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Complete callosal agenesis,

pontocerebellar hypoplasia, and axonal

neuropathy due to AMPD?2 loss

ABSTRACT

Objective: To determine the molecular basis of a severe neurologic disorder in a large consanguin-
eous family with complete agenesis of the corpus callosum (ACC), pontocerebellar hypoplasia
(PCH), and peripheral axonal neuropathy.

Methods: Assessment included clinical evaluation, neuroimaging, and nerve conduction studies
(NCSs). Linkage analysis used genotypes from 7 family members, and the exome of 3 affected
siblings was sequenced. Molecular analyses used Sanger sequencing to perform segregation
studies and cohort analysis and Western blot of patient-derived cells.

Results: Affected family members presented with postnatal microcephaly and profound develop-
mental delay, with early death in 3. Neuroimaging, including a fetal MRI at 30 weeks, showed
complete ACC and PCH. Clinical evaluation showed areflexia, and NCSs revealed a severe axonal
neuropathy in the 2 individuals available for electrophysiologic study. A novel homozygous stop-
gain mutation in adenosine monophosphate deaminase 2 (AMPDZ2) was identified within the link-
age region on chromosome 1. Molecular analyses confirmed that the mutation segregated with
disease and resulted in the loss of AMPD2. Subsequent screening of a cohort of 42 unrelated
individuals with related imaging phenotypes did not reveal additional AMPD2 mutations.

Conclusions: We describe a family with a novel stopgain mutation in AMPD2. We expand the
phenotype recently described as PCH type 9 to include progressive postnatal microcephaly,
complete ACC, and peripheral axonal neuropathy. Screening of additional individuals with related
imaging phenotypes failed to identify mutations in AMPDZ2, suggesting that AMPD2 mutations
are not a common cause of combined callosal and pontocerebellar defects. Neurol Genet 2015;1.:
e16; doi: 10.1212/NXG.0000000000000014

GLOSSARY

ACC = agenesis of the corpus callosum; AMP = adenosine monophosphate; AMPD2 = adenosine monophosphate deami-
nase 2; CC = corpus callosum; NCS = nerve conduction study; OMIM = Online Mendelian Inheritance in Man; PCH =
pontocerebellar hypoplasia; SNP = single nucleotide polymorphism; WES = whole-exome sequence.

Callosal malformations include complete or partial agenesis, hypoplasia, and dysgenesis.* Clin-
ical sequelae range from no or mild manifestations to severe neurodevelopmental disability.**
The latter is more common when the callosal malformation is accompanied by other brain
abnormalities, is part of a multiple congenital anomaly syndrome, or is secondary to a metabolic
or degenerative disorder.” Agenesis of the corpus callosum (ACC) occurs in approximately
1:5,000 live births and >80 congenital syndromes,®” although the etiology remains unknown
for the majority. Pontocerebellar hypoplasia (PCH) syndromes are rare, usually autosomal
recessive, disorders characterized by degeneration of the cerebellum and brainstem. The term
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“hypoplasia” is used although the changes are
thought to reflect prenatal onset of atrophy.®
Ten PCH syndromes have been described
with additional features that variably include
microcephaly, a movement disorder, epilepsy,
optic atrophy, and axonal neuropathy.

The combination of corpus callosum (CC)
hypoplasia and PCH secondary to mutations
in the gene encoding adenosine monophos-
phate deaminase 2 (AMPD?2) was recently re-
ported (PCH type 9, Online Mendelian
Inheritance in Man [OMIM] #615809).°
The authors described 8 affected individuals
from 5 families with severe disabilities, hypo-
plasia of the CC, and a characteristic midbrain
“figure of 8” appearance on axial MRIL
AMPD?2 encodes 1 of 3 of adenosine mono-
phosphate (AMP) deaminase homologs,
which convert AMP to inosine monophos-
phate. Guanine nucleotide deficiency was
shown to be central to the pathogenesis of
PCHY and associated with defective protein
synthesis.” In this study, we characterize a large

Figure 1 Novel stopgain mutation in adenosine monophosphate deaminase 2
segregates with disease in family ACC1 and causes complete loss of
protein
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(A) The ACC1 family pedigree is shown with affected individuals shaded in black and unaf-
fected individuals in white. A dot in the pedigree symbol indicates an unaffected carrier.
The proband is indicated by an arrowhead. Family members whose DNA was tested are indi-
cated by an asterisk. Homozygosity for the adenosine monophosphate deaminase 2
(AMPD2) mutation segregated with disease in all family members tested. (B) Immunoblot
analysis with an AMPD2-specific antibody identified a ~100-kDa protein in control fibro-
blasts (C1, C2) and control lymphoblasts (C3, C4) that was absent in extracts derived from
affected individuals II-5 (fibroblasts) and II-2 (lymphoblasts). An antibody directed against
B-actin confirmed equivalent protein loading.
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consanguineous Middle Eastern family and
expand the phenotype of PCHY, describing
the novel combination of complete ACC,
PCH, and an axonal neuropathy.

METHODS Standard protocol approvals, registrations,
and patient consents. Study approval was provided by the
Royal Children’s Hospital Research Ethics Committee (Human
Research Ethics Committee #28097), with informed consent
provided by participants or their guardians.

Clinical and molecular studies. Clinical information was
obtained by review of medical records and examination of
affected individuals. Neuroimaging was reviewed and included
cranial ultrasound, head CT, and brain MRI. Nerve conduction
studies (NCSs) were performed using a 4-channel Keypoint
Electromyography machine (Natus Medical Incorporated,
Pleasanton, CA), as previously described.' Genomic DNA was
isolated from peripheral blood. Single nucleotide polymorphism
(SNP) genotype data were generated with the Human610-Quad
BeadChip Kit (Illumina, San Diego, CA) for 7 family members
(I-1, I-2, 1I-2, 1I-3, 1I-5, II-6, and II-8) and extracted from the
whole-exome sequence (WES) data of individual II-9. Genotypes
were processed using LINKDATAGEN. Parametric multipoint
linkage analysis was subsequently performed using MERLIN,
specifying a rare recessive disease model. Genomic DNA derived
from 3 affected siblings (II-2, II-5, and II-9) was enriched using
an Illumina TruSeq capture. Sequencing was performed by
Otogenetics Corporation (Norcross, GA) with 100-base paired-
end reads on an Illumina HiSeq 2000 platform. Reads were
aligned to the reference human genome (GRch37/hgl9) with
ambiguous nucleotide codes at dbSNP132 locations using
Novoalign (www.novocraft.com). Variants were called using
SAMtools 0.1.17 and annotated using ANNOVAR. The
candidate list was filtered to retain rare variants (minor allele
frequency =0.01) within the linkage regions using public
databases and our own in-house database of 132 unrelated
exomes. Sanger sequencing confirmed segregation. A cohort of
42 additional individuals with imaging features of complete or
partial ACC and brainstem and/or cerebellar hypoplasia was
ascertained. Potentially causative copy number variation had
previously been excluded by SNP array (data not shown).
Sanger sequence analysis of AMPD2 was performed by PCR
amplification using M13-tagged primers (primer sequences
available on request). Western blot analysis was performed as
previously described'” using monoclonal anti-AMPD2 (1:1000
HPA036471, Sigma-Aldrich, St. Louis, MO) and anti-B-actin
antibody (1:10000 A5441, Sigma-Aldrich). The reference
sequences used for AMPD2 were NG_034075.1, NM_
001257360.1, and NP_001244289.1.

RESULTS We describe a Middle Eastern family with
5 affected offspring from a first cousin marriage
(figure 1A). Clinical and imaging details are summa-
rized in table 1. Affected individuals had severe neuro-
developmental disability of early onset, with early
death in 3 of 5. All had a normal head circumference
at birth but developed microcephaly within the first
year and were hypereflexic in the first decade. Dysmor-
phic features in the 3 patients examined (II-2, II-5,
and 11I-9) included bitemporal narrowing, hypotonic
facies, midface hypoplasia, short or downslanting
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[ Table 1 Clinical phenotype and investigation of family ACC1

Clinical features
Sex
Current age

Neonatal HC,
percentile, %

HC at last
examination, SD

Developmental
delay

Dysmorphic
features

Impaired
swallow

Cortical visual
impairment

Epilepsy
Seizure onset
Axial tone

Appendicular
tone

Contractures
Spasticity

Reflexes

Plantars
Investigations

EEG

Age at NCS, y
NCS
Neuroimaging
modality

Age at imaging

Neuroimaging
findings

Age at death

Cause of death

Patients

-1 -7 11-9 1I-2 1I-5

F M F M F

Deceased Deceased Deceased 20y 17y

50 25 25 25 25

—4/-5 -3/-4 -3/-4 -3/-4 -5/-6

Profound Profound Profound Profound Profound

Not assessed Not assessed Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y N Y Y

9 mo 5 wk — 2 mo 3y

Reduced Reduced Reduced Reduced Reduced

Increased Increased Increased Increased Increased

N N N Y Y

Y Y Y Y Y

Increased Increased Increased Increased UL, absent LL Increased UL,
absent LL

Upgoing Upgoing Upgoing Upgoing Upgoing

Prominent Multifocal epileptic activity and Not performed Bilateral independent epileptic Excess

fast seizures, asynchronous and activity background fast,

discontinuous frequent bilateral

independent
epileptic activity

Not Not performed Not performed 20 10

performed

— — — Axonal neuropathy Axonal
neuropathy

CT MRI Fetal and postnatal MRI CT us

3 mo 19d 30 wk + 3 gestation and 6 d 16y 1 mo

Complete Complete ACC with IH cyst Fetal: complete ACC, small IH cyst with  Complete ACC with IH cyst Complete ACC,

ACC, mild with septations, moderate septations, mild hypoplasia of cerebellar  with septations, moderate hypoplastic

cerebellar hypoplasia of cerebellar vermis and hemispheres; postnatal: hypoplasia of cerebellar cerebellum

and vermis  hemispheres and vermis, mild complete ACC, small IH cyst, moderate vermis and hemispheres, mild

hypoplasia  thinning of brainstem (medulla) hypoplasia of cerebellar vermis and pontine hypoplasia

hemispheres, brainstem hypoplasia
22 mo 9 mo 11 mo Alive Alive
Sepsis Pneumonia Sepsis — —

Abbreviations: ACC = agenesis of the corpus callosum; HC = head circumference; IH = interhemispheric; LL = lower limbs; NCS = nerve conduction study;
UL = upper limbs; US = ultrasound.

palpebral fissures, a high or broad nasal bridge with a
prominent columella, a short upper lip, macroglossia,
abnormal ears with a thickened antihelix and a grooved
or folded lobe, tapering fingers with dimples over the
knuckles, camptodactyly of the distal interphalangeal

joints, a few large pigmented nevi, and trophic skin

changes of the feet. The 2 surviving individuals (II-2
and II-5) were later noted to have absent lower limb
reflexes and distal lower extremity wasting. NCSs
petformed on upper and lower extremities in these
individuals (ages 10 and 20 years) showed low-
amplitude or absent motor responses with a mild
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Figure 2
cerebellar parenchyma with prenatal onset

11-9 fetal
30 Weeks

1I-9
6 Days

Loss of adenosine monophosphate deaminase 2 results in progressive loss of brainstem and

II-7
24 Days

Axial (top row), coronal (middle row), and midline sagittal (bottom row) T1- and T2-weighted images. All images show a char-
acteristic “figure of 8" appearance to the midbrain (circles), hypoplasia/atrophy of the brainstem (arrows) and cerebellar
hemispheres > vermis, and complete agenesis of the corpus callosum. Comparison of the fetal and postnatal MRIs of
patient |I-9 suggests progressive loss of volume of the pontine belly in the last trimester.

reduction in motor nerve conduction velocity. Sensory
responses were normal in both. EMG showed positive
sharp waves and markedly reduced recruitment of
high-amplitude polyphasic motor unit potentials,
consistent with either a motor axonal neuropathy or
neuronopathy. Neuroimaging comprised brain MRI
in 2, head CT in 2, and cranial ultrasound in 1.
Complete ACC and hypoplasia of the cerebellum
and/or brainstem were confirmed in all. Fetal MRI
in one showed that all of the brain abnormalities
were present at 30 weeks gestation (figure 2),
suggesting prenatal onset of PCH.

The clinical features suggested a potentially novel
genetic cause; therefore, a linkage-gene discovery
strategy was used. Two regions on chromosome
1 achieved the maximal autosomal logarithm of the

Neurology: Genetics

odds score of 2.73 (figure e-1 at Neurology.org/ng).
WES and in silico filtering identified 1 variant within
the linkage regions, homozygous in all 3 affected sib-
lings, that was predicted to be damaging to the
protein sequence. The novel stopgain mutation
(NM_001257360.1:¢.2256C>G, p.Tyr752%)
AMPD? (figure e-1) was subsequently shown to seg-

in

regate with disease in the extended family. Western
blot analysis of control cells using a monoclonal anti-
body directed against AMPD2 identified a single
band of the expected size. However, this protein
was absent in fibroblast and lymphoblast cell extracts
1B).
Sequence analysis of AMPD2 was performed in a

derived from affected individuals (figure

cohort of 42 unrelated individuals with a neuroimag-

ing phenotype of combined abnormalities of the CC


http://ng.neurology.org/lookup/doi/10.1212/NXG.0000000000000014

Figure 3
distribution of all mutations reported to date
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The protein-coding sequence is colored yellow, the conserved adenosine monophosphate (AMP) deaminase domain (also protein coding) purple, and untrans-
lated regions red. All pontocerebellar hypoplasia type 9 mutations reside within the catalytic AMP deaminase domain and therefore affect all 5 protein iso-
forms, while the one spastic paraplegia type 63 mutation falls outside this region and disrupts the coding region of only 3 of 5 adenosine monophosphate

deaminase 2 transcripts. 2Novarino et al.*® PAkizu et al.® SACC1.

and cerebellum. A number of known polymorphisms
were observed (table e-1), but no causative mutations
were identified.

DISCUSSION We used linkage mapping and WES
to identify loss of function of AMPD2 as the molec-
ular basis of a severe neurologic disorder in a consan-
guineous family presenting with progressive
postnatal microcephaly, complete ACC, PCH, and
a motor axonal neuropathy/neuronopathy. AMPD2
mutations have recently been shown to cause PCH9,
a disorder with clinical features that overlap with
those of our family (table 1).” Fetal and postnatal
MRI support a prenatal onset to the neurodegener-
ative process in PCHOY, as is postulated for other
PCH forms.® Like all reported individuals with
PCHY, the mutation in our family is within the
conserved AMP deaminase domain (figure 3). It is
currently unclear why our patients display a severe
phenotype with both central and peripheral
neurologic manifestations. The 8 previously re-
ported patients are described as having hypoplasia
of the CC, whereas our patients have complete
ACC. Although there is no specific mention of
neurophysiologic testing of the previously reported
patients, all were noted to have brisk or hyperactive
reflexes. The areflexia seen in our family was only
noted after the second decade, suggesting age-
dependent onset. In the absence of autopsy
findings, it is not possible to determine whether
the lower motor neuron involvement identified in
our family reflects a pure motor axonal neuropathy
or an anterior horn cell disorder similar to that

described in PCH1 (OMIM #607596).

A frameshift mutation in AMPD2 was recently
reported to cause hereditary spastic paraplegia type
63 (OMIM #615686) in a single family."® The clin-
ical presentation was relatively mild, with normal cog-
nition, normal NCSs, and no cerebellar signs. MRI of
1 affected individual identified thinning of the CC
and periventricular deep white matter changes but no
brainstem or cerebellar abnormalities. The identified
truncation [p.(Cys107Alafs*80)] disrupts only 3 of 5
predicted AMPD?2 isoforms (figure 3), whereas dis-
ruption of the deaminase domain affects all, suggest-
ing functional redundancy of isoforms as a molecular
explanation for variability in disease severity. Func-
tional redundancy has been observed in mutant mice.
Targeted knockout of Ampd?2 resulted in proteinuria

but no overt brain phenotype,"

whereas a severely
shortened lifespan and a neurodegenerative pheno-
type were observed in mice when 2 AMP deaminase
homologs (Ampd2 and Ampd3) were knocked out.”

This is the second report of mutations in AMPD2
as a cause of a callosal abnormality associated with
PCH and is the largest multiplex pedigree reported
with this disorder. The clinical phenotype associated
with loss of AMPD2 function extends from spastic
paraplegia to PCH with hypoplasia of the CC, PCH
with complete ACC, and motor neuropathy/neuro-
nopathy. Our patients expand the spectrum of emerg-
ing PCH disorders with combined callosal, brainstem,
and peripheral nervous system manifestations.
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