 

of diabetes which induces the expression of Nox1 and its subunits 11, 13. In humans, the loss 

of Nox2 activity in granulomatous disease is associated with reduced carotid, but not 
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coronary atherosclerosis, suggesting that Nox enzymes might have different roles depending 

on the location of the lesion14. This concept is supported to some extent in animal studies 

where deletion of p47phox 15 and Nox216 have no effect on atherosclerosis in the aortic 

sinus, but reduce atherosclerosis in the descending aorta 8, 10. Nox5 is upregulated in 

atherosclerotic lesions of humans17 but as this gene is absent from the mouse genome, its 

impact on the development of lesions remains unknown. A role for Nox4 in atherosclerosis 

was comparatively obscure until recently.

In this issue, a study by Gray et al 18 sheds new light on the role of Nox4 in atherosclerosis. 

Nox4 is the black sheep of the Nox family. Unlike the other Nox isoforms, it is 

constitutively active, primarily regulated by changes in gene expression (iNOX) and emits 

hydrogen peroxide (H2O2) instead of O2
−. This latter property of Nox4 has been 

controversial as all of the Nox enzymes synthesize O2
− initially, but Nox4 is able to rapidly 

convert O2
− to H2O2. This is an important property as H2O2 does not interact with and 

degrade NO signaling and the loss of endothelial NO is a well-accepted pathway to 

increased atherosclerosis. Previously, Gray et al had shown that Nox4 deletion was without 

effect on atherosclerosis at 10 weeks in ApoE knockout mice rendered diabetic with 

streptozotocin11. The current study highlights the temporal complexity of atherosclerotic 

lesions and shows that at 20 weeks, Nox4 expression is reduced in the aorta of diabetic 

ApoE knockout mice which is in agreement with the reduced levels of Nox4 observed in 

advanced human lesions. Furthermore, at 20 weeks an increased plaque burden was 

observed in Nox4 knockout mice which reveals a previously unappreciated protective role 

of Nox4 in models of atherosclerosis18. The strength of any scientific finding is enhanced by 

independent verification and particularly so with complex models such as atherosclerosis. 

Using different strategies, including the global knockout of Nox418 endothelial 

overexpression of Nox419, inducible deletion of Nox420 and knockout of Nox4 in a distinct 

model of atherosclerosis21, four studies have shown, almost contemporaneously, that plaque 

burden is universally reduced when Nox4 is present. Thus, the evidence seems very clear 

that Nox4 has a protective role in the setting of atherosclerosis.

A beneficial role for Nox4 in the vasculature has previously been reported and Nox4 has 

been shown to preserve eNOS expression, promote angiogenesis and reduce 

inflammation22–24. These actions are consistent with the protective role of Nox4 in 

atherosclerosis described by Gray et al and others where it reduces inflammation, fibrosis 

and improves endothelial function18–21 without affecting dyslipidemia. However, the 

consequences of Nox4 expression are not always benevolent and it has been shown to 

promote lung fibrosis and pulmonary hypertension25. These Jekyll and Hyde effects of 

Nox4 most likely arise from cell type specific effects (fibroblast and smooth muscle versus 

endothelial) and the positive effects of supporting eNOS function in the endothelium may 

not be beneficial when eNOS is uncoupled and producing O2
−.

Collectively, there is compelling evidence for a contributory role of Nox1 and Nox2 in the 

development of atherosclerotic lesions in mice under various conditions and a protective 

role for Nox4. These findings also serve to highlight the limitations of antioxidant strategies 

that non-specifically reduce ROS and therefore would inhibit the effects of both deleterious 

and protective Nox enzymes. A more effective strategy might be isoform specific targeting 
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such as recently described for Nox226, but this would leave Nox1 unopposed and the 

potential consequences of individual isoforms regulating the development of atherosclerosis 

in different vascular beds and under different conditions i.e. diabetes. There are no available 

therapeutics that activate Nox4 and this strategy might be constrained by possible untoward 

actions of Nox4 in other cell types and organ systems. Alternatively, strategies that can 

target multiple Nox enzymes (Nox1–2 and 5), while preserving Nox4 activity, might be 

more effective27.
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