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Abstract

In recent years, the etiology of human disease has greatly improved with the inclusion of 

epigenetic mechanisms, in particular as a common link between environment and disease. 

However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways 

perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating 

nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that 

obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in 

the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating 

behaviors (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By 

compiling these data we illustrate that obesity-related phenotypes are repeatedly linked to 

disruption of critical epigenetic mechanisms that regulate of key metabolic genes. These data are 

supported by genetic mutation of key epigenetic regulators and many of the diet induced 

epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. 

Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity 

strengthens the translational applications of these findings. We also discuss many of the ongoing 

challenges to understanding the role of environmentally-induced epigenetic pathways in obesity 

and suggest future studies to elucidate these roles. This assessment illustrates our current 

understanding of molecular pathways of obesity that are susceptible to environmental perturbation 

via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions 

between diet, genes, and toxicants that contribute to obesity and obesity-related phenotypes.
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1. Introduction

Environmental exposure contributes significantly to disease risk [1]. Accumulating evidence 

from dietary and genetic models of nutrient perturbation, links the disruption of critical 

metabolic pathways to development of disease. Obesity was recently classified as a disease 

with strong links to environmental exposures. According to the World Health Organization 

(WHO), worldwide over 600 million adults and 42 million children are obese, figures which 

have more than doubled since 1980. While obesity is most often associated with 

overconsumption of calories (overnutrition) combined with lowered energy expenditure, 

recent studies show that obesity is a highly complex disease with both causal and 

contributory links to metabolic dysfunction. Development of obesity is influenced by 

multiple pathways, including (1) hedonic and homeostatic eating behaviors that are directly 

regulated by the brain, (2) energy expenditure in tissues such as liver, fat and muscle (3) and 

changes in adiposity mediated by adipocyte differentiation and lipid accumulation in adipose 

tissues. Homeostatic eating is need-based and replenishes energy storage, while hedonic 

eating is reward-driven and motivated by desire for palatable food [2]. As a causal factor, 

obesity is linked to increased risk of diseases such as diabetes [3, 4], cardiovascular disease 

(CVD) [5–7], cancer [8–10], arthritis [11, 12], infertility [13, 14], and mental health 

disorders [15, 16]. Importantly, new studies show that many of these pathways are regulated 

by epigenetic mechanisms that are disrupted by environmental factors. Here, we compile 

these findings in order to highlight common mechanisms of epigenetic perturbation linked to 

obesity as potential targets for prevention, diagnoses or treatment.

Epigenetic machinery regulates gene expression by orchestrating the levels and interactive 

activity of highly conserved genomic processing including DNA methylation, post-

translational histone modification, and non-coding RNA activity [17]. In mammals, 

methylation at CpG dinucleotides to generate 5-methylcytosine (5mC) is catalyzed by DNA 

methyltransferases (DNMTs) including DNMT1, DNMT3A and DNMT3B. DNMT3A and 

DNMT3B enzymes mediate de novo DNA methylation primarily during embryonic 

development [18] while DNMT1 maintains DNA methylation states in all mitotically 

dividing cells [19]. Methylated DNA is often considered a primary epigenetic mark that can 

then be recognized and bound by methyl binding proteins. These include methyl CpG 

binding protein 2 (MECP2) to trigger subsequent epigenetic changes by histone modulators 

[20, 21]. The lysine residues of histone N-terminal tails within DNA bound nucleosomes are 

modified by methylation, acetylation, phosphorylation, ubiquitination, sumoylation and 

biotinylation [17, 22–24]. On the other hand, non-coding RNA include functionally distinct 

classes of untranslated RNA including micro RNA (miRNA), long noncoding RNA 

(IncRNA), piwi-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) [25]. Of 

equal importance to the factors required to establish and maintain DNA and histone 

modifications and non-coding RNA levels and functions, are the factors required to erase or 

deplete these epigenetic states. This is required for the resetting or alteration of epigenetic 

programs necessary for reprogramming cell fate towards germline or somatic lineages and 

for cellular differentiation and response to environmental stimuli. These epigenetic erasers 

include histone demethylases and deacetylases and putative DNA demethylases. For 

example, the ten-eleven translocation (TET) proteins convert 5mC into 5-
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hydroxymethylcytosine (5hmC) but remain under investigation as to whether this is a 

functional modification or merely a step towards demethylation [26].

The role of epigenetic mechanisms in gene expression is defined by many factors including 

cellular or genomic location of the acting mechanism, the developmental timing of 

establishment/maintenance of the mechanism and co-regulation by multiple co-acting 

epigenetic mechanisms. Multiple mechanisms co-regulate different loci at different stages of 

development to establish, maintain or change the transcriptional outcome of the cell. Despite 

ongoing research to fully elucidate these concurrent mechanisms, some general functions 

have been assigned to commonly occurring epigenetic states. DNA hypermethylation at 

promoter regions is most often correlated with transcriptional repression, however 

hypermethylation at intra- or intergenic regions may reflect either an active or repressed 

state. Likewise, the transcriptional regulation of modified histones depends on the type of 

modification and the location of the lysine modified. For example, acetylated histones 

primarily mark actively transcribed regions while the function of methylated histones 

depends on the location of lysine residue, e.g. trimethylation of histone H3 lysine 9 

(H3K9me3) marks transcriptional repression and H3K4me3 are enriched around 

transcription start site of active genes [27]. On the other hand, non-coding RNA function is 

primarily determined by the sequence encoded, post-transcriptional processing and 

secondary structure of the RNA, cellular transport and target (RNA, DNA, or protein) of the 

non-coding RNA and can result in either upregulation or downregulation of the target at the 

transcriptional or posttranscriptional level [25].

Epigenetic regulatory mechanisms are reported to play a role in all of the obesity related 

pathways mentioned above, including food intake, energy expenditure and adiposity. Diet 

has been shown to play an important, albeit complex, role in determining these epigenetic 

states. Some dietary compounds act directly on epigenetic machinery while other nutrients 

act indirectly. For example, retinoid X receptors (RXRs), activated by vitamin A metabolite 

retinoid acid, regulate transcription in adipocytes by directly binding to promoters of histone 

modifier genes such as SET domain bifurcated 1 (Setdb1) and SET domain containing 

protein 8 (Setd8), both lysine methyltransferases [28–30]. On the other hand, intake of 

niacin and methyl donor nutrients such as folate and choline determine cellular availability 

of methyl groups and thus are proposed to act by limiting DNA and histone methylation 

reactions [31, 32].

There is a significant and growing body of work highlighting the role of epigenetic 

mechanisms in obesity. Here we focus on a few specific studies and well characterized 

pathways of obesity to elucidate the role of altered nutrient availability in causing obesity 

via epigenetic mechanisms. We also discuss a potential overlapping or aggregate role for 

nutrition in susceptibility to obesity linked to environmental pollutants since it is well known 

that diet can indeed alter the effect of toxic compounds. One example is the role of dietary 

calcium, vitamin D, iron, fat and phosphorus in inhibiting gastrointestinal lead absorption in 

the gastrointestinal tract (as reviewed in [33]). Another example is the role of diet-induced 

adiposity in influencing the availability of circulating toxicants via toxicant sequestration in 

adipose tissue. Studies show that body fat composition is inversely correlated with 

circulating plasma levels of lipophilic persistent organic pollutants (POPs) and rapid weight 
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loss is correlated with increased plasma levels of POPs [34–36]. Furthermore, nutrient 

availability can interfere with the levels of key enzymes required for toxicant metabolism. 

Such interactions influence metabolism required for toxicant inactivation and excretion [37–

41] and metabolism required for toxicant activation, thus altering toxicity [42–44]. For 

example, Cytochrome p450 (Cyp450) enzymes have been shown to play critical roles in 

metabolizing POPs [35, 45]. Cyp450 enzyme levels are altered by many nutrients including 

dietary protein [46, 47], fat [48], sugar [49], vitamin C [50, 51], vitamin E [39], folate[40], 

betaine [52], iodine and selenium [53]. These findings highlight the potential for aggregate 

effects of diet-toxicant interactions and offer the promise of dietary intervention of diseases 

related to toxicant exposure. In order to bring these research findings to practice and 

maximize public health benefits we must first understand more about the mechanisms 

responsible. Here, we focus on obesity because of the abundance of research available, but 

we hold the expectation that this paradigm likely applies to other environmentally based 

diseases.

2.1 Molecular pathways of obesity regulated by nutrition

2.1.1 Proopiomelanocortin methylation and epi-regulation of proopiomelanocortin neuron

Proopiomelanocortin is a precursor to several hormones related to appetite regulation, 

energy homeostasis, sexual behavior and various reward pathways. While it is expressed at 

high levels in the pituitary, it is also found in other cells/tissues primarily in other parts of 

the brain such as the hypothalamus, skin cells and reproductive systems, and relatively 

accurate levels can be measured in peripheral blood [54–56]. Proopiomelanocortin neurons 

are nerve cells in the arcuate nucleus of hypothalamus that express proopiomelanocortin 

protein. Hypothalamic proopiomelanocortin neurons inhibit satiety, thus altered 

proopiomelanocortin gene expression is most commonly associated with either obesity or 

underweight phenotypes although studies suggest there may be inverse relationships 

depending on the cell/tissue type where it is measured [56]. Generally, decreased 

hypothalamus expression of proopiomelanocortin or its downstream products is highly 

correlated with weight gain/obesity while increased expression is associated with weight 

loss [57–59].

Association studies have identified several SNPs in or near the proopiomelanocortin locus 

associated with weight related phenotypes [60–62]. There is also strong evidence of 

additional epigenetic regulation of both proopiomelanocortin expression via DNA 

methylation of two CpG islands within the gene promoter and body [56, 63]. Recent studies 

propose DNA methylation levels at the proopiomelanocortin promoter in cord blood serves 

as an important early predictive marker of metabolic syndrome later in life [64]. Despite the 

strong correlation between DNA methylation at proopiomelanocortin, gene expression and 

phenotypic variation, mechanisms of epigenetic regulation of proopiomelanocortin 

expression remain unclear. Most recently a study by Zhang and colleagues [65] use cultured 

cells to show that hypermethylation at the proopiomelanocortin promoter and within the 

binding site [66] for proximal specificity protein 1 (SP1), blocked formation of the SP1-

promoter complex required for activation of proopiomelanocortin. Interestingly, they also 

showed using a lactation-staged mouse model this aberrant methylation at the 
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proopiomelanocortin promoter is induced by maternal dietary supplementation of 

conjugated linoleic acids (CLAs). Similarly, the hypothalamic proopiomelanocortin SP1 cis-

element was hypermethylated in a neonatal overfeeding model induced by rearing rats in 

small litters. This caused a blunted response of proopiomelanocortin neurons to leptin 

signaling [67]. In contrast, both gestational and post-weaning high folate diet in a rat model 

resulted in hypomethylation of the proopiomelanocortin promoter in the hypothalamus of 

offspring, decreased food intake and lower weight [68]. Two separate studies examined the 

effects of a maternal high fat diet in a rat model and showed consistent results of 

hypermethylation at the hypothalamic proopiomelanocortin promoter associated with 

disrupted energy homeostasis leading to increased food intake and subsequent weight gain 

of exposed pups [69, 70]. Although limited in mechanistic potential, human studies 

seemingly mirror these effects and a recent study showed that caloric restriction induced 

weight gain or weight loss is associated with changes in proopiomelanocortin gene body 

methylation in leukocytes [71]. To further validate the importance of DNA methylation at 

the proopiomelanocortin locus in fat accumulation, a study by Wang and colleagues [72] 

cleverly uses a genetic mouse model carrying a proopiomelanocortin-neuron-specific 

knockout of Mecp2, a major epigenetic regulator that acts by binding directly to methylated 

DNA. MECP2 is a known antagonist of SP1-activated transcription [73], therefore as 

expected, the Mecp2−/− mouse model exhibited increased food intake and subsequent 

increased fat mass, which was linked to increased DNA methylation at the 

proopiomelanocortin promoter and decreased proopiomelanocortin expression [72]. This 

finding highlights the importance of methylation status at the SP1 binding site in regulating 

proopiomelanocortin expression required for downstream phenotypic effects.

The hypothalamus utilizes a self-regulating mechanism of energy homeostasis, which relies 

on plasticity of the adaptive neuron in the feeding circuitry and requires rapid cell-to-cell 

interactions [74]. Cell-surface protein polysialylation is critical for modulating synaptic 

adaptation for neural cells [75]. High fat diet in the mouse induces recruitment of histone 

lysine acetyltransferase 8 to activate transcription of polysialylation gene ST8 alpha-N-

acetyl-neuraminide alpha-2,8-sialyltransferase 4 (St8sia4) in hypothalamus. This signal 

promotes the plasticity of proopiomelanocortin neuron in acutely responding to high fat diet 

in mouse [76, 77]. Upregulation of polyasialytion through histone acetylation partially 

offsets the effect of proopiomelanocortin hypermethylation caused by high fat diet. Histone 

lysine acetyltransferase 8 silencing in adult mice leads to accelerated weight gain in 

response to a high fat diet [76]. The diet induced antagonistic changes between 

proopiomelanocortin neuron plasticity and proopiomelanocortin expression demonstrates a 

self-regulatory mechanism for weight control achieved though distinct epigenetic 

machineries.

The role of miRNA in neuronal control of energy homeostasis is still poorly understood. 

However in a recent study, a conditional deletion of Dicer1 (encodes the endoribonuclease 

required for generating mature miRNA) specifically in mouse forebrain neurons results in 

severe hyperphagic obesity, and decreased proopiomelanocortin mRNA in the hypothalamus 

[78]. Further investigation shows that this phenotype occurs likely via upregulation of the 

PI3K–Akt-mTOR pathway. Downregulation of this pathway attenuates adiposity in the 
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Dicer1 knockout mice. The authors used the miTALOS tool to identify miRNA that were 

most likely to play a role in the observed phenotype based on high expression in the 

hypothalamus and predicted targets within the PI3K–Akt-mTOR pathway[79]. Depletion of 

miR-103 was shown to upregulate the pathway while injection of excess miR-103 mimic 

into the arcuate nucleus was shown to reduce body weight changes, food intake and 

expression levels of the gene encoding for catalytic gamma polypeptide of 

phosphoinositide-3 kinase (Pik3cg) within the PI3K–Akt-mTOR pathway [78]. Whether 

there are direct links specifically between miR-103 and proopiomelanocortin remains 

unclear.

2.1.2 Adipose leptin signaling in homeostasis circuitry

Leptin serves as a direct signal from white adipose tissue to the neural network, allowing the 

brain to sense stored nutrients and thus regulate energy homeostasis [80]. Surprisingly, 

elevated serum leptin is usually positively correlated with obesity despite leptin being an 

appetite suppressant and thus anti-obesity hormone [81]. Diet-induced obesity models 

demonstrate that the elevated leptin signals in obesity states is actually due to leptin 

resistance in obese subjects and that the pathway is only upregulated as a means of 

compensating for this resistant phenotype [82]. Both appetite-promoting (orexigenic) 

peptides (i.e. neuropeptide Y (NPY)) and appetite-inhibitory (anorexigenic) peptides (i.e. 

proopiomelanocortin peptides) are regulated by leptin in order to prevent obesity [83]. For 

example, subcutaneous injections of leptin in humans [84]and mice [85] with genetic leptin 

deficiency leads to reduced food intake, fat mass and body weight. This is partly because 

leptin administration activates proopiomelanocortin neurons in the hypothalamus via leptin 

receptor and consequently reduces body weight by inhibiting food intake [81]. Leptin 

signaling in the hypothalamus proopiomelanocortin neurons depends on the nerve growth 

factor Nur77, which subsequently activates signal transducer and activator of transcription 3 

(Stat3) [86]. The downstream STAT3-activated nescient helix-loop-helix 2 in leptin 

signaling pathway is required for transcriptional activation of proopiomelanocortin 

processing enzyme proprotein convertase 1 [87]. Most importantly, STAT3 binds to the cis-

regulatory elements on proopiomelanocortin promoter together with SP1 to activate its 

transcription and diet-induced leptin resistance was usually associated with impaired STAT3 

signaling cascade in proopiomelanocortin neurons [66, 88, 89].

Evidence suggests that leptin signaling pathway from adipose tissue is regulated by 

epigenetic mechanisms. Rhett syndrome patients that carry loss of function mutation in 

Mecp2 exhibit increased plasma leptin concentration [90]. Furthermore, knockout of Mecp2 

in hypothalamic Sim1-expressing neurons elicits hyperphagic and obese phenotypes in mice, 

with increased serum leptin concentration [91]. Meanwhile, knockout of the de novo DNA 

methyltransferase 3 (Dnmt3a) in the mouse hypothalamus caused obesity, increased food 

intake and higher plasma leptin levels [92]. Diet-induced obesity models demonstrate the 

role of epigenetic modulators in controlling leptin function in adipose tissue. DNA 

methylation at the leptin promoter regulates transcription in a complex way. Maternal high 

fat diet is associated with leptin promoter hypomethylation [93]. Interestingly, this effect is 

similar to that of maternal undernourishment, which causes 11 CpGs in the leptin promoter 

to become hypomethylated [94]. However, serum leptin level was oppositely regulated by 
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maternal high fat diet and undernourishment, with the prior model having increased serum 

leptin [93, 94]. The seemingly contradictory observation is consistent with another study 

from Shen and colleagues [95]. Using a diet-induced-obesity model, they show that obesity 

induces adipocyte leptin mRNA levels despite seemingly enriched repressive epigenetic 

states at the leptin promoter, including enriched binding of DNMT1 and methyl-CpG 

binding domain protein 2 (MBD2) and reduced enrichment of the active acetylated histone 

marks and RNA polymerase II at the promoter. In the same study, DNA methylation at the 

leptin promoter was positively correlated with leptin mRNA level in adipose tissue of diet-

induced obese mice, whereas the correlation remained negative in the control [95]. Most 

likely, leptin mRNA quantity is not only determined by rate of transcription, but also, in this 

case, substantially affected by mRNA turnover influenced by dietary compounds such as 

protein and sugar [96]. High fat and sugar diet in rat models induced hypo- and 

hypermethylation of several CpGs in adipocyte leptin promoter. These changes were 

reversible at some of the CpGs by switching to regular diet [97]. Overall, these findings 

demonstrate that when animals are fed an obesogenic diet, adipocyte leptin transcription is 

inhibited primarily through leptin promoter hypermethylation. However, an added effect of 

reduced leptin mRNA turnover may actually cause accumulation of cellular leptin 

transcripts. On the other hand, hypermethylation of hypothalamus proopiomelanocortin 

promoter blocks transcriptional activation by trans-acting factors STAT3 and SP1, thus 

elevating circulating leptin levels. In this manner, diet-induced epigenetic changes can lead 

to increased caloric intake despite high leptin levels.

MiRNA play a significant role in leptin pathways. Hyperphagic obesity caused by deletion 

of Dicer1 (discussed above) is correlated with increased plasma leptin levels [78]. In a 

separate study, Viesti and colleagues [100] investigated the role of miRNAs in increased 

leptin in subcutaneous fat of obese human participants compared to non-obese fat. Although 

there was not a significant correlation between leptin levels and any of the miRNAs 

measured in this study, they reported that higher levels of leptin receptor in obese 

individuals was correlated with lower levels of MiR-145. Interestingly, a separate study 

using mouse models showed increased levels of both MiR-145 and genetically linked and 

co-expressed miR-143 in the liver in response to obesity induced by either high fat or 

genetic mutation (loss-of-function mutation in leptin receptor, db/db) [101]. In the leptin 

receptor mutant samples, MiR-145 was increased compared to controls in liver, skeletal 

muscle and pancreas while miR-143 was increased in heart and pancreas but decreased in 

white adipose tissue. MiR-145 levels measured in white and brown adipose tissue of the 

leptin receptor mutant were not significantly different. Conditional overexpression of 

miR-143 in the liver did not affect body weight or plasma leptin levels but did result in 

impaired glucose tolerance and insulin sensitivity. Similarly overexpressed miR-145 did not 

affect body weight, plasma leptin levels, glucose or insulin pathways [101]. These findings 

demonstrate that up or downregulation of miRNAs found to be associated with obesity and 

obesity-related molecular pathways may not be sufficient to cause obesity or may require 

tissue- or temporal-specificity to exert effect on adiposity.

Several rodent models demonstrate that MiR-200a is also very important for proper leptin 

signaling. Benoit and colleagues reported that compared to untreated controls, rats treated 
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with a leptin inhibitor during postnatal development exhibited higher weight in addition to 

leptin and insulin resistance in the hypothalamus during adulthood [102]. MiR-200a was 

among 34 miRNAs upregulated in the leptin inhibited hypothalamus. Using a leptin 

deficient genetic mouse model of obesity, Crepin and colleagues demonstrated that reduced 

leptin levels in the hypothalamus of deficient animals resulted in up-regulation of miR-200a, 

miR-200b and miR-429 [103]. Leptin treatment in these animals resulted in downregulation 

of these miRNAs, upregulation of the leptin receptor, reduction in body weight and 

restoration of insulin sensitivity. Overexpression of the miR-200a precursor in a 

neuroblastoma cell line impaired insulin and leptin signaling suggesting that changes in this 

miRNA level are sufficient to induce obesity-related metabolic pathways. A separate study 

showed that the correlation between obesity, miR-200a, and leptin is timing dependent 

[104]. When compared to control fed rats, rats fed a high fat diet (45% fat) post weaning 

showed reduced levels of hypothalamic miR-200a after two weeks on the diet and also after 

1 month but this difference was alleviated by 3 months on the diet. Opposite but similar time 

dependent changes were observed with other miRNAs assayed. For example, miR-132 and 

MiR-145 exhibited minimal differences between high fat and control diet at 2 weeks and 1 

month but significant upregulation was observed at 3 months. The authors used the 

ingenuity pathway analysis software to demonstrate that several of the miRNA affected 

were interrelated with each other and genes related to insulin, leptin and adiponectin 

signaling. Of importance, treatment with leptin by IP injection over a 48hr period resulted in 

a significant decrease of MiR-145 and miR-132 compared to untreated animals and the 

effect was exacerbated by fasting. MiR-200a was also seemingly downregulated in leptin 

treated animals but results were not significantly different. MiR-200a is implicated in 

several types of cancer, however, its direct role in leptin signaling remains under 

investigation. MiR-132 was previously implicated in glucose homeostasis in isolated rodent 

and human islets[105] and has been shown to be differentially expressed in both visceral fat 

and whole blood between obese and non-obese human participants [106].

There are very few human studies investigating epigenetic mechanisms regulating the leptin 

pathway. One study of importance shows that in comparing human subjects in weight 

management programs, weight loss response was correlated with adipose leptin mRNA level 

and DNA methylation at non-leptin loci [98]. Leptin was not reported among these 

epigenetically perturbed loci, however, they did include imprinted genes and genes 

associated with body weight and insulin secretion. Changes at these genes were sufficient to 

distinguish low and high responders among overweight and obese human subjects. In 

another study, female subjects with baseline hypomethylation at adipocyte leptin promoter, 

showed better weight loss response to low-calorie diet, though leptin mRNA levels did not 

differ [99]. We can use what has been characterized in the animal models to further 

characterize these responses in humans.

2.1.3 DNA methylation in dopamine neurons in regulating reward circuitry

Food intake is primarily controlled by two subdivisions of the brain: hypothalamus regulates 

homeostatic needs for food, and central reward circuitry (projection from ventral tegmental 

area and substantia nigra to striatum, nucleus accumbens and prefrontal cortex) regulates 

hedonic eating behaviors [83, 107, 108]. While leptin signaling influences 
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proopiomelanocortin and NPY neurons in the hypothalamus for maintaining energy 

homeostasis, dopamine neurons within the mesocorticolimbic system are major regulators of 

the reward pathway [109]. To be noted, hypothalamus dopamine signaling is a regulator of 

energy homeostasis [110]. Obesity is linked to compulsive eating and defective dopamine 

system [111, 112]. Tyrosine hydroxylase is the rate-limiting enzyme in synthesizing 

dopamine [113], and dopamine transporter solute carrier family 6 (SLC6A3) is essential for 

re-absorbing dopamine from synaptic cleft. Two families of dopamine receptors (D1 like 

and D2 like) differ with each other in function and brain distribution [114].

Mice on prolonged high fat diet showed differential regulation of tyrosine hydroxylase and 

dopamine transporter in hypothalamus and ventral tegmental area: transcription of both were 

down-regulated in ventral tegmental area with increased level of promoter DNA 

methylation, while opposite changes of mRNA levels and DNA methylation were observed 

in hypothalamus [107]. Lack of DNMT3A in mouse hypothalamic neuron cells showed 

similar epigenetic alteration with high fat diet on tyrosine hydroxylase promoter 

methylation, suggesting a role of DNMT3A in maintaining dopamine function in 

hypothalamus [92]. The findings indicate concomitant obesogenic epigenetic changes by 

high fat diet in one of the two pathways controlling food intake, which promotes 

homeostatic eating despite lowered desire for palatability. A maternal high fat diet mouse 

model [115] showed more severe obesogenic changes in brain, where both homeostatic and 

hedonic eating are increased with hypomethylation in dopamine transporter but not tyrosine 

hydroxylase promoter. In contrast, a maternal protein restriction model revealed a slightly 

different epigenetic and reward-response change in brain. Tyrosine hydroxylase and 

dopamine transporter were overexpressed in all brain regions including ventral tegmental 

area and hypothalamus, and the dopaminergic neuron developmental regulator cyclin-

dependent kinase inhibitor 1C underwent ~50% decrease in DNA methylation in its 

promoter region with consistent increase in expression throughout the brain [116]. The 

differential regulation of dopamine-associated genes indicates that epigenetic changes 

depend on timing of dietary perturbation and the function of the targeted pathway.

Overall, in the reward circuitry, tyrosine hydroxylase functions to generate dopamine and 

dopamine transporter functions to remove dopamine from synapse to quench the signal. In 

this way, tyrosine hydroxylase and dopamine transporter regulate hedonic eating behaviors. 

To further understand the differences in diet-induced epigenetic changes in tyrosine 

hydroxylase and dopamine transporter promoters, the role of dopamine receptors should be 

investigated. The distinct distribution of dopamine receptors in the brain partially determines 

the role of dopamine in each regions of the brain, as D1 like (D1 and D5) and D2 like (D2, 

D3 and D4) receptors induce opposite intracellular signal transduction cascades [114]. D1 

[117], D2 and D4 [118] receptors are differentially regulated by diets high in fat and/or 

sugar. Interestingly, the effects differ between obesity-prone and -resistant animals. D2 

receptor in reward circuitry was down regulated in obese rat. Also, D2 knockdown 

exacerbated diet-induced deficits in rewards system and increased animals’ desire for 

palatable food [111]. Since dopamine receptors are essential for transmitting dopamine 

signals to the receiving cells, the dopamine -induced intracellular cascade determines the 

outcome of dopamine signaling. However, mechanisms that directly regulate dopamine 

receptors have not been reported.
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2.1.4 Adipose tissue differentiation and fat accumulation

Adipogenesis in adipose tissue is controlled by a variety of transcription regulators, 

primarily the CCAAT enhancer-binding protein (C/EBP) family and the nuclear receptor 

peroxisome proliferator-activated receptor gamma (PPARG) [119]. The extent of fat 

accumulation in white adipose tissue is positively correlated with the adipose expression of 

fatty acid synthase [120], the promoter of which is collectively bound and regulated by 

transcriptional regulators, sterol regulatory element binding transcription factor 1 (SREBF1) 

and other factors [121]. Adipocyte fatty acid synthase also contributes to development of 

diet-induced obesity through PPARG-mediated adipogenesis [122]. Adiposity regulated by 

fatty acid synthase as well as abovementioned transcription factors is influenced by dietary 

compounds including folate [32], Vitamin D [123, 124], Vitamin A [30] and obesogenic 

diets [125].

Histone methylation exerts a critical role for preadipocyte differentiation through marking 

PPARG promoter state as reviewed by Okamura et. al [29]. Epigenetic regulation of PPARG 

and CCAAT/enhancer binding protein (C/EBP) alpha (CEBPA) involves many different 

histone modifiers during different stages of adipogenesis. Pparg promoter is subject to 

bivalent histone modification with concurrent localization of H3K4me3 and H3K27me3 in 

embryonic fibroblasts [126]. Upon adipocyte differentiation, fundamental changes in 

chromatin state occur at the Pparg promoter that are determined by H3K4 

methyltransferases MLL3 and MLL4 [127], PAX interacting (with transcription-activation 

domain) protein 1 (PAXIP1) [128] and the H3K27 demethylase KDM6A [129]. 

Furthermore, PPARG mediates adiposity by regulating the H4K20 mono-methyltransferase 

Setd8 [28] and possibly in a feedback loop mechanism [29]. Genome-wide analysis reveals 

that the majority of PPARG targets during adipogesis are also bound by CEBPA in mouse 

preadipocyte 3T3-L1 [130]. It is noteworthy that PPARG and CEBPA are mutually 

stimulating [29] and both are repressed by the H3K9 tri-methyltransferase the suppressor of 

variegation 3–9 homolog 1 (SUV39H1) in early stages of adipogenesis [131]. C/EBP 

families including CEBPA are required for inducing expression of SREBF1 in maturing 

adipocytes [132] and linking PPARG/C/EBP mediated adiposity to fatty acid synthase 

dependent fat accumulation. Human adipose tissues of obese subjects consistently have 

higher fatty acid synthase mRNA and protein levels in visceral and subcutaneous fat tissue 

[120].

PPARG determines adipogenesis by regulating two histone methyltransferases Setdbl and 

Setd8, which generate repressive histone marks H3K9me3 and active H3K20 methylation 

marks, respectively. Both diet-induced obese and genetically predisposed obese mouse 

models exhibit decreased Setdbl and increased Setd8 mRNA in visceral fat [28]. To be 

noted, PPARG itself and CEBPA are targeted by SETD8 for H4K20me1 -marked activation, 

indicating a potential positive feedback loop for PPARG and its downstream adipogenic 

targets, including its brown adipose tissue isoform [28]. PPARG forms a heterodimer with 

RXRs to bind to promoters and activate transcription. Retinoic acid, an active vitamin A 

derivative, triggers cellular signal cascade via RXRs. Mice on a vitamin A deficient diet 

exhibit elevated adiposity and increased adipose Pparg, Srebfl and Cebpa mRNA levels 

[30]. Last but not least, in a chicken preadipocyte model, interactions between PPARG, 
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CEBPA and fatty acid synthase are epigenetically influenced by folate such that Cebpa 

promoter undergoes hypomethylation upon folate depletion [32].

MiR-27a and miR-27b have been specifically implicated in adipogenesis. In a comparison of 

obese and non-obese participants, miR27a was shown to be significantly upregulated in the 

visceral fat of obese individuals [100]. Kang et al used adipose-derived stem cells to 

demonstrate that adipocyte differentiation triggers the down regulation of prohibitin, 

miR-27a and miR– 27b [137]. In agreement with previous reports [138], the authors showed 

that overexpression of miR-27a and miR-27b inhibits adipocyte differentiation. In addition, 

by using a luciferase reporter assay they demonstrated that the function of miR-27a and 

miR-27b in adipocyte differentiation is partly mediated by a direct interaction with 

prohibitin and subsequent impairment of mitochondrial function. The same research group 

previously demonstrated that prohibitin silencing induces downregulation of mouse Pparg 

[139]. However, a separate study used a luciferase reporter assay in HeLa cells to show that 

miR-27a targets human PPARG 3’UTR to negatively regulate its transcription and that 

overexpression of miR-27a in mouse preadipocytes can inhibit adipocyte differentiation by 

repressing Pparg expression[140]. In addition, miR-27a levels were lower in mature 

adipocytes of high fat diet induced obese mice compared to lean mice.

2.1.5 NNMT drains methyl donor pool and regulates energy expenditure

Nicotinamide N-methyltransferase (NNMT) catalyzes N-methylation of nicotinamide using 

S-adenosyl-L-methionine (SAM) and yields 1-methylnicotinamide and S-adenosyl-L-

homocysteine (SAH). Extensive studies link NNMT function to Parkinson’s disease [141], 

hyperhomocysteinemia [142], cancer [143, 144], insulin resistance [145, 146] and obesity 

[147]. NNMT activity in white adipose tissue is upregulated by high fat diet while not 

affected in liver, despite that NNMT was primarily expressed in liver [142]. This indicates a 

role of adipose NNMT in diet-induced obesity. Emerging evidence suggests that NNMT 

contributes to increased risk for insulin resistance and type 2 diabetes associated with 

visceral adiposity [146].

Elevated NNMT activity leads to depletion of SAM, the donor of methyl groups for DNA 

and histone methylation. Decreased availability of methyl group can potentially directly 

affect epigenetic pathways. Indeed, maternal supplementation of the NNMT substrate 

nicotinomide induced global hypomethylation in both placenta and fetal liver, which was 

prevented by co-supplementation of the methyl donor nutrient betaine [31]. Induction of 

NNMT in cancer cells results in global H3K9 and H3K27 hypomethylation. These defective 

histone marks were restored upon Nnmt knockdown [143].

Kraus and colleagues demonstrated that Nnmt knockdown in white adipose tissue and liver 

protects against diet-induced obesity and insulin resistance in mice. The leanness was caused 

by elevated energy expenditure rather than changes in food intake [147]. Polyamine flux 

contributes to energy expenditure and SAM provides the starting materials for this pathway 

after removal of methyl groups. Ornithine decarboxylase and spermidine-spermine N-

acetyltransferase are rate-limiting enzymes in polyamine metabolism [148]. In the diet-

induced obesity model, Nnmt knockdown activated expression of ornithine decarboxylase 

and spermidine-spermine N-acetyltransferase as well as polyamine flux in white adipose 
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tissue through increasing global H3K4me1/2/3 levels. In adipocyte cell culture, enrichment 

of methylated H3K4 was increased at ornithine decarboxylase and spermidine-spermine N-

acetyltransferase genes upon NNMT inhibition [147]. NNMT is also involved in 

development of insulin resistance and type 2 diabetes as demonstrated in glucose transporter 

type 4 (Glut4) knock-out and overexpressed, and genetically predisposed diabetic (db/db) 

mouse models, where white adipocyte Nnmt was upregulated in diabetic conditions [147]. 

Treatments containing niacin were reported to trigger insulin resistance in patients with 

hyperlipidemia [149, 150], however the mechanisms are still unknown. The widespread 

effects of NNMT on epigenetic pathways may serve as a tentative explanation for insulin 

resistance caused by niacin (and its derivatives nicotinamide and nicotinic acid) usage, 

although further investigation is required.

2.2. Role of environmental toxicants in nutrient-regulated obesity pathways

2.2.1 BisphenolA (BPA)

BPA is an endocrine disrupting compound (EDC) found in many commonly used products 

and thus a majority of the world’s population is exposed to varying levels [151, 152]. A 

critical breakthrough in understanding nutrient-toxicant interactions was established through 

a study published by Dolinoy and colleagues in 2007 [153] showing that perturbation of 

mouse coat color induced by Bisphenol A (BPA) exposure is rescued by methyl donor 

nutrient supplementation (folic acid, choline, betaine and vitamin B12). This was not the 

first demonstration of dietary intervention as a means of alleviating toxicant effects. 

However, this was the first demonstration of the role of epigenetic state (DNA methylation) 

at the agouti viable yellow (Avy) locus as the intermediate link between toxicant exposure, 

diet and phenotypic outcome. The mechanism of epigenetic rescue by methyl donor 

nutrients remains unclear but has been shown to occur in several other studies [154–157]. 

The commonly accepted paradigm is that methyl donor nutrient intake determines the 

availability of subsequent methyl groups generated through the one carbon metabolism 

pathway.

Recent studies link BPA to obesity through several different mechanisms [158, 159]. Cell 

culture studies show that BPA at concentrations >10uM increases murine adipocyte 

differentiation and decreases global DNA methylation compared to controls [160]. Mackay 

and colleagues [161] recently used a CD-1 mouse model to show that maternal consumption 

of a maximum of 7.2 µg/kg/day on average of BPA (well below the EPA reference dose of 

50µg/kg/dy) resulted in higher weight of both male and female offspring. Significantly 

higher caloric intake was observed in female offspring only while the males exhibited 

greater energy expenditure. Although BPA treated female offspring had increased plasma 

leptin levels, males were unaffected. Also, in BPA-exposed female offspring there was no 

increased proopiomelanocortin expression in the arcuate nucleus, which normally would 

have signalled excess energy, satiety and subsequent reduced food intake. Interestingly, 

most of these effects of BPA were only observed when mice were exposed in conjunction 

with a high fat diet, demonstrating the aggregate effect of diet. The sexually dimorphic 

nature of these effects is likely due to the estrogenic properties of BPA. Indeed, females but 

not males, exposed to BPA exhibited increased estrogen receptor alpha (ERα) mRNA 
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expression in the hypothalamus compared to controls. As a potential mechanism, a separate 

study shows that in utero BPA exposure alters methylation status at ERα and ERβ[162].

BPA exposure has also been linked to epigenetic perturbation at imprinted loci in the mouse 

[163]. Of particular interest, Susiarjo and colleagues reported that maternal BPA exposure 

during pregestation, gestation and lactation at a dose of 10mg/kg/day results in a gain of 

methylation at the DMR1 of the Igf2 gene. This was correlated with loss of imprinted 

monoallelic expression of Igf2 and Igf2 overexpression. A follow up study showed that these 

epigenetic changes coincide with increased body fat, insulin resistance and glucose 

intolerance only in adult male offspring [164]. In contrast to the study by Mackay and 

colleagues described above [161], females were seemingly unaffected. Interestingly, F2 

male offspring inherited the increase in Igf2 expression and Igf2 DMR1 methylation changes 

as well as the metabolic phenotypes from their sires. Use of a targeted genetic mutant mouse 

model, H193.8/+ mice [165], showed that of loss of Igf2 imprinting and overexpression is 

sufficient to result in glucose intolerance phenotype in the male but not female mice. These 

gender specific phenotypes may also be linked to the estrogenic properties of BPA as 

speculated above. The explanation for the opposite nature of the gender bias in the two 

studies remains unclear although it is well known that BPA does not always have a linear 

dose response curve and the difference may be explained by amount and timing of dosage.

2.2.2 Alcohol

Fetal alcohol exposure is linked to increased feeding behaviors and obesity in childhood 

[166, 167]. As discussed above, proopiomelanocortin promoter methylation regulates 

proopiomelanocortin expression and increased proopiomelanocortin promoter methylation is 

linked to obesity. Fetal alcohol exposure in a rat model results in proopiomelanocortin 

promoter hypermethylation and downregulated proopiomelanocortin expression in the 

hypothalamus persisting until the F3 generation [168]. Surprisingly, these changes were not 

correlated with weight differences as has been shown in dietary models of perturbed 

proopiomelanocortin [169]. Further assessment by the same research group revealed that 

alcohol-induced proopiomelanocortin repression is alleviated by dietary choline 

supplementation during gestation [157]. Based on this finding, the authors propose that 

alcohol-induced methylation changes at proopiomelanocortin likely involve disruption of the 

one carbon metabolism pathway and subsequent limitation of methyl groups. In this way, 

choline may rescue by increasing methyl group availability thus compensating for alcohol-

induced disruption of folate-derived methyl groups [157]. However, this “limited methyl 

group” hypothesis is contradicted by the apparent gain of methylation induced by alcohol at 

the proopiomelanocortin promoter and choline-induced hypomethylation required for 

restoration of gene expression. Therefore, the mechanism of alcohol-induced 

proopiomelanocortin promoter hypermethylation and the choline dependent rescue is likely 

via a separate or indirect pathway.

More evidence of an indirect role comes in a recent study by the same group showing that 

fetal alcohol exposure in rats increases MECP2 levels and MECP2 binding to the 

proopiomelanocortin locus in the hypothalamus [170]. Mecp2 knockdown via targeted 

shRNA to the brain alleviated the effects of fetal alcohol exposure on proopiomelanocortin 
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expression in the hypothalamus. We can speculate that the increased MECP2 binding at the 

proopiomelanocortin promoter is the result of a combination of hypermethylation at the 

proopiomelanocortin promoter and increased MECP2 protein availability leading to 

increased recruitment of MECP2 to the locus and increased proopiomelanocortin repression. 

The mechanistic link between choline supplementation and the effects of MECP2 remains 

unclear, however, several studies show that choline supplementation also effectively rescues 

some of the phenotypic and molecular effects associated with Mecp2 depletion in Rhett 

syndrome models [171–173]. All together these finding suggest a complex diametric role for 

choline in MECP2 mediated epigenetic mechanisms such that choline supplementation 

appears to rescue the effects of both Mecp2 depletion and overexpression.

2.2.3 Persistent organic pollutants

Persistent organic pollutants (POPs) are classified on the basis of having slow degradation 

process such that they persist in a toxic form in the environment or body in a way that may 

lead to accumulating and/or chronic exposure. These man-made compounds are either 

synthesized or result as a byproduct of industrial processing. Many POPs have also been 

classified as endocrine disruptors [174, 175]. A recent study showed that metabolically 

abnormal obese individuals have higher levels of POPs in plasma compared to metabolically 

healthy obese individuals [176]. Obesity is primarily classified based on body mass index 

(BMI) or waist to hip circumference ratio. However, many individuals that surpass the 

obesity threshold set for these parameters do not exhibit the altered metabolic state linked to 

increased risk for obesity related diseases such as diabetes and CVD. Taken together with 

these new findings, it is possible that for some individuals “obesity” status alone may not 

pose the extended disease risk assumed and additional factors are required to result in 

disease-related metabolic state. New studies allow us to speculate that the propensity for 

abnormal metabolic state associated with obesity may be influenced by POPs. Thus 

evaluating the extent of environmental pollutant exposure may be of importance in linking 

obesity to further metabolic disruption. Further detailed in vivo studies need to be done to 

determine the involvement of epigenetic mechanisms influencing the role of POPs in 

obesity. Cell culture studies show that POPs such as 2,2’,4,4’-tetrabrominated diphenyl ether 

(BDE-47) and tributyltin (TBT) at concentrations of 2.5–25uM and ≥10nM, respectively, 

increase murine adipocyte differentiation compared to controls [160]. Furthermore, BDE-47 

exposure but not TBT exposure was linked to decreased global methylation. A more recent 

study with similar results showed the increase in adipocyte differentiation caused by TBT 

exposure is linked to the PPARG signaling pathway for which we have discussed various 

pathways of epigenetic regulation [177].

3. Conclusions

In Table 1, we provide a compilation of epigenetic mechanisms acting within several major 

molecular pathways of obesity. Taken together, we show that many of the perturbed 

epigenetic mechanisms are consistent between model organisms with supportive human 

subject data; between nutrient and toxicant models; and are supported by genetic models of 

disrupted epigenetic regulators. Nevertheless, many of these findings are only correlative 

and we conclude that much more research is required to fully understand the role of such 
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perturbations in obesity; to determine whether these changes are stable or change further 

with progression of obesity and its related diseases; and to determine whether different types 

of metabolic syndromes are associated with specific epigenetic profiles, pathway 

dysregulation or linked to a particular environmental stimulus (i.e. diet, toxicant etc.). 

Studies to determine whether such epigenetic defects are reversible and the agents that 

reverse them will likely identify potential targets for diagnosis and treatment of obesity and 

obesity-related disease.

Figure 1 illustrates our current knowledge of some of the links between epigenetic 

mechanisms and molecular pathways of obesity including (1) homeostatic and hedonic 

eating behaviors controlled by brain and adipocyte-derived hormones, (2) adipocyte 

differentiation and fat accumulation, and (3) energy expenditure. This evidence of epigenetic 

dysregulation of molecular pathways of obesity supports the role on non-caloric mechanism 

of obesity, and further negates the paradigm that obesity is a disease caused merely by 

excess caloric intake. Epigenetic mechanisms can explain how both the source of fat and 

proportion of fat, even in an isocaloric diet can effect epigenetic mechanisms and lead to 

disruption of energy homeostatis via molecular pathways. For example, a recent study 

demonstrates that an isocaloric high fat diet in a rat model results in significantly increased 

body weight and fat mass, which is linked to hypomethylation upstream of the fatty acid 

synthase promoter (within a region from −700 to −1100 bp from the transcription start site) 

and decreased adipose fatty acid synthase mRNA levels and [136]. This suggests that in 

epigenetically-induced obesity, the proportion of fat in the diet may be more important in 

some contexts than the total amount of calories.

Interestingly, our comparison of nutrient and toxicant exposure models indicates that similar 

epigenetic and molecular effects may have varied phenotypic outcomes. For example in the 

alcohol model discussed above there is no change in weight although DNA 

hypermethylation at the proopiomelanocortin promoter is detected as well as decreased 

proopiomelanocortin expression, a molecular effect linked to increased weight gain in the 

dietary models [170]. This finding indicates that although proopiomelanocortin expression 

plays a critical role in weight, either mRNA repression alone is not sufficient to result in 

weight gain or the levels induced by alcohol exposure in this model did not cross the 

threshold required to manifest the phenotype. Thus it is important to point out that changes 

in DNA methylation, even when coinciding with gene expression changes, may not result in 

altered phenotypic outcome. The implications are that use of epigenetic states as biomarkers 

of diseases such as obesity require careful determination of correlation with both gene 

expression and phenotypic outcome. Moreover, this brings to question whether gene dosage 

thresholds should be more carefully considered in determining the role of molecular changes 

in phenotypic outcomes.

Another potential factor contributing to discrepancies between exposure outcomes is the 

timing of exposure or the timing of molecular perturbation in the pathway of interest. These 

are not necessarily mutually inclusive. For example, when challenged by high fat diet, the 

length of BPA exposure during gestation resulted in differing phenotypic outcome. Adult 

male offspring from a maternal diet containing a maximum of 7.2 µg/kg/day BPA 

throughout gestation and lactation showed no change in caloric intake compared to 
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unexposed controls [161], while those maternal BPA exposure at a dose of 10 µg/kg/day 

from gestational day 9 to 16 demonstrated greater caloric intake [178]. Timing of 

environmental exposure may target different windows of susceptibility. This is relevant for 

treatments performed at different stages of development (i.e. embryonic vs adult); different 

parental routes of exposure (maternal vs. paternal); and different timing of parental exposure 

(i.e. pre-gestation, gestation, lactation). In particular, in utero exposure effects will likely 

differ from adult exposure since fetal somatic tissues and germ cells are undergoing major 

epigenetic programming [179]. Importantly, in the case of fetal exposure, effects may not be 

observed until later life stages as in the case of developmental origins of adult disease. 

Another important aspect of timing of epigenetic changes related to obesity is the fact that it 

remains unclear whether obesity always precedes or follows the perturbed epigenetic state. 

Genetic models that act by knocking out/down the key metabolic or epigenetic regulator 

genes suggest that at least some observed initial epigenetic changes precede obesity-related 

phenotypes [72, 91, 92, 147, 170]. These may be potential targets of diagnoses, prevention 

or treatment.

Many cell culture models (including those discussed here) provide useful mechanistic 

information, however, without direct evidence in vivo, phenotypic and disease relevance 

cannot be definitively determined. Also, we cannot rule out other possible causes of 

disparities in cell culture and animal studies, such as uncontrolled exposure to other 

potentially confounding environmental stimuli. For example, epigenetic states at 

proopiomelanocortin are affected by diet, alcohol, POPs and even early life stress [65, 70, 

168–170]. Ibrahim and colleagues [180] showed that POP exposure in mice fed 

contaminated whale meat did not lead to weight gain nor standard metabolic disruption in 

insulin signaling pathways. The authors suggest that the added nutritional components of the 

whale meat may have confounded the data since these mice actually weighed less compared 

to mice fed standard chow and lard based high fat diet.

Importantly, we highlight some overlapping mechanisms of obesity that are influenced by 

both nutrition and environmental toxicants. This area of research requires much more 

attention since clearly both combined play a major role in obesity either having separate or 

aggregate effects. For example, several studies including some discussed here show that the 

obesity-related effects of toxicant exposure are further exacerbated by dietary modulation, 

such as addition of high fat diet [161, 178, 181]. Interestingly, some studies suggest that 

increased adiposity caused by high fat diet may actually provide a protective effect during 

toxicant exposure. For example, exposure to polychlorinated biphenyls (PCB-77) in a mouse 

model has been shown to impair glucose homeostasis via a TNFα dependent pathway only 

when combined with weight loss [182]. This paradigm is supported by the lipophilic nature 

of many POPs allowing for sequestration in adipose tissue and thus limiting the potential 

adverse effects of circulation in the body. A separate study by the same group demonstrated 

rescue of PCB-induced impaired glucose homeostasis after treatment with resveratrol, a 

polyphenol found in many types of berries that has previously been shown to inhibit 

inflammatory cytokines such as TNFα [183]. Likewise is the case of rescue of alcohol-

induced epigenetic changes by choline supplementation [157]. Thus characterization of 

overlapping mechanisms will clarify the potential for use of nutrition in the treatment of 
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toxicant-induced obesity. Furthermore, by characterizing this complex phenotype through 

multiple approaches including nutrient, toxicant and genetic models, we will likely elucidate 

novel parts of the pathways involved while obtaining certainty of previously established 

mechanisms. However, it should be noted that in order to accurately compare the effects of 

diet vs toxicant or combined exposures there is a need for some level of standardized 

experimental design between projects and more controlled environment in order to allow for 

comparison.

A significant amount of progress has been made in determining the role of non-coding RNA 

in epigenetic mechanisms of obesity. In particular, as discussed above, miRNA have been 

repeatedly shown to be significantly associated with both leptin signaling and adipogenesis. 

However, it has remained a great challenge to identify the direct targets of such miRNA 

activity within obesity-related molecular pathways. This is in part due to the fact that 

miRNA-target binding patterns are highly variable and miRNA function is often tissue-

specific [184]. In addition, a single miRNA can have hundreds of targets while multiple 

miRNAs can act coordinately on the same target [185]. It is also a challenge to assay 

differences in precursor species and cellular localization of the miRNA being measured. 

Because of these challenges, many studies rely on measuring the overall cellular levels of 

miRNA as a proxy for activity. Although this is not a direct measure for determining the 

impact on epigenetic activity of the miRNA at the target, it does provide correlative clues to 

potential interactions. Unfortunately, even when miRNA with perturbed expression levels 

are detected, co-regulation of multiple miRNAs due to close genomic proximity or shared 

regulators (i.e. transcription factors) make it difficult to determine which of the miRNA 

identified is causal in a particular pathway. Thus, a significant amount of research remains 

to be done in understanding the role of miRNA and other types of non-coding RNA in 

obesity-related phenotypes. We have not really even begun to dissect the role of nutrition 

and other environmental factors such as toxicants in perturbing non-coding RNA function 

with regards to obesity-related pathways.

Although there are ever increasing improvements in the types of technology available to 

assess epigenetic mechanisms, the interpretation of epigenetic findings in terms of biological 

relevance remains a significant challenge. This is in part due to the complexity of epigenetic 

mechanisms and the gaps in our understanding of how multiple epigenetic mechanisms 

work together to regulate gene expression. Epigenetic regulation of fatty acid synthase 

transcription is an excellent example of the complex interaction between epigenetic 

mechanisms and transcriptional machinery required for normal gene expression. In a recent 

study of a high fat diet rat model investigators observed substantial hypomethylation at −90 

bp but also reported hypermethylation at −62 bp at the fatty acid synthase promoter 

correlated with increased fatty acid synthase mRNA level in adipose tissue [125]. To explain 

this differential methylation regulation, the −90bp locus is actually within the binding site of 

NF-Y and SP1 activation complex [133], while the −62bp locus is a binding site of upstream 

regulatory factor [134] and is essential for upstream regulatory factor and SREBF1-induced 

fatty acid synthase expression upon feeding [135]. Thus, even at a single gene promoter, 

contradicting DNA methylation states may be detected and only together explain 

dysregulation of transcription. Understanding which regulatory elements are present within 
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epigenetically regulated regions is critical to understanding the epigenetic mechanisms of 

disruption and hence the biological relevance of changes.

In conclusion, this assessment only further highlights the fact that obesity is a highly 

complex and multifactorial disease. Therefore, we are only just beginning to fit the pieces 

together to define the pathways and modes of perturbation contributed by environmental 

exposure. One factor that likely contributes to mixed results from studies on human obese 

population is the recognition of metabolically normal and abnormal obesity. Approximately, 

half of the obese adults in the US are found to be metabolically normal as measured by 

several cardiometabolic parameters. On the other hand, up to one-fourth of non-obese adults 

are metabolically abnormal and at risk for many of the diseases associated with obesity 

[186]. Interestingly, data shows that metabolically normal obese people are less susceptible 

to certain weight-related phenotypes [187], and are less susceptible to the effects of POPs 

compared to metabolically abnormal counterparts [176]. Thus, inconsistencies and non-

reproducibility of studies on obese population could be attributed to metabolic heterogeneity 

in obese subjects, which underlines the importance of differentiating obese subjects using 

parameters for various metabolic functions.
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Figure 1. 
Obesity-linked metabolic pathways susceptible to diet induced epigenetic perturbation. 

Hypothalamic proopiomelanocortin neurons control homeostatic eating by expressing 

appetite-inhibitory proopiomelanocortin. Obesogenic diet causes repression of 

proopiomelanocortin, which increases food intake. This is partially offset by acute 

proopiomelanocortin neuron plasticity change via upregulating ST8SIA4 as a feedback-loop. 

Adipose tissue secretes leptin to signal (indicated by pointed arrow) excessive energy 

storage in hypothalamus by upregulating proopiomelanocortin expression. Obesogenic diet 

causes blunted leptin response in proopiomelanocortin neurons and repressed leptin 

transcription in adipocyte. Meanwhile compulsive eating is promoted through diet-induced 
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dysregulation of tyrosine hydroxylase, dopamine transporter and cyclin-dependent kinase 

inhibitor 1C in dopaminergic neurons in central reward circuitry, boosting desire for 

palatable food. Adipocyte differentiation as well as fat accumulation is perturbed by 

nutrition targeting CEBPA, PPARG and fatty acid synthase, causing excessive adiposity. 

Dietary components also influence energy expenditure, represented by regulating ornithine 

decarboxylase and spermidine-spermine N-acetyltransferase in fat and possibly liver through 

NNMT, which acts by inhibiting (indicated by flat-end arrow) the enrichment of H3K4 

methylation at ornithine decarboxylase and spermidine-spermine N-acetyltransferase. WAT: 

white adipose tissue. Epigenetically regulated genes in each metabolic pathway are listed in 

bold and italics (POMC: proopiomelanocortin; ST8SIA4: ST8 alpha-N-acetyl-neuraminide 

alpha-2,8-sialyltransferase 4; TH: tyrosine hydroxylase; SLC6A3: dopamine transporter 

solute carrier family 6; CDKN1C: cyclin-dependent kinase inhibitor 1C; CEBPA: CCAAT/

enhancer binding protein (C/EBP) alpha; PPARG: peroxisome proliferator-activated 

receptor gamma; LEP: leptin; FASN: fatty acid synthase; ODC: ornithine decarboxylase; 

SSAT: spermidine-spermine N-acetyltransferase). Epigenetic regulatory mechanisms are 

depicted for each pathway and include DNA methylation, histone marks and epigenetic 

regulatory genes (NNMT: Nicotinamide N-methyltransferase. SETDB1: SET domain 

bifurcated 1; SETD8: SET domain containing protein 8; MECP2: methyl CpG binding 

protein 2; MBD2: methyl-CpG binding domain protein 2; DNMT1/3A: DNA 

methyltransferase 1/3A; KAT8: lysine acetyltransferase 8).
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