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Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show
that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in
NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue
virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug
development.

Dengue virus (DENV) is a major health concern. The virus was
initially estimated to cause 50 million to 100 million infec-

tions each year (1, 2), but more recent estimates suggest even
greater numbers (390 million infections, of which 96 million
manifest clinically) (3). Dengue is a mosquito-transmitted infec-
tion that was once considered a tropical disease, but the virus is
spreading rapidly across the globe and is now endemic in 128
countries, with up to 4 billion people at risk of infection (1, 4–7).
No specific drug or licensed vaccine is available for DENV infec-
tion, leaving vector control the only option to prevent transmis-
sion, although this approach is threatened by the emergence of
insecticide resistance (8–10). A specific antiviral therapeutic agent
would be an important tool to inhibit virus replication and trans-
mission and to reduce the global burden of DENV.

To identify new inhibitors of DENV replication, we screened
the NIH Clinical Collection, a library of small molecules with a
history of use in humans, using a replicon-based assay in HeLa
cells (11). In this DENV serotype 2 (DENV2) (strain New Guinea
C [NGC])-based replicon (RepDVPacLuc), the structural genes
are replaced by a puromycin resistance gene and a firefly luciferase
(FLuc) reporter gene, which can be assessed as a readout for virus
replication (11, 12). AM404 (PubChem identification no.
6604822) was one of the compounds that, at a concentration of 10
�M, reduced FLuc activity in HeLa DENV2 replicon cells by
�50%, relative to the dimethyl sulfoxide (DMSO) control, with-
out affecting cell viability by �20%. AM404, also known as N-
arachidonoylphenolamine, is an active metabolite of paracetamol
(acetaminophen) (Fig. 1A) and is suggested to be responsible for
all or part of its analgesic activity (13, 14).

To confirm the results from our screen, we analyzed an inde-
pendent batch of AM404 (Tocris Bioscience; purity, 99.5% by
HPLC) for antiviral activity on HeLa DENV2 replicon cells and
found that AM404, but not paracetamol, reduced FLuc activity in
a dose-dependent manner (50% effective concentration [EC50],
3.6 �M [95% confidence interval [CI], 3.0 to 4.2 �M]) (Fig. 1B).
As expected (15–17), the nucleoside analogue ribavirin (Sigma-
Aldrich), which was used as a positive control, also inhibited virus
replication in a dose-dependent manner (EC50, 2.2 �M [95% CI,
1.8 to 2.6 �M]) (Fig. 1B). Importantly, none of the compounds
affected cell viability, as assessed by a colorimetric assay for cell
metabolic activity (Fig. 1B). We next analyzed whether AM404
also inhibits replication of wild-type DENV. Because it has been
reported that antiviral compounds can be serotype specific (18),

we tested DENV2 strain NGC, DENV serotype 1 (DENV1) strain
16007 (19), and DENV serotype 4 (DENV4) strain H241 (20).
HeLa cells were infected with these viruses at a multiplicity of
infection (MOI) of 0.01 times the 50% cell culture infective dose
(CCID50) per cell and treated with AM404 or DMSO. Virus accu-
mulation was measured in the supernatant by quantitative reverse
transcription (qRT)-PCR, at 48 and 72 h postinfection (hpi) (for
primer sequences and methods, see Table S1 in the supplemental
material). As expected on the basis of our replicon data, AM404
treatment resulted in 3- and 25-fold reductions in viral RNA ac-
cumulation of DENV2 at 48 and 72 hpi, respectively (Fig. 1C).
Similarly, AM404 reduced DENV1 RNA accumulation 16- and
19-fold at these time points, but we observed only mild decreases
in viral RNA production for DENV4-infected cells (�2-fold re-
ductions at both time points) (Fig. 1C).

As we used a subgenomic replicon in the initial screen, our
results imply that AM404 inhibits a postentry stage of the DENV
replication cycle. To better define which stage of the viral life cycle
is targeted by AM404, we analyzed luciferase activity at 8 and 48 h
posttransfection (hpt) of RNA of a replicon in which the structural
genes are replaced by a Renilla luciferase (RLuc) reporter gene
(RepDVRLuc) (11). At 8 hpt, viral RNA has not yet been repli-
cated, and, as a consequence, RLuc can be produced only by trans-
lation of the transfected RNA (21). At 48 hpt, in contrast, the viral
RNA is replicating and Rluc may be derived from progeny viral
RNA (21). AM404 strongly reduced RLuc activity at 48 hpt but not
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FIG 1 AM404 inhibits DENV genomic RNA replication. (A) Molecular structures of paracetamol (acetaminophen) and its metabolite AM404. (B) Luciferase
activity (top) and cell viability (lower) of HeLa cells containing a stably replicating subgenomic DENV2 replicon (RepDVPacLuc). The cells were treated for 2
days with the indicated compounds before luciferase activity and cell viability were assessed. (C) Viral RNA accumulation, at 48 and 72 hpi, in the culture
supernatant of HeLa cells treated with AM404 (20 �M) or DMSO and infected with wild-type DENV1 (strain 16007), DENV2 (strain NGC), or DENV4 (strain
H241). (D) Luciferase activity, at 8 and 48 hpt, in HeLa cells treated with AM404 (10 �M) or DMSO and transfected with DENV2 replicon RNA (RepDVRLuc).
(E) Schematic diagram of the resistance mutations P104L, A119T, and F164L (arrows) in NS4B. The DENV2 NS4B membrane topology was determined by Miller
et al. (34). pTMD1 to pTMD5, predicted transmembrane domains. ER, endoplasmic reticulum. A recent NMR study of recombinant NS4B (residues 1 to 125)
identified two helical structures overlapping pTMD1 and pTMD2 (�2, residues 36 to 57; �3, residues 61 to 82), which were proposed to be transmembrane
regions (35). In addition, the study confirmed the presence of a transmembrane helix overlapping pTMD3 (�5, residues 105 to 124). Based on the predicted
structure, the A119T and P104L substitutions are located close to the phospholipid head groups. (F) Luciferase activity, at 48 hpt, in HeLa cells transfected with
wild-type or mutant DENV2 replicon RNA (RepDVRLuc) and treated with AM404 (10 �M), ribavirin (10 �M), or DMSO. All compounds were dissolved in
DMSO, which was used as a negative control in all experiments. Ribavirin was included as a positive control. Luciferase activity and cell viability in panels B, D,
and F are expressed as percentages of the DMSO-treated control values. Bars and error bars represent the means and standard errors of the means, respectively,
of three independent samples. Statistical significance in panels C, D, and F was assessed with unpaired t tests. ***, P � 0.001; **, P � 0.01; *, P � 0.05; ns, not
significant.
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at 8 hpt, indicating that AM404 inhibits viral RNA replication
rather than translation of the viral genome (Fig. 1D).

The identification of resistance mutations in viral genomes can
be a first step toward defining the mechanism of action of novel
antiviral drugs. Therefore, we aimed at generating resistant repli-
cons by prolonged passage of HeLa DENV2 replicon cells in the
presence of both puromycin and AM404, an approach that we
previously used to generate replicons that are resistant to
SDM25N (11). Thus far, however, we have been unsuccessful in
generating novel AM404-resistant replicons. As an alternative, we
tested DENV mutants that escaped the antiviral activity of other
compounds for cross-resistance to AM404. Specifically, we tested
mutant RepDVRLuc replicons carrying the following amino acid
substitutions in the viral NS4B protein: a proline-to-leucine sub-
stitution at position 104 (P104L), an alanine-to-threonine substi-
tution at position 119 (A119T), and a phenylalanine-to-leucine
substitution at position 164 (F164L) (Fig. 1E). These mutations
were previously found to render DENV insensitive to the struc-
turally unrelated antiviral compounds SDM25N (P104L and
F164L) (11) and NITD-618 (P104L and A119T) (22). Surpris-
ingly, all three amino acid substitutions rendered DENV insensi-
tive to AM404, whereas the mutants remained sensitive to ribavi-
rin (Fig. 1F). Unexpectedly, AM404 treatment increased RLuc
levels of the P104L and F164L mutants but not the A119T mutant
(Fig. 1F). Similar but less pronounced increases in replication
were previously observed for these mutants upon SDM25N treat-
ment (11). The mechanism for the increased replication of the
mutants in the presence of AM404 remains to be understood. A
possible scenario is that AM404 exerts two opposing effects on
DENV replication, i.e., stimulatory and inhibitory. In wild-type
DENV infections, the inhibitory effect may be stronger than the
stimulatory effect, whereas the inhibitory effect may be lost in
infections with escape mutants, resulting in AM404-dependent
increases in replication.

A range of biological activities have been attributed to parac-
etamol/AM404; it is an agonist of the TRPV1 receptor, an inhibi-
tor of cellular anandamide reuptake, an indirect activator of can-
nabinoid receptors, an inhibitor of the cyclooxygenases Cox-1 and
Cox-2 and prostaglandin production, an inhibitor of NFAT activ-
ity, and an inhibitor of I�B kinase beta phosphorylation and acti-
vation (13, 14, 23–25). Given these pleiotropic effects, it will not be
trivial to define the mechanism by which AM404 inhibits virus
replication. We note, however, that the NIH Clinical Collection
contains a number of Cox-2 and nonselective Cox inhibitors,
none of which reduced FLuc activities in HeLa DENV2 replicon
cells more than 2-fold at a concentration of 10 �M (see Table S2 in
the supplemental material).

In conclusion, we have shown that the paracetamol metabolite
AM404 has anti-DENV activity and that mutations in NS4B ren-
der the virus insensitive to AM404. Successful antiviral therapies
may target either the virus itself or host factors that are required
for virus replication. Viral enzymes, such as viral proteases and
polymerases, are attractive drug targets because they are essential
for virus replication and are not expressed by noninfected host
cells (26–28). However, recent examples indicate that host pro-
teins can be successful drug targets as well (29–31). Although we
have not formally excluded the possibility that AM404 acts di-
rectly on NS4B, we deem it likely that AM404 targets a cellular
pathway that DENV needs for efficient replication.

Several other flavivirus NS4B inhibitors have recently been re-

ported, including SDM25N (11), NITD-618 (22), spiropyrazol-
opyridone compound 14a (18), and CCG-3394 and CCG-4088
(32). All of these compounds inhibit viral RNA accumulation,
with EC50s ranging from 42 nM for compound 14a to 0.4 to 1.9
�M for the other compounds (33). A direct interaction between
compound 14a and NS4B has been demonstrated (18); the NS4B-
targeting activities of the other compounds have been deduced
from the emergence of resistance mutations in NS4B (11, 22, 32).
The pleiotropic effects of AM404 and the relatively high EC50 will
be hurdles for further drug development. However, AM404 (and
other NS4B inhibitors) may be useful experimental tools to iden-
tify host factors needed for DENV replication, providing insights
into the viral life cycle. Moreover, these host factors may represent
novel targets for antiviral drug development. The observation that
the same mutations in NS4B provide resistance to multiple, struc-
turally unrelated compounds (AM404, NITD-618, and SDM25N)
suggests that these drugs target the same host factors or pathways.
However, the mechanistic bases for their antiviral activity and for
NS4B-mediated escape await elucidation.
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