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Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules

was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-

pump, X-ray-probe scheme. The results for both molecules are discussed with respect to

the nature of their UV excitation and different chemical properties. Signatures of long-

distance intramolecular charge transfer are observed for both species, and a quantitative

analysis of its distance dependence in iodomethane is carried out for charge states up to

I21þ. The reconstructed critical distances for electron transfer are in good agreement

with a classical over-the-barrier model and with an earlier experiment employing a near-

infrared pump pulse. VC 2016 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4944344]

I. INTRODUCTION

Photo-induced electron transfer plays a central role in a broad range of physical, chemical,

and biological reactions, ranging from cometary X-ray emission1 to biological light harvesting.2
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Its microscopic understanding is crucial for emerging photosynthetic,3,4 photocatalytic,5 and

photovoltaic6,7 applications. Charge transfer dynamics are governed by concerted electronic and

nuclear motion and involve dissipation of electronic energy into the nuclear bath.8 Electron

transfer phenomena are, therefore, closely related to molecular bond formation and breaking.9

In order to experimentally investigate these mechanisms on the atomic level, it is crucial to

create a localized charge at a specific atom within a molecule. Using inner-shell ionization fol-

lowed by (local) Auger decay, multiple charges can be induced with a high degree of spatial

localization at a heavy element with a large X-ray absorption cross section. The availability of

short-pulsed extreme ultraviolet and X-ray sources, such as high-order harmonics of optical

lasers or free-electron lasers (FELs), opened up the way to perform femtosecond time-resolved

experiments involving inner-shell electrons, allowing to combine high spatial and temporal

resolution. This has recently been exploited to study charge rearrangement processes following

multiple core ionization of molecules at the Free-Electron Laser in Hamburg (FLASH),10,11 the

Linac Coherent Light Source (LCLS),12,13 and the SACLA XFEL facility.14

The electron dynamics following inner-shell photoabsorption in molecules involve Auger-

type relaxation processes and strongly depend on the initial positions of the nuclei and on the

interplay between electronic and nuclear motion. Their characteristic time scales are given by

the Auger lifetimes, the velocities of the nuclei, and, for multi-photon interactions, by the time

delay between the subsequent photoabsorption steps. For molecular fragmentation experiments

at FELs in the extreme ultraviolet and X-ray domains,11–14 all three time scales are of the order

of 1–100 fs, which makes it challenging to trace clear signatures of electron transfer in single-

pulse experiments. Recently, internuclear-distance-resolved pump-probe experiments have been

performed,10,15 where nuclear motion in form of a comparably slow, two-body dissociation

reaction is triggered by a laser pump pulse. The relative positions of the nuclei are controlled

by the pump-probe delay, allowing the inner-shell ionization to be initiated at a defined internu-

clear distance.

Two crucial points for this kind of experiments are (i) a detailed understanding of the frag-

mentation induced by the pump pulse, and (ii) site-selectivity of the probe–pulse interaction,

which creates the initial charge. The early examples of such measurements, such as an XUV-

pump, XUV-probe study on I2,10 a two-color X-ray pump-probe experiment on XeF2,16 and a

near-infrared pump, X-ray probe experiment on CH3I,15 only partially fulfilled both of these

requirements. In particular, in all of the above mentioned experiments, multiple fragmentation

channels were populated by the pump pulse, making the relation between the separation of the

fragments and the pump-probe delay ambiguous. Ideally, a single dominant dissociation channel

should be triggered, allowing for unique reconstruction of the internuclear distance from the

delay.

In this article, we present the results of a femtosecond pump-probe experiment conducted

at the LCLS, aiming at studying electron transfer dynamics following inner-shell ionization of a

halogen atom in gas-phase iodomethane (CH3I) and fluoromethane (CH3F) molecules. The con-

cept of the experiment is schematically illustrated in Fig. 1(a). The molecules are first dissoci-

ated by a 267 nm ultraviolet (UV) laser pulse, fragmenting the molecules predominantly into

methyl and the halogen atom. The subsequent 1.7 nm (727 eV) X-ray probe pulse mainly

FIG. 1. (a) Illustration of the pump-probe experiment. First, the halogen–methyl bond is dissociated by a UV pulse. At a

given internuclear distance, the halogen atom is inner-shell ionized by the FEL pulse, creating multiple charges and result-

ing in fragmentation of the molecule. (b) Sketch of the experimental setup. The UV beam is coupled in collinearly to the

X-ray beam via a drilled mirror. In the focus, they are crossed by a supersonic molecular beam. The resulting ionic frag-

ments are imaged by an ion time-of-flight spectrometer. Downstream of the experiment, the arrival time jitter of the FEL is

recorded by an X-ray/optical cross-correlator.29
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ionizes the halogen atom at the iodine (3d) or the fluorine (1s) shell, respectively, because of

their large absorption cross section (3.3 Mb for iodine and 0.39 Mb for fluorine, compared to

0.11 Mb for the methyl group),17 resulting in a localized positive charge on the halogen.

Depending on the internuclear distance at the time of the X-ray absorption, the charge either

remains on the absorbing halogen or spreads over to the molecular environment. By measuring

the charge state and the kinetic energy distributions of the created ionic fragments, the charge

rearrangement between the two molecular centers can be traced as a function of their internu-

clear separation.

Several considerations motivated the choice of molecular systems and the fragmentation

laser wavelength for this experiment. As discussed in our earlier publication,15 the iodomethane

molecule represents an ideal candidate for this kind of study, because of its efficient two-body

break-up and the large difference between the X-ray absorption cross sections of its constitu-

ents. However, its multiphoton dissociation by intense 800 nm laser pulses used in Ref. 15

mainly proceeds via ionic channels and yields several pathways of comparable abundance,18

which are sketched in the potential curves in Fig. 2(a). In contrast, the 267 nm UV pulse used

in this work efficiently triggers a resonant one-photon dissociation into two neutral fragments.

The UV-induced photolysis of CH3I in the A band is a prototypical photodissociation process

and is well studied experimentally and theoretically, see, for example, Refs. 19 and 20 and

references therein. The well-known asymptotic kinetic energy of this dissociation allows map-

ping of the pump-probe delay into internuclear distance, and studying the distance-dependent

electron transfer probability.

For fluoromethane, the fragmentation triggered by the UV pulse is more complicated, as

illustrated in Fig. 2(b). It mainly proceeds via a singly charged ionic state, with a possible contri-

bution from a neutral ion-pair state.21,22 However, CH3F is known to exhibit intriguing electron

transfer dynamics upon fluorine (1s) photoabsorption,23 and thus represents an interesting target

for charge transfer studies. Moreover, because it is the most electronegative element, fluorine is a

predestined candidate to initiate electron transfer from its dissociating molecular environment.

II. EXPERIMENTAL SETUP

The experiments were performed at the atomic, molecular, and optical physics (AMO)

beamline of the LCLS, employing the high-field physics instrument.24 As sketched in Fig. 1(b),

a collimated, pulsed beam of cold CH3I or CH3F molecules was crossed with a 267 nm UV

FIG. 2. Schematics of relevant potential energy curves for (a) iodomethane and (b) fluoromethane. The energy values are

taken from Refs. 39 and 22, respectively. In iodomethane, one UV photon of 267 nm predominantly triggers a resonant neu-

tral dissociation into CH3 and I*. The subsequent X-ray ionization at 727 eV populates various highly charged states, the

majority of which result in fragmentation of the molecule. Also shown in (a) are ionic curves which were excited by multi-

photon near-infrared (NIR)-absorption in Ref. 15. In fluoromethane, more than one UV photon is absorbed, as no resonant

states exist, thus exciting several states.
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pump laser, and an X-ray probe beam in the middle of the ultra-high vacuum reaction chamber.

Iodomethane and fluoromethane molecules were delivered to the interaction region using a

pulsed Even-Lavie valve (nozzle diameter 150 lm, opening time 10 ls), operated at room tem-

perature. The repetition rate of the LCLS, the pump laser, and the molecular beam was 120 Hz.

The liquid CH3I sample (vapor pressure at room temperature 540 mbar) was seeded in helium

carrier gas (backing pressure 3 bars), the gaseous CH3F was expanded directly through the

Even-Lavie nozzle (backing pressure 3.5 bars).

The UV and the X-ray beams were propagated collinearly by coupling in the UV beam via

a drilled mirror (hole diameter 2 mm) upstream of the interaction region. The LCLS free-

electron laser was operated at a photon energy of 727 eV and an average pulse energy of 1 mJ

as measured by the LCLS gas monitor detector upstream of the AMO beamline optics.25 The

transmission of the AMO beamline is estimated to be 15%–20%.26 The X-ray beam was

focused by a pair of Kirkpatrick–Baez mirrors to a spot size of 3–5 lm2. The electron bunch

pulse duration of the LCLS was 80 fs for the CH3I and 180 fs for the CH3F experiment, result-

ing in an X-ray pulse duration that is typically 60%–70% shorter.27,28

The UV pulse had a central wavelength of 267 nm and was created by third harmonic gen-

eration driven by an 800 nm Ti:Sapphire laser synchronized with the LCLS. The pulse duration

of the UV laser beam was about 100 fs. For the CH3F experiment, UV pulses of 95 lJ pulse

energy were focused onto a spot of 40 lm diameter, whereas for the CH3I measurement, 40 lJ

UV pulses were focused onto a 120 lm diameter spot, resulting in peak intensities of

6� 1013 W/cm2 and 3� 1012 W/cm2, respectively. The UV beam was linearly polarized along

the vertical z-axis, perpendicular to the polarization direction of the LCLS beam, which was

along the x-axis, parallel to the molecular beam propagation. Downstream of the experiment,

the shot-to-shot arrival time jitter of the FEL with respect to the laser pump pulse was recorded

by an X-ray optical cross-correlator,29 where the X-ray beam and an optical reference beam

with a continuum spectrum are crossed in a silicon nitride sample, and their relative delay is

encoded in the spectral profile of the optical probe.

The created ionic fragments were projected along the z-axis onto a micro-channel-plate de-

tector by an electrostatic field of an ion time-of-flight (TOF) spectrometer with a round 1 mm2

aperture mounted on the extractor electrode, 10 mm from the interaction region. From the

recorded time-of-flight spectra, the yields of the respective fragments were calculated, and the

kinetic energy distribution corresponding to the momentum component parallel to the spectrom-

eter axis is estimated, following the procedure described in Refs. 30 and 31. On the opposite

side of the interaction region, four electron time-of-flight spectrometers were mounted under

different angles, and Auger electron spectra were recorded, which are not discussed in the pres-

ent article. The data analysis was performed with the CFEL–ASG Software Suite (CASS).32

III. RESULTS AND DISCUSSION: IODOMETHANE

The time-of-flight spectra resulting from fragmentation of iodomethane molecules by either

the UV pulse or the X-ray pulse, as well as by both pulses at two different delays, are displayed

in Fig. 3. The dominant channel triggered with the 267 nm pump pulse, resonant single-photon

dissociation into neutral iodine and methyl fragments, is not visible in the ion time-of-flight

spectrum. In order to ensure efficient excitation of this channel, and to limit contributions from

competing multiphoton pathways, the intensity of the UV pulse was set slightly above the

appearance intensity for the ionic fragments. Correspondingly, some singly charged intact mole-

cules as well as CHþ3 and Iþ ions are created by the UV pulse. The methyl and iodine frag-

ments both carry little kinetic energy, indicating a dissociation with a neutral partner. The total

yield of all ions produced by the UV pulse is very low compared to the fragments created by

the X-ray pulse, in spite of the much larger focal volume for the UV pulse.

The ionic fragments produced by the X-ray pulse alone contain highly charged iodine frag-

ments up to I21þ, as well as carbon ions up to C4þ, and protons. The high charge states of io-

dine indicate a large contribution from multi-photon X-ray absorption. For absorption of a sin-

gle photon at 727 eV in iodomethane, the highest observed charge states are I5þ and C3þ.33
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Molecular fragments such as CH3Iþ and CHþ3 are almost absent in the X-ray spectrum, because

the iodine (3d) inner-shell ionization is followed by cascade Auger decays; thus, multiple

charges are created even by a single photon, typically resulting in complete fragmentation of

the molecule. The spectrum exhibits a local maximum in the region of the I16þ–I21þ peaks,

where the high-energy tails of different charge states overlap, qualitatively resembling the reso-

nant structure observed for xenon atoms at 1500 eV.31,34 The I9þ–I11þ peaks most likely contain

a contribution from an underlying broad distribution of Cþ, CHþ, and CHþ2 ions, while the

lower yields of the I13þ–I15þ fragments might be influenced by a reduced detection efficiency

of the MCP due to the preceding high signal.

When both pulses interact with the target molecules, several two-color effects can be iden-

tified, some of which depend on the delay between pump and probe pulse, as will be discussed

below. When comparing the “UV early” and “UV late” spectra to the “FEL only” spectrum in

Fig. 3, it can be seen that independent of the delay, the yield of CH3Iþ and CHþ3 ions is signifi-

cantly reduced with respect to excitation by only the UV pulse. This is due to target depletion

resulting from efficient fragmentation of bound molecules by the X-ray pulse, which were either

neutral (“UV late”) or singly charged (“UV early”) before the inner-shell ionization. Note that

the “FEL only” spectrum displays lower yields for both species compared to all measurements

involving the UV pulse. This is due to the fact that the 267 nm pulse produces significantly

more CH3Iþ and CHþ3 ions than the X-ray pulse, because of the small X-ray valence absorption

cross section and the significantly larger focal volume of the UV beam. The observed delay-

dependence of the CHþ3 and CH3Iþ yields is discussed at the end of this section.

The most prominent delay-dependent effect is the appearance of an additional contribution of

low-energy iodine ions that arises when the UV pulse excites the molecules before the X-ray ion-

ization. It is visible as a narrow peak in the center of the distributions of each iodine charge state

higher than I3þ, see the enlarged views of the I4þ, I8þ, and I9þ peaks in the insets of Fig. 3.

These ions originate from molecules that are first dissociated into methyl and iodine fragments by

the UV pulse and are afterwards locally ionized at the iodine site by the FEL. When the methyl

group stays neutral throughout the entire dissociation, the highly charged iodine atoms carry very

little kinetic energy. On the other hand, if the methyl is charged while the iodine is still in close

proximity, Coulomb repulsion sets in and both fragments are significantly more energetic. In this

sense, the yield of highly charged iodine ions with low kinetic energy monitors the delay-

dependent probability for the methyl group to remain neutral in the vicinity of a given charge

state of iodine, as has been discussed in Ref. 15.

The delay-dependent effects are investigated in more detail by plotting the TOF spectra of

selected ionic fragments and their respective yields as a function of the pump-probe delay in

FIG. 3. Time-of-flight spectra for iodomethane, resulting from only the UV excitation (green), from only the X-ray ioniza-

tion (blue), as well as for two different delays between the pulses. “UV early” (red) corresponds to the pump pulse exciting

the molecules 170–550 fs before the X-ray ionization, while “UV late” (black) corresponds to the UV pulse arriving

120–730 fs after the X-ray pulse. Note that for the energetic C3þ and C4þ fragments, the peaks corresponding to ions emit-

ted towards or away from the detector, respectively, overlap with each other, while for C2þ the backward peak overlaps

with the iodine fragments. The insets show enlarged views for, I9þ, CHþ3 , I8þ, I4þ, Iþ, and CH3Iþ fragments.
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Fig. 4. For high charge states of iodine, see Figs. 4(a)–4(c), the appearance of low-energy ions

at positive delays is clearly visible. The onset of this channel labeled 3 in Fig. 4(a) can be

specified by plotting its normalized yield as a function of the delay, as shown in Fig. 4(g) for

several charge states. Each curve exhibits a pronounced increase at a given delay that is quanti-

fied by fitting it with a Gaussian cumulative distribution function. In Fig. 5(a), the delay-

dependent yields of all measured charge states are displayed in a 2d-map, together with the

extracted mean values of the Gaussian from the 1d-fit functions. The onset of the low-energy

channel 3 clearly shifts to larger delays for higher charge states of iodine. As we have shown

previously,15 this onset can be used to extract a critical internuclear distance, up to which elec-

tron transfer from methyl to iodine is classically allowed for a given charge state.

The dominant fragmentation pathway populated by UV excitation at 267 nm in the present

experiment is resonant one-photon excitation of iodomethane to the 3Q0 state. The asymptotic

total energy for the neutral dissociation CH3I ! CH3þ I* at infinite internuclear distance is

Ekin ¼ 1:286 eV,35 thus resulting in methyl with 1.15 eV and iodine with 0.136 eV kinetic

energy. The internuclear distance R(t) between the two fragments with masses mCH3
and mI can

thus be calculated from the pump-probe delay t as

R tð Þ ¼ Req þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekin

mI þ mCH3

mI mCH3

s
; (1)

assuming that the dissociating fragments fly apart with constant velocity corresponding to the

above asymptotic kinetic energy value. While this assumption is reasonable for large internu-

clear distances, it neglects the particular shape of the potential surface at small distances and

likely overestimates the fragment velocities in that region. The equilibrium distance in the

bound molecule is Req¼ 2.2 Å. Figure 5(b) shows as blue dots the distances at which the low-

energy channel sets in calculated using Eq. (1) with t given by the mean values of the Gaussian

cumulative distribution function fits of Fig. 4(g), for all iodine charge states.

The experimental results can be compared to calculated critical distances for classically

allowed charge transfer. As was recently shown,10,15 a classical over-the-barrier model, devel-

oped earlier for slow ion-atom-collisions,36,37 can be used to describe the charge redistribution

FIG. 4. (a)–(f) Time-of-flight spectra as a function of the pump-probe delay for selected fragments of iodomethane. The

three different fragmentation channels indicated for I4þ fragments in (a) are explained in the text. The pair of black lines

marks the region corresponding to channel 3, where the kinetic energy of the fragment is <0.5 eV. In (g), the integrated

yield of this low-energy channel is plotted as a function of the delay for several charge states of iodine. Each curve is nor-

malized to a step from zero to one, and they are shifted vertically with respect to each other for better visibility. A Gaussian

cumulative distribution function has been fitted to the data. The yields of several other ionic fragments are displayed in (h),

each normalized to a step from one to zero. For Iþ, I2þ, I3þ, Hþ, CHþ3 , and CH3Iþ ions, the yield integrated over all kinetic

energies is shown. For the C2þ, C3þ, and C4þ peaks, only the non-overlapping regions are considered for the yield in (h),

i.e., the forward peaks for C2þ and C4þ, and the backward peak for C3þ, see Fig. 3.
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between the fragments of a dissociating molecule. The model is illustrated schematically in

Fig. 6. In a bound molecule, at the equilibrium distance, the valence electrons are delocalized

over the iodine and the methyl group, see Fig. 6(a). If the nuclei move apart, the Coulombic

fields change and the potential barrier between the nuclei rises. At a certain critical internuclear

distance, Rcrit, see Fig. 6(b), the barrier height equals the binding energy of the highest occupied

orbital. For larger distances, the electrons can no longer move between the nuclei, but become

confined at one of the sites, see Fig. 6(c). Within the model, the critical distance for a given ini-

tial charge q on the iodine can be calculated as

Rcrit qð Þ ¼
pþ 1ð Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1ð Þq

p
Ei

; (2)

in atomic units, where p¼ 0 is the final charge of the methyl group, and Ei¼ 9.86 eV38 is the

ionization energy of the least bound valence electron in the CH3 radical. In the presence of the

Coulomb field created by a charge q at a distance R, the electron binding energy is then given

by E0i ¼ �Ei � q=R in atomic units, see the dashed blue lines in Fig. 6.

The respective calculated critical distances as a function of the iodine charge state are plot-

ted in Fig. 5(b) as a red line. Moreover, also plotted are distances obtained from a previous

NIR-pump, X-ray-probe experiment15 as green dots. Within the experimental errors that are

dominated by the temporal resolution of 130 fs for the UV data and 110 fs for the IR data, the

two data sets agree well with each other, as well as with the predictions of the model.

Remarkably, similar values of critical distances are obtained in both experiments, even though

the mechanism of NIR-induced dissociation into CH3þ Iþ involves multiphoton absorption, and

the resulting fragments are considerably slower as compared to the UV-induced dissociation,

with a total kinetic energy of 0.57 eV. This demonstrates that the probability of the electron

transfer for a given charge state is essentially defined by the distance between the partners and

confirms the adequacy of the classical model36,37 within the present resolution limits.

Although the UV excitation at 267 nm initially populates the 3Q0 state, a small fraction of

the dissociating wavepacket can be transferred to the 1Q1 potential energy surface via nonadia-

batic crossing with the 3Q0 curve.35 The reported values for the fraction of this channel with

respect to the overall dissociation yield vary from 10% in Ref. 39 to up to 30% in Ref. 40. In

the present experiment, this contribution cannot be separated and is therefore neglected in the

above conversion of the pump-probe delay into internuclear distance.

FIG. 5. (a) Delay-dependent yields of the low-energy channel for all charge states of iodine. The onset of this channel shifts

to larger delays for higher charge states. The mean delay values of the Gaussian cumulative distribution fit functions shown

in the 1d-plots in Fig. 4(g) are displayed as black points. (b) Internuclear distances at which the low-energy channel sets in

calculated from the pump-probe delay as stated in Eq. (1). Shown are results for UV dissociation from this data set (blue

dots), as well as data for NIR dissociation from Ref. 15 (green dots) and calculations from a classical over-the-barrier

model36,37 (red line). The error bars correspond to the temporal resolutions of 130 and 110 fs for the UV and the NIR

experiment, respectively.
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Besides the appearance of the low-energy channel 3, other delay-dependent features can be

observed in the time-of-flight spectrum. A second dissociative channel labeled 2 can be identi-

fied in Figs. 4(a)–4(d), whose kinetic energy rapidly varies as a function of the delay and which

connects the high-energy and the low-energy bands at delays between 0 and 500 fs. This fea-

ture results from dissociating molecules that undergo Coulomb explosion after the inner-shell

ionization, at increasing internuclear distances. In contrast to the low-energy channel, in this

case, the dissociation partner is a charged methyl fragment, which was either ionized by the

UV pulse or through electron transfer to the iodine following the dominant neutral dissociation.

The former pathway is limited by the low laser intensity, while the latter becomes prohibitively

improbable at larger internuclear distances. Compared to the NIR-dissociation in Ref. 15, this

feature is significantly less pronounced in the present data set, due to the dominant neutral frag-

mentation induced by the UV pulse, as well as the lower energy resolution, and the energy-

dependent acceptance of the spectrometer.

Furthermore, for all charge states, the intensity of iodine ions with high kinetic energy in

channel 1 is reduced when the UV pulse precedes the X-ray pulse. Since these ions originate

from Coulomb explosion of bound molecules, this decrease can be attributed to efficient disso-

ciation of the molecules by the preceding UV pulse. This clear depletion of CH3I target by the

UV pulse indicates a high fraction of molecules that are dissociated resonantly by absorption of

one photon, a process that is significantly more efficient than the multiphoton NIR excitation

that was used in Ref. 15. However, it should be noted that the relative strengths of the high-

and low-energy channels cannot be directly compared, since the limited acceptance of high-

energy fragments of the spectrometer in the present work strongly favors the latter.

The delay-dependent yields of several other ionic fragments, shown in Figs. 4(d)–4(f) and

4(h), exhibit a decrease when the UV pulse precedes the X-ray pulse, opposite to the behavior

of the low-energy iodine ions. The yield of Iþ, I2þ, and I3þ ions drops steeply at small positive

delays (40, 80, and 110 fs, respectively). In order for these low charge states to be created effi-

ciently after X-ray ionization, several electrons have to be transferred from the methyl group to

the iodine site, since the average charge state created by a single photon of 727 eV in an iso-

lated iodine atom is considerably higher. We are not aware of published data for isolated iodine

atoms, but the average charge state of xenon, isoelectronic to I�, lies between 4 and 6 for ioni-

zation at similar photon energies.41 Iþ, I2þ, and I3þ ions from dissociating molecules are thus

only created at rather short internuclear distances, because at larger distances, it would be very

unlikely to transfer this many electrons from the methyl group, and the iodine charge is higher.

This is confirmed by the fast decrease of these channels, as compared to the slower increase of

highly charged, low-energy fragments (100–310 fs).

Similarly, the yield of CHþ3 ions also reflects the probability for charge transfer, but this

curve is significantly shifted to larger delays (220 fs) as compared to the low charge states of

iodine. As mentioned previously, a singly charged methyl fragment can either be created by

ionization from the UV pulse or by transferring an electron to a highly charged iodine.

However, even though the former mechanism is the dominant one, as can be seen from the

FIG. 6. Calculated Coulomb potentials formed by an I6þ atom and a neutral methyl group at different internuclear distan-

ces. The dashed blue line indicates the energy of the electron in the highest occupied orbital. At the equilibrium distance,

(a), the electrons are delocalized over the two sites. When the internuclear distance reaches the critical distance, (b), the

potential barrier equals the binding energy of the highest occupied orbital, and for larger distances, (c), the electrons are

localized at one of the sites.
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comparison of the “UV only” and “FEL only” data in Fig. 3, only the latter pathway results in

a significant delay-dependence. The creation of a CHþ3 fragment via charge transfer requires the

transition of exactly one electron, which results in a larger critical distance as compared to the

creation of Iþ, I2þ, and I3þ, for which several electrons need to be transferred. A direct absorp-

tion of an X-ray photon by the charged methyl fragment would result in further break-up and

might contribute to the overall reduction of the CHþ3 signal at positive delays, even though the

cross section is small.

The proton yield on the other hand exhibits a very slow decay centered around a delay of

40 fs. Since protons can originate from any fragmentation channel involving break-up of the

methyl group, this curve reflects the probability for charge transfer integrated over all iodine

charge states and for different numbers of electrons being transferred. Moreover, beyond the

dominant dissociation into two neutral fragments, the pump pulse also includes the channels

CHþ3 þ I, CH3þ Iþ, and CH2IþþH, see the “UV only” spectrum in Fig. 3. The critical distan-

ces for charge transfer to different iodine charge states as well as the velocities of the fragments

for different dissociation pathways vary significantly; thus, the proton yield curve exhibits a

very broad delay dependence. At negative delays, the UV pulse may post-ionize highly excited

molecular fragments created by the FEL pulse, thus increasing the proton yield.

Surprisingly, the yields of C2þ, C3þ, and C4þ ions also show a broad delay dependence, in

stark contrast to the sharp decay of the C3þ and C4þ signals observed in Ref. 15. Most likely,

the reason for this difference is the larger X-ray absorption cross section for carbon fragments

in the present experiment at 727 eV, as opposed to 1500 eV. Combined with the smaller X-ray

focus of the HFP instrument used here, as compared to the CAMP end station used in Ref. 15,

this means that the absorption at carbon is no longer negligible. The initial charge state of the

carbon fragment thus becomes undefined to a certain extent, and the yield is averaged over dif-

ferent numbers of electrons transferred to the iodine site, causing a flattening of the delay-

dependent carbon ion yield curves.

Finally, the delay-dependence of the CH3Iþ parent ion yield is defined by a small fraction

of events, where an X-ray photon was absorbed in a valence shell, leaving the molecule intact.

If the X-ray pulse is preceded by the UV pulse, a considerable fraction of the molecules is dis-

sociated, thus reducing the number of bound molecules.

IV. RESULTS AND DISCUSSION: FLUOROMETHANE

As a complementary study, charge transfer in dissociating fluoromethane molecules was

investigated using the same experimental setup. As sketched in Fig. 2(b), resonant one-photon

dissociation at 267 nm is not possible in the case of fluoromethane, and the dominant fragmen-

tation originates from dissociative ionization. This process requires the absorption of at least

three UV photons; therefore, the UV intensity was chosen about 20 times higher as compared

to the iodomethane experiment, in order to achieve a comparable pump-probe contrast. Other

pathways that are accessible upon three-photon excitation include the neutral dissociation

involving an excited methyl group, as well as the population of the CHþ3 þ F� ion pair

dissociation.22

As can be seen in the time-of-flight spectra in Fig. 7, UV excitation mainly results in CHþ3
fragments, as well as in CHþx and CHxFþ ions with x¼ 0, 1, 2, 3, and protons. A very small

contribution from Fþ ions is also detected. Inner-shell absorption of a single 727 eV X-ray pho-

ton and subsequent Auger decay typically creates doubly or triply charged molecules, which

then rapidly break up, producing various smaller fragments. Consequently, the spectrum created

by the X-ray pulse contains a large proton peak, CHþx fragments, F2þ and F3þ ions, and a small

amount of Fþ, F4þ, C2þ, C3þ, and C4þ. By comparing this spectrum with single-photon syn-

chrotron data recorded at the same photon energy,33 it can be concluded that the F3þ and F4þ

ions, as well as most of the F2þ, C2þ, C3þ, and C4þ ions, are produced by multi-photon X-ray

absorption.

In a bound molecule, the spreading of the initially localized charge to the molecular envi-

ronment prevents the creation of fluorine charge states higher than F2þ. However, those can be
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produced via absorption of a second X-ray photon at larger internuclear separations, where the

charge created locally at the fluorine can no longer be neutralized by electron transfer from the

methyl site. We have demonstrated previously that upon X-ray multi-photon ionization, the

bond lengths of a small polyatomic molecule can stretch significantly within only 10 fs.12 In

the present experiment, the FEL pulse duration was 180 fs; thus, the second absorbed X-ray

photon most likely interacts with an almost isolated fluorine atom or ion. Calculated F(1s) bind-

ing energies as obtained from the XATOM program42 are F: �687.62 eV, Fþ: �710.51 eV, and

F2þ: �738.50 eV. The photon energy of 727 eV is thus high enough to directly ionize the (1s)

electron in an isolated Fþ ion, but not in F2þ or higher charge states. Correspondingly, the

most abundant fluorine charge state, F3þ, is predominantly produced by (1s) ionization of Fþ,

followed by Auger decay, whereas F4þ is created either by secondary processes, for example,

double Auger decay, or via double-core hole formation in Fþ.

Also shown in Fig. 7 are spectra obtained for two different delays between the UV pump

and the X-ray probe pulse. In contrast to the CH3I experiment discussed in Sec. III, here the

total yield of ions produced by the X-ray pulse is considerably smaller than the ion yield result-

ing from the UV irradiation, and the spectra are therefore dominated by the fragments produced

by the UV pulse. The enlarged views of the time-of-flight traces for F2þ and F3þ fragments

reveal an increased yield of ions in the center (the dip) of the peak for the “UV early” case.

The observed delay-dependence is illustrated in more detail by plotting the time-of-flight

spectra of selected fragments and their yields as a function of the delay between the UV and

the X-ray pulse in Fig. 8. In doubly charged fluorine, two different fragmentation channels are

visible, corresponding to pathways 1 and 2 as discussed in Sec. III for iodomethane. Channel 1

has a high kinetic energy that is independent of the delay, whereas the energy of channel 2

varies as a function of delay. In triply charged fluorine, the two analogous channels are clearly

distinguishable. The delay-dependent channel 2 corresponds to molecules that are first dissoci-

ated by the UV pulse and afterwards inner-shell ionized at the fluorine site by the X-ray pulse.

With increasing internuclear distance between the fluorine and its dissociation partner at the

time of the X-ray ionization, the kinetic energy of the resulting fluorine fragment decreases

because of the smaller Coulomb repulsion. Since CHþ3 is the most abundant fragment created

by the UV pulse, see Fig. 7, it is also the most likely partner of fluorine in the dissociation.

In Figs. 8(a) and 8(b), the results of a Coulomb explosion simulation are shown as over-

layed lines. The simulation assumes that the dissociating fragments fly apart with constant ve-

locity corresponding to their asymptotic kinetic energy value, starting at the equilibrium dis-

tance at zero time delay. The delay-dependent kinetic energy of the fragments is calculated as a

sum of this asymptotic energy and the Coulomb energy,43 which is the inverse of the

FIG. 7. Time-of-flight spectra for fluoromethane resulting from only the UV excitation (green), from only the X-ray ioniza-

tion (blue), as well as for two different delays between the pulses. “UV early” (red) corresponds to the case where the

pump pulse excites the molecules 630–1160 fs before the X-ray ionization, while “UV late” (black) corresponds to the UV

pulse arriving 420–1300 fs after the X-ray pulse. The insets show enlarged views for F3þ and F2þ fragments, as well as

high charge states of fluorine and carbon created by the X-ray pulse. The ringing-like noise that is visible in all spectra

involving the UV pulse stems from a large contribution of stray light early in the spectrum, caused by the increased UV in-

tensity as compared to the data in Sec. III.
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internuclear distance given by Eq. (1), adapted for CH3F. The energies are then converted into

time of flight by accounting for the geometry of the spectrometer. The asymptotic energies of

the fluorine ions are chosen as (i) 0.4 eV (black curve), (ii) 0.84 eV (dashed cyan), and (iii)
0.05 eV (dashed blue), in accordance with (i) the mean kinetic energy of the CHþ3 fragments

measured in this work, (ii) the maximum of the energy distribution reported for single-photon

fragmentation at 18.5 eV photon energy44 (�four 266 nm photons), and (iii) the energy for ion

pair production22 that has a maximum cross section at photon energies around 13–14 eV45

(�three 266 nm photons). Negative fluorine can be produced by excitation to the 3A1 and 4A1

superexcited states, followed by internal conversion to the 2A1 state via avoided crossings,

resulting in dissociation into the ion pair CHþ3 þ F�.21 Although the curves reflect the overall

trend observed in the data, neither of them fit the data perfectly, thus not allowing to identify

the precursor channel unambiguously within the limitation of this simple Coulomb explosion

model.

For fluoromethane, no low-energy channel with a kinetic energy independent of the delay

is observed in the fluorine ions, as opposed to the iodine ions in iodomethane. In CH3I, a reso-

nant single-photon neutral dissociation is accessible with one 267 nm photon, while for CH3F,

multi-photon dissociative ionization is the dominant process. Because of the large electronega-

tivity of fluorine, the methyl group has a very low probability to remain neutral during the dis-

sociation from the ionic states. This is confirmed by the negligibly small amount of positive flu-

orine ions in the “UV only” spectrum in Fig. 7. This leads to the conclusion that the main

fragmentation pathways triggered by the UV pulse involve the production of CHþ3 , together

with either a neutral fluorine atom or its negative ion, which is confirmed by the reasonable

agreement of the simulated delay-dependent curves with the experimental data for channel 2.

FIG. 8. (a)–(d) Time-of-flight spectra as a function of the pump-probe delay for selected fragments of fluoromethane. The

two different fragmentation channels indicated for F2þ fragments in (a) are explained in the text. Additionally, in (a) and

(b), calculated delay-dependent time-of-flight curves are overlayed with the data. They correspond to asymptotic kinetic

energies of F2þ and F3þ of 0.4 eV (black), 0.05 eV (dashed blue), and 0.84 eV (dashed cyan). In (e), the integrated yields of

several fragments are plotted as a function of delay. The F3þ, F2þ, CHþ2 , and CHþ3 curves are normalized to show a step

from zero to one, and the Hþ and Cþ curves to a step from one to zero, and they are shifted vertically with respect to each

other for better visibility. A Gaussian cumulative distribution function has been fitted to the data.
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Similar to the case of iodomethane, the delay-dependent yields in different fragments of

fluoromethane plotted in Fig. 8(e) can be interpreted in terms of charge transfer as a function

of internuclear distance. If fluorine and methyl are separated further than a given critical dis-

tance at the time of the X-ray ionization, the charge created at the fluorine can no longer be

neutralized by electron transfer from the methyl site, but remains on the fluorine, thus increas-

ing the yield of F2þ and F3þ ions. The number of detected Fþ ions is very low, individual

channels are difficult to distinguish, and no clear delay-dependence is observed.

In the carbon-containing fragments, only one channel can be identified. The yields of CHþ2
and CHþ3 ions increase if the UV pulse precedes the X-ray pulse, which can be understood

when taking into account that the X-ray inner-shell ionization of an intact molecule usually

results in fragmentation into several smaller constituents, thus yielding mostly protons and sin-

gly charged carbon ions. However, if the molecule is first dissociated by the UV pulse, the

X-ray absorption at the fluorine site does not break up the CHþ2 and CHþ3 fragments further,

once a critical internuclear distance is exceeded. Consequently, the yields of Cþ and Hþ ions

show the opposite trend, since they are more likely produced when electron transfer to the fluo-

rine atom is still possible. For CHþ fragments, both mechanisms balance each other, resulting

in a delay-independent yield, except for a pronounced dip at zero delay, where UV and X-ray

pulses overlap in time. A possible reason for this may be the creation of highly excited states

of CHþ, which have a relaxation time shorter than the FEL pulse duration and which can be

further ionized by a single UV photon, leading to its break-up.

The CHþ3 ion yield in fluoromethane shows a behavior opposite to what is observed for the

case of iodomethane discussed in Sec. III. This reflects the fact that for CH3F, the vast majority

of the CHþ3 ions are produced by the UV pulse, see Fig. 7, and thus the delay-dependence in

this case results from the depletion of neutral target by the FEL. In iodomethane, the UV focus

was three times larger, resulting in a much smaller FEL to UV focal volume ratio. Therefore,

the depletion is negligible in CH3I, and the delay-dependence is defined by a small contribution

of CHþ3 ions created by X-ray absorption.

V. CONCLUSION AND OUTLOOK

Charge transfer dynamics following X-ray inner-shell ionization of iodomethane and fluoro-

methane molecules dissociated by femtosecond UV pulses have been investigated. The experi-

mental results are complementary, due to the qualitatively different reactions of the two species

to UV irradiation, as well as the considerably different electronegativities of the two halogen

atoms.

For UV excitation of iodomethane, a dominant two-body neutral dissociation pathway with

a well-defined fragment energy allows a reliable reconstruction of the internuclear separation at

the time of the X-ray absorption, and studying distance-dependent charge transfer dynamics.

Very high iodine charge states up to I21þ are produced, which enable mapping the critical inter-

nuclear distances for electron transfer for a broad range of ionic potentials. The corresponding

critical distances of 6 to 15 Å obtained in this experiment agree well with the predictions of a

classical over-the-barrier model, as well as with experimental data obtained using an NIR pump

pulse.15 The non-ionizing UV fragmentation enabled the observation of signatures of charge

transfer in other ionic fragments, including singly to triply charged iodine, which could not be

studied in the earlier NIR experiment.

Similar to the data presented in Ref. 15, the delay-dependent yield curves for low-energy

iodine fragments, which reflect distance-dependent electron transfer rate, not only shift towards

larger delays but also become broader for higher charge states. This broadening is not expected

within the classical model, which predicts a step-function-like behavior, with the step function

being smeared out by the time resolution of the experiment.15 This broadening most likely is

caused by the exponential distance-dependence of the charge transfer probability;46 however,

better temporal resolution would be required to resolve the deviations from the model more

clearly.
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For fluoromethane, a variety of ionizing dissociative pathways are triggered by the UV ex-

citation, making a quantitative analysis of distance-dependent charge transfer dynamics more

problematic. In particular, the low-energy channel in the halogen fragment, which was used for

monitoring the charge transfer probability in iodomethane, is missing, because of the absence

of a dissociation channel involving a neutral methyl fragment. The dynamics are strongly influ-

enced by the dominance of positively charged methyl created in the UV excitation.

Nevertheless, signatures of electron transfer could be identified in fluorine and carbon-

containing fragments. In addition, depletion of the neutral target by the FEL pulse is observable

in the delay-dependent yields of the hydrocarbon fragments. In the case of CH3F, this effect is

non-negligible because of the smaller UV focus used in order to achieve the relatively high in-

tensity needed to dissociate this molecule.

Another qualitative difference between the two species is the character of the dominant

Auger decay pathways. For iodomethane, the first relaxation steps occur as localized transitions

involving the intermediate 4d shell,47 thus enhancing the initial localization of positive charge

at the iodine site. For fluorine (1s) ionization, the first Auger decay step already involves va-

lence electrons.48 Together with the high electronegativity of fluorine, this results in a much

lower degree of charge localization at the fluorine, reflected in the low charge states of fluorine

observed after X-ray ionization. Within the present experiment, inter-atomic Auger processes

cannot be distinguished from fully local decay, followed by valence charge transfer. This could,

however, be achieved with coincident Auger electron spectroscopy.

The results presented here support the experimental concept developed in Refs. 10 and 15.

The main limiting factor for deducing the functional dependence of the electron transfer proba-

bility on the internuclear separation is the limited temporal resolution. With improved timing

stability and shorter pulse durations available at current FEL facilities, the pump-probe tech-

nique demonstrated here can be used for imaging various charge transfer processes in molecular

systems, for example, as a function of the local chemical environment. Sub-femtosecond high-

harmonic generation based sources also represent very promising tools for this kind of studies,

as demonstrated by recent pioneering measurements on ultrafast charge migration.49,50

Combined with coincident electron spectroscopy and upcoming attosecond soft X-ray pulses,

our approach will allow tracing local charge propagation dynamics with Ångstrom spatial and

sub-femtosecond temporal resolution.
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