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Purpose: The authors have developed a new 3D breast image reconstruction technique that utilizes
the soft tissue spatial resolution of magnetic resonance imaging (MRI) and integrates the dielectric
property differentiation from microwave imaging to produce a dual modality approach with the
goal of augmenting the specificity of MR imaging, possibly without the need for nonspecific
contrast agents. The integration is performed through the application of a soft prior regularization
which imports segmented geometric meshes generated from MR exams and uses it to constrain the
microwave tomography algorithm to recover nearly uniform property distributions within segmented
regions with sharp delineation between these internal subzones.

Methods: Previous investigations have demonstrated that this approach is effective in 2D simulation
and phantom experiments and also in clinical exams. The current study extends the algorithm to 3D
and provides a thorough analysis of the sensitivity and robustness to misalignment errors in size and
location between the spatial prior information and the actual data.

Results: Image results in 3D were not strongly dependent on reconstruction mesh density, and the
changes of less than 30% in recovered property values arose from variations of more than 125% in
target region size—an outcome which was more robust than in 2D. Similarly, changes of less than
13% occurred in the 3D image results from variations in target location of nearly 90% of the inclusion
size. Permittivity and conductivity errors were about 5 times and 2 times smaller, respectively, with
the 3D spatial prior algorithm in actual phantom experiments than those which occurred without
priors.

Conclusions: The presented study confirms that the incorporation of structural information in
the form of a soft constraint can considerably improve the accuracy of the property estimates in
predefined regions of interest. These findings are encouraging and establish a strong foundation for
using the soft prior technique in clinical studies, where their microwave imaging system and MRI
can simultaneously collect breast exam data in patients. © 2016 American Association of Physicists
in Medicine. [http://dx.doi.org/10.1118/1.4944592]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is widely applied in chal-
lenging breast imaging cases, for example, in women with
dense breasts and those at high risk for breast cancer, espe-
cially women with genetic predispositions.!™® In addition, it
is routinely used prior to surgery because of its ability to
reveal multifocal and extent of disease which provides spatial
context for planning the interventional procedures. In terms
of performance, breast MR suffers from a high false positive
rate which can reach 19% and poses an important clinical
challenge because multiple false positives can occur within a
single breast.”® MRI also depends on the use of gadolinium
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as a contrast agent, lowering its effectiveness in the imaging
of recurrences”!? and causing health risks to patients with
compromised kidney function.!! Breast MR’s combination of
strengths and weaknesses represents opportunities to add value
to the examination, especially if achieved through minimal
changes in clinical workflow. With the advent of emerging vec-
tor network analyzers (VNAs) on-a-chip technology, micro-
wave imaging (MI) could become a cost effective alternative
to contrast enhanced interventions.

MI is emerging as a potential alternative and/or adjunct
to conventional modalities such as MRI that may be able
to exploit meaningful contrast between the dielectric prop-
erties (namely, the permittivity and conductivity) of malig-
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nant and normal breast tissue. A number of reports have
demonstrated that the microwave properties of cancerous
tissue are high due to the increased water content associ-
ated with rapidly proliferating cells and their concomitant
angiogenic vasculature'>~'* relative to lower water content
normal breast tissue comprised mainly of adipose and fi-
broglandular constituents.!> In fact, recent clinical studies
involving microwave tomography'®!” and radar methods'®
for breast diagnosis and tumor margin assessment'® suggest
that these properties distinguish cancer from normal tissue
at statistically significant levels. While radar techniques have
demonstrated promise in terms of detecting breast tumors,
these methods appear to offer less specificity.'$2%?! Notwith-
standing, some studies®” have presented data showing that the
contrast between tumors and naturally occurring fibroglan-
dular tissue may not be especially high because both have
relatively elevated water content. However, analyses of the
experimental methodology used in those measurements indi-
cate that the lack of contrast observed may not reflect the
contrast that would be irnaged.23 In fact, data from a recent
report by Sugitani et al.>* appear to contradict some conclu-
sions in Lazebnik et al.??> One mechanism for the apparent
contrast!>"'%16:17 may be the link between dielectric properties
and bound and free water effects, =%’ which have been shown
to play a significant role in both MRI*® and diffuse opti-
cal tomography (DOT),>>** and would be expected to influ-
ence tissue dielectric properties at low microwave frequen-
cies.

Microwave tomography operates similarly to x-ray CT in
which the breast is surrounded by an array of antennas which
individually illuminate the tissue of interest from all directions
and receive the scattered fields. The system developed by
Meaney et al.?'~3° operates in a frequency range from 500 MHz
to 2 GHz and incorporates monopole antennas submerged
in a liquid that are positioned closely around the breast.
A nonlinear imaging algorithm reconstructs dielectric prop-
erty maps of the breast from these measurements. Since the
problem is ill-posed, some form of regularization is required
to stabilize the process. Previously, we have successfully
employed variations on Tikhonov and Levenberg—Marquardt
(LM) schemes;?’3% however, loss of spatial resolution of inter-
nal features occurs from the smoothing effects caused by the
regularization. Alternatively, when spatial information about
the target is known, we have applied a soft prior regularization
which smoothens the estimated properties within homoge-
neous, segmented regions but allows near stepwise variation
at interfaces between zones.?* The technique has dramatically
improved the property recovery in a range of simulation and
phantom studies and even in a patient exam.*>*' The major
impediment to implementing the approach is obtaining spatial
information that accurately aligns with the breast geometry
at the time of microwave data acquisition. Interestingly, a
coregistration technique has recently been reported whereby
the breast is held in position using a thermoplastic mesh
during separate MR and microwave examinations.*> While
the approach is attractive, opportunities exist for alignment
errors because the breast will likely deform during transition
from one exam to the other. Additionally, the breast is buoyant
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in most coupling liquids, which would further exacerbate the
registration problem.

To translate this technique clinically, we recently reported
the first implementation of a microwave tomography system
operating within an MR scanner.*! The integration was chal-
lenging on a number of levels because of (a) space limitations,
(b) signal interference, (c) metal-induced image artifacts, and
(d) multipath signal corruption. Fortunately, our monopole
antenna configuration contained little metal and minimized
imaging tank size relative to other approaches.?'*3** The sys-
tem yielded the first clinical microwave breast images with
MRI as the modality providing spatial information. The impli-
cations are substantial: by reconstructing microwave images
spatially encoded with MR, dielectric property differentiation
can increase the specificity of breast MRI. This multimodality
breast exam has the potential to add value to MRI without
using invasive contrast agents such as gadolinium and without
substantial alterations to existing MRI systems.

Multiple factors will ultimately impact the value of this
approach. For instance, the degree of accuracy of the prior
anatomical information extracted from the MR images de-
pends on several factors including the spatial resolution of
the actual MR images, type of MR sequence, and tissue
segmentation techniques (manual, semiautomatic, or auto-
matic), which could involve interoperator and intraoperator
variability. Therefore, evaluation of the sensitivity of the 3D
soft prior technique to imperfect prior information is impor-
tant. While all sources of variability have not been evaluated,
the potential errors in the priors considered in this study are
likely to be the biggest contributors to exams in the microwave
property recovery. It is important to note that the microwave
examination is performed simultaneously with MRI which
does minimize coregistration and associated segmentation
errors between the microwave and MR exams related to per-
forming the two exams sequentially.

While we have demonstrated the capability with 2D MI, the
approach benefits substantially by expanding the technology
to 3D. As an important step toward clinical translation, this
study introduces the 3D soft prior regularization and assesses
its performance in a controlled manner. First, the image recon-
struction algorithm including both soft and hard prior tech-
niques is outlined. Then, a series of simulation studies evalu-
ating the algorithms’ sensitivity and robustness are presented,
along with results from breast phantom experiments. Finally,
an error analysis is described. The study sets the stage for
full 3D implementation with a more advanced microwave data
acquisition system.

2. METHODS
2.A. Image reconstruction

MI is based on determining the distribution of constitu-
tive parameters within tissue where the dielectric properties
are embedded in the squared complex-valued wave number,
k%(r) = w’upe(r) — jwpeo (r), where r is the 3D position vec-
tor within the imaging domain, w is the angular frequency,
Jj 1s the imaginary unit, yg is the free-space permeability, &
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is the permittivity, and o is the conductivity.’ During the
reconstruction process, the field problem is initially solved
by computing the 3D scattering from Maxwell’s equations
using a finite difference time domain (FDTD) algorithm.*® The
next step estimates the dielectric properties of the interrogated
tissue by minimizing the difference between computed and
measured scattered electric fields. Since the inverse electro-
magnetic problem is nonlinear, we use an iterative LM tech-
nique with a variance stabilizing transformation in which the
3D measured electric field vector (E™) is compared with the
calculated vector using the forward model (E€(k?)) for a given
distribution of the constitutive parameters stored in the 3D
vector, k%478 Other approaches to solve inverse problems,
such as genetic algorithms and stochastic processes, are also
possible and have been applied successfully to MI as well.**-5!

Tikhonov regularization®” imposes additional constraints to
stabilize the reconstruction procedure. In our algorithm, the
objective function is as follows:

» (D

where I and T are the log magnitudes, and @™ and ®°
are the phases of the measured and computed field values,
respectively,>>#748 1 is the weighting coefficient, also known
as the Tikhonov regularization parameter, and L is a positive
definite, dimensionless regularization matrix, and kg is a prior
estimate of k2. The objective function in (1) can be solved for
the iterative property update, k,27,
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where J is the Jacobian matrix, which has dimensions 2M X2N
and consists of derivatives of the log magnitude and phases
of the computed field values (M is the number of measure-
ments) with respect to the property values at each of the N
nodes in the 3D reconstruction mesh. k,27 is the vector k? at
iteration 7 and is updated as Ak,zl = kf7 R k,27. We use a dual-
mesh approach where the forward solution is computed on
a uniform rectangular parallelepiped FDTD grid, while the
electromagnetic property parameters are reconstructed on a
tetrahedral element mesh, placed concentrically within the
antenna array.>> As was reported earlier,* the FDTD approach
is significantly less computationally expensive in 3D situations
than for finite element approaches and is, therefore, better
suited to the iterative imaging techniques.

In the absence of prior structural information, also referred
to as the “no prior” case, L in (2) is set to the identity
matrix, which applies a homogeneously distributed smoothing
effect to the property distribution within the imaging domain.
However, when structural information from MRI is available,
the relative spatial location of different regions of interest is
applied to achieve a heterogeneously distributed smoothing
effect to the property estimates.’*’ More specifically, the
segmented MR images yield a volumetric mesh with different
assigned regions of interest, which in turn becomes the recon-
struction mesh. Incorporating the relative locations of the

—LTL(kf]—kg)), &)
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reconstruction parameters and their associated regions into the
reconstruction algorithm is achieved through the regulariza-
tion matrix, L. Given two nodes i and j in the 3D reconstruction
mesh, the corresponding entry in the matrix is 1 if i = j, 0 if
the nodes are located in different regions, and —1/Ng if they
belong to the same region, R, containing Ng + 1 nodes.>*4
This technique is called “soft prior” regularization: the spatial
prior is considered “soft” because it does not force the property
estimates inside an identified region to be constant. Instead,
the known spatial locations of different regions adjust the
regularization weights to favor uniformity within regions that
are assumed to have similar dielectric properties. In addition,
when two different regions share the same boundary, the
smoothing across their common interface is penalized, i.e., not
allowed to vary substantially.

The prior structural information can also be incorporated
in the reconstruction algorithm through a different approach
called “hard prior.” This technique is based on reducing the
number of the reconstruction parameters by assuming com-
plete homogeneity within each region.’> Therefore, given R
distinct regions, only R values of permittivity and conductivity
are estimated. The region identification process is identical
to the soft prior case; however, the parameter reduction is
implemented during the property update by defining a new

Jacobian matrix: J = JK, where K = and the a priori

K b
parameter reduction matrix K is defined as

if node(i) € R;

1
ki i = ) 3
! {0 if node(i) ¢ R; )

where node(i) is the ith node in the reconstruction parameter
mesh, and R; is the jth region identified from the prior struc-
tural information. The dimensions of K are the number of
nodes by the number of regions (N X R), and therefore, K has
the dimensions of 2N X R. Aslong as R < M, no regularization
is required during the image reconstruction, and the property
update equation in Eq. (2) can be simplified to

ARZ =TT )

I —T°(k;)
" - (k)|

The focus of this paper is to evaluate the performance of the
soft prior technique in 3D. However, for comparison purposes,
the hard prior approach is also evaluated in one set of simula-
tion experiments.

2.B. Simulation experiments

Simulated measurements were generated by our FDTD
forward solver with a generalized perfectly matched layer
(G-PML) as the absorbing boundary condition, for different
shaped and different sized target inclusions. To account for
measurement effects, —100 dBm synthetic noise was intro-
duced into the data. In practice, the noise floor of our system
is closer to —135 dBm, and therefore, we generally have very
large signal-to-noise ratios (SNRs) even for the weakest sig-
nals transmitted from the furthest antennas.?! In order to avoid
the so-called “inverse crime,” i.e., when the discretization in
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Fic. 1. Schematic of the imaging domains evaluated: the background diame-
ter was 14 cm (antennas are positioned on a 15.2 cm diameter). The spherical
inclusion of 1.5 cm radius was centered at (3, 0, 0) cm.

the numerical simulation is the same as the one used in the
inversion, different meshes were used for the forward and
inverse solvers.’* Generally, the finite difference grid used for
generating the simulated data was at least 50% denser than the
one used for reconstruction. Figure 1 shows a schematic of
the simulation experiments evaluated in this paper. In seven
evenly spaced 15.2 cm diameter circles with 1 cm vertical
separation, 112 monopole antennas were configured. A spher-
ical inclusion of 1.5 c¢m radius with dielectric properties of
&r.me =40.0 and oy, =2.0 S/m at 1300 MHz (a representative
value within the frequency range of the imaging system) was
centered at (x,y,z) = (3,0,0) cm, where the origin (0, 0, 0) is the
center on the imaging tank. The imaging tank was filled with
a background medium of &, g, =22.4 and o gx =1.23 S/m at
1300 MHz, which are typical properties of the glycerin/water
mixture used in clinical studies. The glycerin/water mixtures
generally provide properties reasonably consistent with our
clinical results.3>*

In order to compare the no prior and soft prior regulariza-
tions in 3D and study the effects of factors such as the recon-
struction mesh density, imperfect and false spatial priors, and
the size and shape of target inclusions, a set of 3D simulation
experiments was performed.

2.B.1. No prior versus soft prior regularization

The synthetic data were reconstructed using both the soft
prior and our original Tikhonov (no prior) regularizations.
The 3D soft prior mesh was composed of 3083 nodes and
16257 tetrahedral elements, whereas for the no prior case,
a cylindrical mesh of 7 cm radius, 6 cm height, composed
of 3594 nodes and 15095 tetrahedral elements, was used.
For quantitative comparison, the corresponding errors [see
Sec. 2.D—Eq. (5)] were calculated, accordingly. Past experi-
ence has demonstrated that mesh size differences on this order
have no appreciable effect on the final results.
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TasLE I. Reconstruction meshes used in the soft prior regularization simula-
tion experiment.

Case Number of nodes Number of elements
(a) 2180 11033
(b) 3083 16257
(©) 4509 21330
(d) 7972 40686

2.B.2. Number of the reconstruction nodes

While higher density meshes may provide better spatial
resolution,’* they can considerably increase overall compu-
tational time. Thus, knowing how the number of nodes in
the reconstruction mesh influences the soft prior recovered
dielectric properties is important. To study the question, a set
of meshes with varying node densities was used to reconstruct
the synthetic data using the soft prior regularization. A list of
these meshes (including the number of nodes and elements) is
summarized in Table I. All other factors were kept constant to
isolate the effects of mesh density.

2.B.3. Sensitivity to imperfect spatial priors

Obtaining perfect prior structural information of the tissue
being imaged may not be possible in practice. Therefore, eval-
uating the sensitivity of the soft prior technique to imperfect
priors is critical. We studied the performance of the 3D soft
prior algorithm in the presence of two types of imperfections:
size and location of an inclusion.

2.B.3.a. Imperfect prior size of a target inclusion. Inthese
meshes, the prior location of the inclusion was exact, while
the inclusion prior sizes ranged from 0.7 to 2.5 cm (actual
inclusion radius was 1.5 cm). For comparison purposes, the
total number of nodes as well as the number of nodes in the
inclusion region was kept within the same order of magnitude.
To compare the recovered dielectric properties with the actual
values, the reconstructed permittivity and conductivity values
of the background and the target inclusion were extracted at
the center of each region.

2.B.3.b. Imperfect prior location of a target inclusion. In
this case, the inclusion prior size was exact, while the inclusion
prior location was centered from 0 to 4.2 cm along the x-axis
(actual center of the inclusion was 3 cm along the x-axis).
Again, the total number of nodes as well as the number of
nodes in the inclusion region was kept approximately the same.
To evaluate the recovered dielectric properties relative to the
actual values, the reconstructed permittivity and conductivity
of the background and the target inclusion were extracted at
the center of each region.

2.B.4. Sensitivity to a false region of interest

During segmentation of MR images, false regions of in-
terest may be detected, i.e., when regions are assumed to be
different from their surroundings, but in reality, they have
similar dielectric properties. For the false region of interest
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TasLe II. Characteristics of the 2D and 3D meshes used for the simulation
experiments with different sized and shaped target inclusions.

Inclusion Inclusion size 2D/3D Number of Number of
shape radius (cm) mesh nodes elements
2D 803 1537
025 3D 3000 13863
2D 512 962
05 3D 2160 9220
. 2D 421 788
Cylinder 0.75 D 1891 7850
L0 2D 418 780
3D 1726 7029
125 2D 429 800
3D 1628 6562
2D 803 1537
0.25
3D 6382 35131
2D 512 962
05 3D 3493 18534
2D 421 788
Sphere 075 3D 1990 9846
2D 418 780
10 3D 1556 7428
125 2D 429 800
3D 1175 5305

study, synthetic data with only one spherical inclusion [1.5 cm
radius centered at (3, 0, 0) cm] were used. However, as a part
of the prior information, an additional false region of interest
at a randomly different location (same size) was delineated in
the soft prior reconstruction mesh. The actual and recovered
dielectric properties were extracted at the center of the true and
false inclusions.

2.B.5. Size and shape of the target

Incorporating structural information into MI can improve
the accuracy of the reconstructed dielectric properties. How-
ever, improvements may vary for different sizes and shapes
of objects being imaged. In order to study the effects of the
size and shape of the target inclusion on the recovered dielec-

| Arbitrarily-shaped gelatin “tumor” inclusions |
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tric properties, we modified the simulation geometry shown
in Fig. 1: 48 monopole antennas were configured in three
evenly spaced circles with a 15.2 cm diameter and a 0.5 cm
vertical separation. Five different sized spherical and cylin-
drical shaped inclusions [0.25, 0.5, 0.75, 1.0, and 1.25 cm
radius, centered at (3, 0, 0) cm] were embedded in a homo-
geneous background medium. The corresponding dielectric
properties were the same as in the other simulation experi-
ments.

The synthetic 3D measurement data were reconstructed
both in 2D and 3D using the original Tikhonov (no priors)
as well as the soft and hard prior regularizations. For 3D
reconstructions, full-data sets consisting of in-plane and cross-
plane measurements were used, whereas for 2D reconstruc-
tions, only the middle in-plane data were selected. The no
prior 2D images were reconstructed on a circular mesh of
7 cm radius, composed of 559 uniformly distributed nodes
and 1044 triangular elements, whereas the no prior 3D images
were reconstructed on a cylindrical mesh of 7 cm radius, 6 cm
height, comprised of 4608 uniformly distributed nodes and
22 184 tetrahedral elements. The soft and hard prior images,
on the other hand, were reconstructed on the 2D and 3D
meshes summarized in Table II. Note that because the hard
prior approach only recovers a single value for each zone, the
images are less informative than for the soft prior case and
are easily summarized by tabulated results. In each case, the
recovered dielectric properties were evaluated at the center of
the inclusion.

2.C. Breast phantom experiment

In order to study the robustness of the 3D soft prior tech-
nique in more complex shapes and to evaluate the accuracy
of dielectric property distributions reconstructed from actual
measured data, phantom experiments were performed. Specif-
ically, MR scans of a real breast of cup size B (425 ml)
were used to create a breast mold which was then fabricated
into a rapid-prototyped thin plastic breast model. Two arbi-
trarily shaped gelatin “tumor” inclusions were placed inside
the breast model, as shown in Fig. 2(a). The mold was filled
with a 88:12 glycerin:water mixture (¢, and o values reported
in Table III, mimicking the dielectric properties of a breast

(b)

Fic. 2. Breast-shaped phantom experiment: (a) two arbitrary shaped gelatin tumor inclusions suspended in the plastic breast model, (b) rapid-prototyped plastic

breast model submerged in the microwave imaging tank.

Medical Physics, Vol. 43, No. 4, April 2016
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TasLe III. Independently measured dielectric properties of the background
medium (Bk), breast model (Br), and the tumor inclusions (Inc1 and Inc2) at
1100 MHz.

Bk Br Incl Inc2

12.2 0.71 14.2 0.77 35.0 1.17 35.0 1.17

with scattered radiographic density—average €, ~ 14 and o
~0.3-0.4 S/m).** The complete model was suspended in the
imaging tank filled with a matching liquid of 86:14 mixture
of glycerin:water, as illustrated in Fig. 2(b). For quantitative
analysis, the dielectric properties of the coupling medium,
breast model, and two tumor inclusions were independently
measured with an Agilent 85070E Dielectric Probe Kit at
1100 MHz (data in Table III). During the 3D microwave data
acquisition, the antenna array transmitted and received the
signal at 11 equally spaced (1 cm) vertical positions, at which
16 (transmitters) X 15 (receivers) measurements were collected
in each plane. During image reconstruction, only data from
the receivers in the closest three planes were used for each
transmitter.

In order to obtain structural priors, the phantom was imaged
with MRI. For coregistration, the breast model and tumor
inclusions were placed in the identical location in an empty
tank with an equivalent antenna array, as shown in Fig. 3(a).
Once the MR images were acquired, they were postprocessed
and segmented. Figure 3(b) shows a stack of binary-segmented
images used to create the corresponding 3D soft prior mesh in
Fig. 3(c), which contained 7540 nodes and 34 591 tetrahedral
elements. While this mesh was used to reconstruct microwave
images with spatial priors, the no prior images were recovered
on a 6.9 cm radius, 11 cm height cylindrical mesh composed
of 5720 uniformly distributed nodes and 25 800 tetrahedral
elements.

2.D. Error analysis

In order to compare quantitatively the dielectric property
measurements recovered with and without spatial priors, the

(b)

relative root mean square error (RRMSE) in the inclusion was
calculated as

N 2

recon __ y/exact
RRMSE = Z(—” e ) / N, Q)
n=1 n

where N is the total number of nodes in the inclusion region,
Vieeon s the reconstructed dielectric property value (either
permittivity or conductivity) at node n (in the reconstruction
mesh), and V! is the true value of the selected dielectric
property at that location. The permittivity and conductivity
RRMSE associated with the inclusion region was calculated
and summarized accordingly.

To evaluate how the prior structural information improved
contrast between the inclusions and the background breast
region in the phantom experiment, the percentage of contrast
enhancement (CE) was calculated as

~100x (CNP - C5P)

NP
ch

CE, = , (6)

where C;'* and C2” are the no prior and soft prior contrasts
of the ith inclusion with respect to the true properties of the
breast region, respectively, and calculated as

Nnp Nsp
> V,fVP/N ZVnSP/N
Np _ _n=l sp_ n=l1
Cti T yYEBxactBR Cfi - VExactBR D

where VNP and V5P are the no prior and soft prior recon-
structed dielectric property values (either permittivity or con-
ductivity) at node n (in the corresponding reconstruction
meshes with Nyp and Ngp nodes), respectively, whereas
VExacBR s the true dielectric property value of the breast
region.

3. RESULTS

In the simulation experiments, we compared no prior with
soft prior regularization in 3D, and studied how different fac-
tors such as the reconstruction mesh density, imperfect and
false spatial priors, and size and shape of target inclusions

FiG. 3. (a) Photograph of the phantom placed in an empty MI tank inside the MR bore, (b) stack of binary-segmented MR images of the breast phantom
experiment, and (c) corresponding 3D soft prior mesh composed of 7540 nodes and 34 591 tetrahedral elements. Elements associated with the segmented

inclusions are colored in red (see color online version).

Medical Physics, Vol. 43, No. 4, April 2016
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(a)

(b)

Fic. 4. 3D reconstructed permittivity (top) and conductivity (bottom) images from a simulation experiment at 1300 MHz using (a) soft prior regularization and

(b) no prior spatial information.

affect the performance of the soft prior technique. We also
performed a comparison of reconstructed 3D images from a
realistic breast phantom experiment at 1100 MHz using prior
spatial information from MRI.

3.A. Simulation experiments
3.A.1. No prior versus soft prior regularization

Figures 4(a) and 4(b) show 3D reconstructed images with
and without spatial priors, respectively. For visualization pur-
poses, horizontal slices normal to the XY plane at z =0 along
with isosurfaces of the target inclusion are presented. While
the target inclusion is successfully detected in both cases, the
soft prior reconstructed dielectric properties are much closer to
the actual values in both permittivity and conductivity images.
Moreover, the level of background artifacts is notably reduced
in the images when structural information was incorporated.
The permittivity and conductivity RRMSE associated with the
inclusion region were 0.8% and 8% for the soft prior, and 22%
and 18% for the no prior cases, respectively.

3.A.2. Number of the reconstruction nodes

Figure 5 shows the reconstructed dielectric property values
extracted at the center of the inclusion [(3, 0, 0) cm] and at
the center of the imaging domain [(0, 0, 0) cm], compared

to the actual property values, as a function of the number
of reconstruction nodes in Table I. It should be noted that
only the centroid values are reported here, mainly due to
the fact that the reconstructed properties within the regions
evaluated had minor variations (variations which are penal-
ized, and therefore, suppressed by the soft prior regularization
technique). For instance, for the results presented in Fig. 4(a),
the difference between the reconstructed permittivity values
using the average values over the inclusion region vs the center
node value was only about 0.004%, whereas the conductivity
counterpart was 1.6%. Examination of other cases has pro-
vided consistent results. In all cases, both permittivity and
conductivity profiles of the target inclusion were effectively
characterized. Interestingly, the recovered dielectric property
values were similar for different reconstruction meshes spann-
ing a wide range of node numbers. The recovered permittivity
values are nearly independent of the number of reconstruction
nodes, while the target region conductivity values improved by
approximately 10% when a denser reconstruction mesh was
used (2180 vs 7972 nodes).

3.A.3. Sensitivity to imperfect spatial priors

3.A.3.a. Imperfect prior size of the target inclusion. The
dielectric property values at the center of each region were
plotted in Fig. 6 as a function of the spatial inclusion radius in
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the reconstruction mesh. The exact size of the target inclusion
is marked by a green vertical line, which indicates where
the exact prior information was used. As the radius of the
inclusion in the reconstruction mesh increased from below the
exact prior, both reconstructed permittivity and conductivity
values of the target inclusion approached those of the back-
ground medium (Bk). At the other end, as the prior size of
the inclusion decreased, the reconstructed conductivity values
also approached those of the background medium, while their
permittivity counterparts first increased and then decreased,
toward the background values.

3.A.3.b. Imperfect prior location of the target inclusion.
The dielectric property values at the center of each region
are plotted in Fig. 7 as a function of position along the X-
coordinates of the prior spherical inclusion center where the
exact location is marked with a green vertical line. Overall, the
imperfect prior location of the target had a similar effect (hill-
shaped curve) on both recovered permittivity and conductivity
profiles. When the prior and actual target locations matched,
the reconstructed permittivity and conductivity values of the
inclusion approached their exact profiles. However, the most
accurate values for each property were not recovered when the
mismatch was zero, but rather when the prior inclusion was
slightly offset. The offset for the permittivity and conductivity
profiles is in opposite directions making the recovered values
at the actual target location (green vertical line), the most
accurate solution for both permittivity and conductivity. When
the partial overlap between the actual and prior target volumes
decreased, the recovered property distributions of the inclusion
approached those of the background.

3.A.4. Sensitivity to a false region of interest

Figure 8 shows 3D reconstructed images from a soft prior
mesh with a false region of interest. For illustration purposes,
the reconstructed images are sliced so that both the true and
false inclusion regions are exposed. Moreover, isosurface
thresholds of €, =39 and o = 1.85 S/m (target inclusion)
are applied to the reconstructed permittivity and conductivity
images, respectively.

The false region of interest presents a subtle variation
from the background properties. The recovered properties and
calculated errors indicate that the false region appears as a very
small increase (less than 0.5%) in the permittivity image, but
a slightly larger increase (3%) in the conductivity image. In
the true inclusion region, the permittivity error is only 1%,
while the conductivity error is somewhat larger, but still only
5%.

3.A.5. Size and shape of the target

The dielectric property values at the center of each region
are plotted as a function of inclusion radius using different
reconstruction algorithms, including 2D and 3D with no priors,
3D soft priors, and 3D hard priors, respectively. Figures 9(a)
and 9(b) show the reconstructed values of the spherical and
cylindrical inclusions, respectively.

Overall, as the size of the inclusion decreased, the recovered
dielectric properties were less accurate. In addition, the prop-
erties of the cylindrical inclusion were generally more accurate
than those of the spherical inclusion, especially for the smaller
size targets. This improvement was even more prominent when
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prior structural information was incorporated into the recon-
struction algorithm. Results for the spherical case are more
indicative of the expected clinical performance; although, the
outcomes from the cylindrical geometry provide information
that is more directly related to previous 2D results. The no prior
3D reconstructed permittivity values (red dotted lines in the
upper portion of Fig. 9) were similar to those recovered in 2D
with and without prior information (all blue lines). However,
the corresponding conductivity values (the bottom graphs in

Fig. 9) were considerably more accurate when the radius of
the inclusion was greater than 0.5 cm, indicating that the 3D
reconstruction algorithm had a more substantial impact on the
conductivity profiles.

Comparisons between the two regularization methods (i.e.,
hard priors and soft priors) show that the hard prior prop-
erties are slightly superior to those reconstructed with the
soft prior regularization. This effect is more pronounced for
the 3D reconstructed profiles (red dotted lines) of smaller
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()

(b)

Fi. 10. A vertical slice through the (a) soft prior and (b) no prior reconstructed permittivity (top) and conductivity (bottom) images of a breast phantom with
two inclusions at 1100 MHz. The white line on the no prior image shows the actual outline of the breast.

sized spherical inclusions in Fig. 9(a) and may be due to the
fact that with the hard priors, the number of unknowns—
i.e., the number of reconstruction parameters—is drastically
reduced from 418 to 803 in 2D and 1175 to 3000 in 3D to
only two parameters for each of the two identified regions
(Bk and Target), and as a result, no extra regularization is
required during the reconstruction (A = 0). On the other hand,
in the soft prior technique, the number of unknowns (i.e., the
number of nodes in the customized reconstruction mesh) is
considerably greater than the number of measurements and
requires additional regularization (4 > 0) to stabilize the image
reconstruction.

3.B. Phantom experiments

The 1100 MHz reconstructed permittivity (top) and
conductivity (bottom) images with and without spatial priors
are presented in Figs. 10(a) and 10(b), respectively. To visu-
alize the recovered profiles of the regions of interest, the
reconstructed volumes are sliced vertically through the breast
region.

When the soft prior regularization is used, inclusions are
successfully characterized in both permittivity and conduc-
tivity, although they appear weaker in the conductivity image.
For the no prior algorithm, the inclusions are successfully
detected only in the permittivity images. For the corresponding
conductivity images, only the lower inclusion (Inc2) appears
to be detected. In addition, its size was larger and its location
was shifted from the actual position. In all cases, the recovered
property distributions of the breast were closely matched to
the exact values. The soft prior and no prior RRMSE are
summarized in Table IV.

Medical Physics, Vol. 43, No. 4, April 2016

4. DISCUSSION

The results presented in this paper confirm that the recov-
ered soft prior dielectric properties are more accurate than
those estimated with no priors. In addition, they are somewhat
insensitive to the 3D reconstruction mesh density. While the
reconstructed permittivity profiles were accurate, the conduc-
tivity values improved as the reconstruction mesh density
increased from 2000 to over 4000 nodes, suggesting that
for a breast of this size, a reconstruction mesh composed of
3000—4000 nodes is sufficient.

In terms of the sensitivity of the algorithm to the imperfect
prior size of the target, changes of 30% and 15% occurred
in the recovered permittivity and conductivity values, respec-
tively, when more than 125% variation was applied to the target
region volume (changing inclusion radius from 1.3 to 1.7 cm).
A comparison of these results with those reported in Golnabi
et al.** reveals that the soft prior algorithm is less sensitive to
imperfect prior size of the target in 3D than that it is in 2D.

In the presence of imperfect prior location data, minor
variations were observed in the recovered dielectric properties.
In fact, the most accurate values were obtained at the exact
prior location of the inclusion. In terms of the sensitivity of

TasLE IV. Soft prior and no prior RRMSE of the recovered properties in each
region of the breast phantom with two inclusions.

Br Incl Inc2 All regions

RRMSE &y o &y o &y o &y o

Soft priors  0.06 0.11 0.09 028 0.09 0.11 006 0.12
No priors 029 025 044 044 035 023 030 025
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the algorithm to imperfect prior location of the target, changes
of 4% and 15% in the recovered permittivity and conductivity
values occurred, respectively, when the prior target region was
shifted by 87% of its radius (i.e., shifting the center of the
inclusion from 2.6 to 3.4 cm).

We also showed that the 3D soft prior algorithm was able
to manage situations where a false region of interest was
identified as a part of the prior structural information. Under
these conditions, the false region of interest showed minimal
variations (<5%) around the background properties.

Finally, the soft prior regularization considerably improved
the recovered dielectric property distributions in a realistic
breast phantom. In fact, the permittivity RRMSE was about
5 times smaller than the no prior case when the soft prior
regularization was applied. The improvement was less pro-
nounced in the conductivity profiles, as the soft prior RRMSE
was only about 2 times smaller than those in the no prior
case. When the soft prior regularization was applied, contrast
in both inclusions was enhanced relative to the background
breast region. More specifically, the contrast enhancement in
the upper inclusion (Inc1l) was 44% and 25% for permittivity
and conductivity, respectively, whereas the lower inclusion
(Inc2) had a smaller improvement in contrast enhancement of
29% for permittivity and 8% for conductivity.

5. CONCLUSIONS

We have extended our soft prior regularization technique
from 2D to 3D and evaluated its performance in tomographic
microwave imaging. The soft prior technique is based on en-
coding prior spatial information into the image reconstruction
algorithm. Results from 3D simulation and phantom experi-
ments confirm that the incorporation of structural information
in the form of a soft constraint can considerably improve the
accuracy of the property estimates in predefined regions of
interest. The presence of false priors (i.e., predefined regions
without actual contrast) was well tolerated, as were inaccura-
cies in the size and spatial location of the region of interest.
These findings are encouraging and establish a strong founda-
tion for using the soft prior technique in clinical studies, where
our microwave imaging system and MRI can simultaneously
collect breast exam data in patients.
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