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Using a Galleria mellonella animal model, we compared the virulence of two sequence type 258 (ST258) KPC-producing Kleb-
siella pneumoniae strains, which were representative of the two clades of this clonal lineage, with that of isogenic colistin-resis-
tant mgrB mutants. With both strains, the mgrB mutants did not exhibit modification in virulence. In the G. mellonella model,
the clade 1 strain (capsular type cps-1 [wzi29, producing KPC-2]) was significantly more virulent than the clade 2 strain (capsular
type cps-2 [wzi154, producing KPC-3]).

Colistin is a backbone component of combination antimicro-
bial regimens for serious infections caused by carbapen-

emase-producing strains of Klebsiella pneumoniae (1, 2), which
are among the most challenging antibiotic-resistant pathogens
spreading globally (3, 4). However, in settings in which carbapen-
emase-producing K. pneumoniae is endemic, the emergence and
rapid dissemination of colistin resistance have been reported, es-
pecially among KPC carbapenemase-producing K. pneumoniae
strains, including those of the pandemic sequence type 258
(ST258) clonal lineage (5–9).

Colistin resistance is mostly due to modification of the antibi-
otic target (the lipid A moiety of the bacterial lipopolysaccharide
[LPS]), which can be mediated by different mutational events up-
regulating the endogenous LPS modification systems (10–14), or
by the acquisition of exogenous genes encoding LPS modification
systems (15). Mutations causing a loss of function in the MgrB
protein, a negative-feedback regulator of the PhoP-PhoQ signal
transduction system, which controls several biochemical path-
ways, including those involved in LPS modification, are a frequent
mechanism of acquired colistin resistance among KPC carbapen-
emase-producing K. pneumoniae strains circulating in the clinical
setting (14, 16, 17).

We previously showed that colistin resistance associated with
inactivation of the mgrB gene is not associated with a significant
biological cost and is stably maintained in the absence of selective
pressure (18), a finding consistent with the rapid and efficient
dissemination of colistin-resistant (COLr) KPC carbapenemase-
producing K. pneumoniae strains carrying this resistance mecha-
nism observed in the clinical setting (7, 9).

In this work, we investigated the impact of colistin resistance,
mediated by mgrB inactivation, on the virulence of KPC carbap-
enemase-producing K. pneumoniae strains representative of the
two clades of the pandemic ST258 clonal lineage (19); we used the
Galleria mellonella infection model, which is considered to be
a validated model for testing the virulence of K. pneumoniae
(20, 21).

The KPC carbapenemase-producing K. pneumoniae strains
used in the experiments are described in Table 1. KK207-1 and
KKBO-1 are two previously described strains and are representa-

tive of the two clades of ST258 (clades 1 and 2, respectively) (22).
The mgrB insertional mutant of KKBO-1 (named mutKKBO-1)
was previously described (18), while the mgrB mutant of KK207-1
(named mutKK207-1) was obtained with the same approach as
for mutKKBO-1 and carried an ISKpn18 insertion disrupting the
mgrB gene. The colistin MICs of the strains were determined by
reference broth microdilution (23).

For experiments with G. mellonella, bacteria were grown aer-
obically in LB broth at 37°C, harvested during exponential
phase (optical density at 600 nm [OD600], �0.7), and washed
once with 10 mM phosphate-buffered saline (PBS) (pH 6.5).
Bacteria were then suspended in PBS to an OD600 of 1.5, cor-
responding to approximately 1 � 109 CFU/ml. Larvae weigh-
ing 450 to 600 mg were used for the experiments. For a com-
parative evaluation of virulence, groups of 10 larvae were
injected with 5 � 105 CFU of each strain and with sterile PBS as
a control. The larvae were kept at 37°C in the dark under a
humidified atmosphere, with food, and examined daily for pig-
mentation and mobility. Time of death was recorded at 24, 48,
and 72 h. Three independent experiments were performed. The
50% lethal dose (LD50) was determined by inoculating larvae
with 10-fold serial dilutions of each strain containing 5 � 104

to 5 � 107 CFU. Ten larvae were injected with each dilution.
For each strain, data from three independent experiments were
combined. LD50s were calculated using the GraphPad Prism 6.0
software (GraphPad Software, Inc., La Jolla, CA) and were
compared using a two-tailed t test. P values of �0.05 were
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considered statistically significant. K. pneumoniae NTUH-
K2044, an ST23 virulent strain with the K1 capsular serotype
(24), was included in all experiments as a virulent control.

All the studied strains caused a time-dependent death of larvae.
In the 5 � 105 CFU challenge, KKBO-1 (clade 2) killed, on aver-
age, 10% and 17% of larvae at 24 h and 72 h postinfection, respec-
tively. In contrast, KK207-1 (clade 1) caused higher mortality,
with average mortality rates of 55% and 65% at 24 h and 72 h,
respectively. No differences were seen between the killing rates
caused by the colistin-susceptible ST258 strains and the respective
mgrB-inactivated COLr mutants (Fig. 1).

In the experiments with scalar inoculum sizes, all tested strains
caused larval mortality in a dose-dependent manner. No signifi-
cant differences were observed in the LD50s of KKBO-1 (colistin
susceptible [COLs]) versus mutKKBO-1 (COLr) (P � 0.13), and
of KK207-1 (COLs) versus mutKK207-1 (COLr) (P � 0.51). On
the other hand, the LD50s of KK207-1 and mutKK207-1 (clade 1)
were significantly lower than those of KKBO-1 and mutKKBO-1
(clade 2) (P � 0.05) (Table 1).

The COLr phenotype was checked in isolates obtained from
larvae infected with mutKKBO-1 and mutKK207-1 at 24 and 72 h
postinfection (60 isolates per experiment) and was confirmed in
all tested isolates, revealing stability after the in vivo passage.

Altogether, the results of these experiments indicated that
the emergence of colistin resistance mediated by inactivation of
the mgrB gene is apparently not associated with significant

modifications to the virulence potential of KPC carbapen-
emase-producing K. pneumoniae representative of the two
clades of the ST258 clonal lineage. This finding is notably dif-
ferent from what was observed with COLr mutants of Acineto-
bacter baumannii, which exhibit a remarkable impairment of
virulence potential (25–27), and it is consistent with the obser-
vation that COLr KPC carbapenemase-producing K. pneu-
moniae strains of clonal complex 258 (CC258) are capable of
causing severe invasive infections and large outbreaks (8, 9),
similar to their colistin-susceptible counterparts. In fact, recent
clinical studies have reported that mortality rates among pa-
tients with infections caused by COLr KPC carbapenemase-
producing K. pneumoniae strains were higher than those among
patients infected by colistin-susceptible KPC carbapenemase-
producing K. pneumoniae strains (8, 28). The present results
suggest that this reported mortality rate excess is likely attrib-
utable to the further narrowing of available therapeutic options
rather than to an increased virulence potential of COLr KPC
carbapenemase-producing K. pneumoniae strains.

Our data also confirmed previous findings that ST258 strains
of clade 2 (with a cps-2 capsular gene cluster) exhibit an overall low
virulence potential in the G. mellonella model (29) compared with
that of highly virulent K. pneumoniae strains, such as NTUH-
K2044. On the other hand, for the ST258 strain of clade 1 (with a
cps-1 capsular gene cluster), we documented a higher virulence
potential than that for clade 2 strains, which was similar to that of
NTUH-K2044. This finding apparently differs from that of a pre-
vious study that reported a low virulence potential for a KPC-2-
producing ST258 strain of clade 1 (deduced by the K41 serotype)
in a mouse septicemia model (30). Further studies will be neces-
sary to confirm these discrepancies, which might be dependent on
strain-specific differences and/or differences in the animal infec-
tion models and their immune systems. In fact, G. mellonella
moths lack an adaptive immune response, and the model can be
used only to approximate mammals’ innate immune response to
bacterial infections. However, the difference in virulence
among the clade 1 and clade 2 strains observed in this work is
consistent with the different prevalences observed for the two
clades, with an overall predominance of clade 2 strains in settings
of high-level endemicity of KPC carbapenemase-producing K.
pneumoniae strains of CC258 (22, 29).

In conclusion, our findings suggest that COLr KPC carbapen-
emase-producing K. pneumoniae strains of ST258 carrying an in-

TABLE 1 Features of the bacterial strains included in this study

Strain (source or
reference) Sequence type KPC type Cladea Capsular type

LD50 �
standard
errorb

Colistin MIC
(�g/ml)

mgrB alteration
(orientation)c

KKBO-1 (10) 258 blaKPC-3 2 cps-2 (wzi154) 6.02 � 0.09 0.125 Wild type
mutKKBO-1 (18) 258 blaKPC-3 2 cps-2 (wzi154) 5.92 � 0.02 8 IS5-like element

at nt 75 (R)
KK207-1 (22) 258 blaKPC-2 1 cps-1 (wzi29-K41) 4.68 � 0.47 0.125 Wild type
mutKK207-1 (this study) 258 blaKPC-2 1 cps-1 (wzi29-K41) 4.88 � 0.13 32 ISKpn18 element

at nt 93 (R)
NTUH-K2044 (24) 23 NAd wzi1-K1 4.57 � 0.23 0.125 Wild type
a According to reference 19.
b Expressed as log CFU LD50.
c R, transposase gene is in the opposite orientation of the mgrB gene.
d NA, not applicable.

FIG 1 Results of G. mellonella infection experiments. Larvae were injected
with PBS or with 5 � 105 CFU of K. pneumoniae strain NTUH-K2044,
KKBO-1, mutKKBO-1, KK207-1, or mutKK207-1 (10 larvae per strain), and
survival was monitored over 72 h postinfection. The data are mean values from
the results of three independent experiments, and the error bars represent
standard deviations from the mean.
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activated mgrB gene might be as virulent as their COLs ancestors.
Efforts focused at containing their dissemination should therefore
be maximized. Our findings also suggest that significant differ-
ences might exist in the interaction of ST258 strains of KPC car-
bapenemase-producing K. pneumoniae of clades 1 and 2 with the
innate immune response, regardless of their colistin susceptibility
status.
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