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Abstract

Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor 

prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind 

the mechanisms for this deadly disease. This review briefly introduces the basics of the 

conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular 

mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid 

being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-

targeted therapies in the end, with the hope to help guide future research towards developing more 

effective therapeutic strategies to eradicate tumor cells in the patients.
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1. Introduction

1.1. Chemotherapy and chemoresistance

Chemotherapy is one of the current mainstream anticancer therapies. It uses chemicals to 

kill rapidly dividing cancer cells. These chemicals or chemotherapeutic agents typically 

induce apoptosis by damaging DNA and/or inhibiting mitotic division (1–3). Despite being 

an important therapeutic option for most cancer patients and the many agents and strategies 

available, chemotherapy frequently misses slowly dividing and non-dividing cancer cells. It 

also leaves behind fast-dividing cancer cells that are less sensitive particularly when reduced 

doses are given to avoid side effects on rapidly dividing normal cells. The insensitivity of 

these cancer cells causes resistance to chemotherapy or chemoresistance that is a major 

cause of treatment failure with treatment strategies involving chemotherapy (4). Some of the 

tumor cells are already resistant to the “achievable” doses of anticancer drugs. This type of 

resistance present in therapy-naïve patients is named intrinsic resistance. Other tumor cells 

are initially sensitive but become resistant to the drug during the course of treatment. This 
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therapy-induced resistance is termed as acquired resistance. Although not pre-existing, 

adaptive resistance can occur immediately through a rapid rewiring of cancer cell signaling 

once treatment begins. Regardless of the resistance mechanisms, the chemoresistant cancer 

cells are the major cause of tumor recurrence or relapse and have garnered the most attention 

clinically (1, 2, 5).

1.2. Tumor recurrence or relapse

Tumor recurrence or relapse was initially tied to a small number of therapy-resistant 

leukemic cells that remained in the patient during treatment or post-therapeutic remission 

without overt symptoms or signs of disease. This phenomenon was termed as minimal 

residual disease (MRD). It is the major cause of leukemic relapse. This terminology was 

then extended to non-leukemic cancer types particularly carcinomas and is divided into local 

residual disease and metastatic residual disease (or micrometastasis) depending upon the 

location of the residual disease or the recurrent tumor in relation to the primary tumor 

location. Importantly, minimal residual diseases are highly enriched for cancer stem cells 

(6).

1.3. Cancer stem cells

The cancer stem cell (CSC) concept was first reported more than a century ago on observing 

the histological similarities between tumors and embryonic tissues. A tumor contains 

heterogeneous populations of cells. CSCs are a very small subset of relatively quiescent 

cells in the tumor that are endowed with the ability to self-renew and differentiate into non-

stem daughter cells that make the bulk of tumor, which is the central property of normal 

stem cells as well (7–10). The concept may explain not only why clonogenic capacity of 

most malignancies is very low but also why complete initial responses to treatment rarely 

leads to cures. The initial responses mirror the therapeutic effect on the cells that form the 

tumor bulk while leaving behind CSCs that are responsible for relapse, the real threat to 

tumor cell eradication (11, 12).

Growing evidence supports the notion that cancer is a disease driven by CSCs responsible 

for tumor initiation, growth, metastasis, therapy resistance, relapse and poor prognosis. The 

isolation of CSCs was first described in 1994 from leukemia and then from solid tumors of 

many cancer types including breast, lung, prostate, colon, brain, head and neck, skin, and 

pancreatic cancers (13). Despite extensive studies, there has been a long-lasting debate on 

the existence of CSCs and their roles in patients. For example, in contrast to the CSC model, 

a stochastic model describes that all tumor cells in the late stage of melanomas are 

equipotent and stochastically self-renew or differentiate, resulting in tumor heterogeneity 

with presumably different CSC types endowed with distinct therapy-resistant phenotypes 

(12, 14). As a result, more conservative terms instead of CSC have been used such as tumor-

initiating cells, tumor-propagating cells, tumor-progenitor cells and tumor stem-like cells.

Direct in vivo evidence of CSC existence in mice came in three back-to-back research 

articles published in 2012 (15–17). The first group developed a genetically engineered 

mouse model of glioma. In that model, a nestin-DTK IRES-GFP transgene, alongside the 

HSV thymidine kinase gene was made that specifically labels quiescent adult neural stem 
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cells. This transgene was also expressed in a subset of spontaneous glioma tumor cells. After 

the tumor growth was transiently arrested using temozolomid followed by pulse-chase of the 

tumor growth, the tumor was able to re-grow only from the transgene-expressing cells. If 

these cells in the tumor were ablated with ganciclovir, the tumor growth and re-growth were 

inhibited. Thus the study concluded that a subset of quiescent endogenous tumor cells serve 

as CSCs responsible for sustaining long-term growth of glioma (15). The second group 

genetically labeled individual tumor cells in vivo and traced them over the progression of 

papilloma and squamous cell carcinoma. The study demonstrated that only a very small 

fraction of the labeled cells with CSC characteristics persist long term to grow and form a 

significant part of the tumor (16). The third group genetically labeled and traced primary 

intestinal adenoma cells that express the crypt stem cell marker Lgr5. The study revealed 

that these Lgr5+ cells represent only 5–10% of the tumor cells and could self-renew as well 

as differentiate into all other adenoma cell types, indicating they are the CSCs (17).

Clinical evidence for CSCs came first from patient studies of MRDs. Post-therapeutic 

residual tumor cells of breast cancer are found enriched for CSCs (18). The presence of 

acute myeloid leukemic (AML) CSCs in the minimal residual diseases correlates with poor 

progression-free survival (19). The myelodysplastic syndrome (MDS) stem cells persist in 

the patients even with complete clinical and cytogenetic remissions (20). In a latest study the 

same group reported more direct evidence for CSC presence in patients (21). By establishing 

molecularly and functionally distinct and hierarchically organized stem and progenitor cell 

compartments of MDS and back tracking somatic genetic lesions, the group demonstrated 

that the rare Lin−CD34+CD38−CD90+ CD45RA MDS cell population functions as MDS-

propagating cells in the patients. Elimination of this population is essential toward 

eradication of the entire MDS clone. This discovery strongly supports the CSC theory and 

could encourages development of CSC-targeted therapies and CSC-based relapse-predicting 

strategies.

It remains unclear, however, whether CSCs originate from normal stem cells or non-stem 

cells and what are the driving forces for the transformation process. Regardless, it seems that 

the physiological balance between the proto-oncogenes and tumor suppressor genes needs to 

be disrupted and in some cases the epithelial-mesenchymal transition (EMT) process must 

be involved for CSC formation (22, 23). Hypothesized origins and mechanisms of CSC 

formation are illustrated in Figure 1.

2. Mechanisms of CSC chemoresistance - the multiple lines of defense

Despite the intensive studies in the past, the mechanisms by which tumors become 

chemoresistant and the clinical causes of chemoresistance remain only partially understood 

(24, 25). Recent studies have suggested CSC as a main player for chemoresistance against a 

variety of drugs including cisplatin and/or paclitaxel (26–32), temozolomide (15, 30), 

etoposide (29), and doxorubicin or methotrexate (31, 33) in many types of cancer including 

gliomas and glioblastoma (15), breast (26, 27), colorectal (34–38), AML (39, 40), hepatic 

(33), lung (41), bone (42), pancreatic (30, 32), ovarian (28) and prostate (31) cancers. Thus, 

the cellular and molecular mechanisms underlying the CSC’s chemoresistance have drawn 

accelerating attention for cancer research (37, 43–49). Although still poorly understood, 
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CSCs use a series of self-defense lines against attacks by the chemotherapeutic drugs. These 

defense lines are outlined in Figure 2 and discussed in details below.

2.1. Avoid cellular exposure to the drugs – the 1st line

2.1.1. CSC niches—Normal adult stem cells (ASCs) are usually located at places that are 

less exposed to potential external attacks. For example, the skin stem cells are housed in the 

bulge at the side of hair follicle away from the papilla and matrix that are connected with the 

capillary (50), the mammary stem cells hide under the luminal epithelium away from the 

acinar lumen (51), the intestinal stem cells are located at the very bottom of the crypt 

farthest away from the intestinal lumen (52), and the hematopoietic stem cells are shielded 

in the bone marrow and guarded by the hard bone (53).

CSCs are similarly protected physically albeit in slightly different ways. CSCs take the 

maximal advantage of the specific tumor microenvironments they are localized in. These 

particular compartments are called CSC niches. Like normal stem cell niches, CSC niches 

are thought to maintain a balance between self-renewal and differentiation and therapy 

resistance of CSCs through either extracellular matrix protein-cell or cell cell 

communication (54). Although the niche concept is generally accepted (55), the exact types 

of cells and proteins that constitute these niches remain largely elusive. Still under 

investigation, if not in debate (56) are the two CSC niche types, the hypoxic niche and the 

perivascular niche.

The hypoxic niche (12) has been demonstrated for hematopoietic stem cells (HSC) (57, 58), 

melanoma (59), leukemia (60, 61), brain (62–65), prostate (66, 67), lung (68), pancreatic 

(69) and breast (70) cancers. Hypoxia is a hallmark of cancer and an important factor for 

disease progression, therapeutic resistance and poor prognosis. Hypoxia regulates many 

aspects of cancer including cell survival, proliferation, differentiation, angiogenesis, 

metabolism, invasion and metastasis. The primary mediator of hypoxia is the hypoxia-

inducible factor (HIF) subunits HIF1α and HIF2α, the regulators of tissue oxygen 

homeostasis (71). Hypoxia plays an important role for stem cell function via HIF (72). 

Deletion of hif1α leads to inhibition of HSC self-renewal (73) and the clonogenecity of 

leukemic CSCs (60, 61). In brain, pancreatic and breast cancers, hypoxia has been shown to 

promote the CSC expansion (62–65, 69, 70). Oxygen plays a crucial role in generating 

ROSs that mediate the anticancer effects of therapies such as radiotherapy. The low oxygen 

tensions in the hypoxic area of the tumor thus contain low levels of ROSs, reducing the risk 

for the cells located in the hypoxic area of being killed (71). Indeed, normal adult epithelial, 

glial and neuronal stem cells contain lower levels of ROSs than the differentiated progeny 

(74–77). Upon receiving irradiation, the MCF-7 breast CSCs in mammospheres showed a 

lower level of ROSs and DNA damage than cells in monolayer culture, suggesting high 

levels of free radical scavengers in the CSCs (56)

The hypoxic niche concept came at a bit surprising timing in that prior to it many studies 

had pointed to an essential role of endothelial cells and the perivascular niche for CSCs as 

was demonstrated for normal stem cells. Tumor vasculatures are required for delivery of 

nutrients and oxygen, recruitment of stromal cells, endocrine trafficking of growth factors 

and cytokines and disposal of metabolic wastes (78). In glioblastoma and squamous cell 
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carcinoma, CSCs are localized in close contact with endothelial cells (79–81). Anti-vascular 

endothelial growth factor (VEGF) receptor (VEGFR2) treatment causes CSC depletion 

resulting in inhibition of tumor growth or regression of tumor (12). These studies suggest 

that perivascular niches involving VEGF signaling are crucial for maintaining CSCs or 

tumorigenic potential. It should be noted, however, that anti-angiogenic therapies have not 

been as successful as expected in the many years of clinical trials. One of the reasons for the 

failure could be that the therapies enhance the hypoxic conditions good for maintaining the 

hypoxic niches of CSCs. As such, the vascular normalization in tumor has emerged as an 

important therapeutic strategy (82).

At the first thought, the two concepts for CSC niches seem paradoxical. However, they may 

coexist in distinct compartments of the same tumor and represent distinct requirements of 

CSCs. Indeed, studies have shown that HSCs reside in a vascular niche (83, 84) and in a 

hypoxic niche as well (57, 58). ER+ and ER− breast CSCs seem to have distinct preference 

to hypoxic and perivascular niches, respectively (57, 58, 83, 84). Subsets of CSCs in head 

and neck squamous cell carcinoma (HNSCC) differ intrinsically in their patterns of oxygen 

metabolism (68). These studies indicate that both of the niche types are required for CSCs 

and they may not be independent of each other. Rather, they may be interrelated and HIF-1, 

the critical regulator for both hypoxia and angiogenesis, may serve as the bridge or 

switchman between the two niche types. Whether or not the CSCs localized in the hypoxic 

niches are even the source of the CSCs localized in the perivascular niche (that houses CSCs 

ready to differentiate yet easier to kill) is worth further investigation. Nevertheless, HIF-1 

may be an important molecular target for anti-CSC therapy (85).

2.1.2 CSC-specific stroma—In addition to physically protecting the niches, other 

components of tumor microenvironment including extracellular matrix (ECM), cancer-

associated fibroblasts, immune cells and inflammatory cells (86, 87) also play a role in 

protecting CSCs against both chemotherapy and other therapies (88). They provide CSCs 

with resistant signaling stimuli through surface receptors to activate other lines of defense 

for CSCs. For example, tumor myofibroblasts secrete growth factors such as hepatocyte 

growth factor (HGF) and periostin to activate Wnt signaling required for tumor stemness in 

colorectal or breast cancer (89, 90). Stromal cells secrete high levels of HGF which makes 

co-cultured human cancer cells of many types acquire resistance to various anticancer drugs 

particularly RAF inhibitors (91). Other growth factors or cytokines including interleukin 6 

(IL-6), fibroblast growth factor (FGF) and neuregulin 1 are reported to help form the so-

called ‘chemoresistant niche’ of CSCs by activating various survival signaling pathways 

(92, 93). In addition, the ECM receptors integrins are highly associated with CSC survival 

and drug resistance (94, 95), suggesting critical roles for the ECM. Lastly, the stem cell 

surface marker CD44, initially identified as the lymphocyte homing receptor, is commonly 

expressed in embryonic and adult stem cells as well as CSCs (96). It binds its ligand 

hyaluronan to regulate many aspects of stem cell function including self-renewal, ECM 

retention in the niche, proliferation, differentiation and homing or metastasis. CD44 

signaling also helps maintain the genomic integrity of stem cells by protecting and repairing 

DNA from oxidative damage. In addition, CD44 is implicated in regeneration of CSCs 

responsible for chemoresistance and relapse.
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2.2. Avoid molecular exposure to the drugs- the 2nd line

2.2.1. ATP-binding cassette transporters (ABCT) and drug efflux—What if the 

CSCs have failed to avoid a contact with the drugs? At the organismic level, a toxic 

chemical accidently taken in is detoxified and filtered out primarily by the liver. The first 

thing a CSC does once the drug has entered the cytoplasm, however, is to activate the 2nd 

line of defense, i.e., the drug efflux mechanisms to pump the drug out of the cell. This 

mechanism has been taken advantage of for isolating CSCs as the side-population (SP) cells 

by flow cytometry that do not accumulate the drug-mimicking dye. The transmembrane 

proteins of the ABCT family are the main players of drug efflux (97). Among 49 family 

members three have been extensively studied and correlated with drug resistance. They are 

the multidrug resistance protein 1 (MDR1 or ABCB1), multidrug resistance-associated 

protein 1 (MRP1 or ABCC1) and breast cancer resistance protein (BCRP or ABCG2) (97). 

They can eliminate various types of chemotherapeutic drugs such as taxanes, topoisomerase 

inhibitors and antimetabolites. MDR1 are normally expressed on the surface of epithelial 

cells of intestine and ductules of pancreas, bile and kidney and overexpressed in many tumor 

types associated with intrinsic resistance (98, 99). Its expression can also be induced by 

chemotherapy which is associated with acquired resistance (100). MDR1-associated 

resistance has been seen in kidney, colon, liver, prostate, lung and breast cancers as well as 

leukemia (101–103). MRP1 has been used as a marker of prediction for chemoresistance 

(104). BCRP is associated with drug resistance in breast cancer and leukemia (105, 106). 

Interestingly, MDR1 and BCRP can also perform efflux of small molecule drugs (107). 

Clinical trials of MDR1 inhibitors such as zosuquidar and tariquidar, however, have been 

disappointing in breast (108) and squamous cell carcinoma (108, 109) even when used in 

combination with docetaxel (109). This suggests that a high degree of functional redundancy 

among the ABCT family members is a critical factor for this particular defense line of 

CSCs. Indeed, CSCs of several cancer types show high expression of multiple ABCTs (110, 

111). The NCI60 panel studies indicated a role in drug resistance for majority of the family 

members (112). As such, finding the ‘Achilles heel’ of the redundancy is key for ABCT-

targeted anti-CSC therapy.

2.3. Avoid conditions needed for the drugs to act- the 3rd line

2.3.1. Intracellular drug inactivation—What if the drug efflux has failed and the drug 

has invaded the cytoplasm of CSCs? Interestingly, the poison filtering organs like the liver 

lack ABCTs. However, liver cells are highly drug-resistant because the cells contain 

enzymes such as the cytochrome-c p450 that can effectively detoxify the drugs in the 

cytoplasm. On the other hand, some therapeutic drugs are given in a pro-form that needs to 

be activated after administration. Tumor cells that lack the drug inactivating enzymes or 

possess the drug activating enzymes are sensitive to the drugs. Conversely, high levels of 

drug inactivating enzymes or low expression of the drug activating enzymes would make the 

cells resistant to the drugs as in the case of CSCs. Below are a few examples of such 

enzymes. The thiol glutathione inactivates platinum drugs (113). Thymidine phosphorylase 

converts capecitabine into 5-fluorouracil (5-FU) (114). The antimetabolite drugs such as 5-

FU and methotrexate need to be converted further into their most active forms to be 

therapeutically effective, which does not occur when the target cells lack the enzyme 
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activities (115, 116). For example, in CSCs expression of the thymidine phosphorylase can 

be inhibited via epigenetically silencing mechanisms such as gene promoter methylation 

catalyzed by the DNA methyltransferases (DNMTs), resulting in capecitabine resistance 

(117). Using inhibitors of DNMTs can thus sensitize the CSCs to capecitabine. Epigenetic 

silencing can also activate drugs. For example, UDP glucuronosyltransferase 1 (UGT1A1) is 

an enzyme that inactivate the topoisomerase I inhibitor irinotecan which is associated with 

the drug resistance. If UGT1A1 gene promoter is methylated in the cells, irinotecan activity 

is maintained that sensitizes the cells (118, 119). The aldehyde dehydrogenase (ALDH) is a 

major marker of CSCs in many cancer types (120) associated with poor prognosis (121–

123). ALDH catalyzes the oxidation of aldophosphamide to carboxyphosphamide, the 

primary mechanism of cyclophosphamide detoxification (124) that occurs in normal stem 

cells to protect them. This same mechanism, however, is hijacked by CSCs to counteract 

cyclophosphamide and various relevant chemotherapeutic drugs including temozolomide 

(125), 4-hydroperoxycyclophosphamide (126), irinotecan (38), paclitaxel, epirubicin and 

doxorubicin (127, 128).

What if the drug inactivation mechanisms fail in the cytoplasm? Theoretically, the CSC 

would do something to protect important cytoplasmic components from being damaged and 

to prevent the drug from further entering the nucleus and subsequently damaging the 

genomic DNA. Chemotherapy has been shown to activate autophagy. Autophagy is a 

cellular protective mechanism that promotes cell survival by sacrificing some relatively less 

important cytoplasmic components in response to catastrophic stresses derived from 

metabolic, therapeutic or mechanical pressure. Several reports have shown that blocking 

autophagy pathways using an inhibitor of autophagy such as chloroquine and 

hydroxychloroquine can sensitize cancer cells to chemotherapies (129, 130). Although 

extensive studies are needed in order to understand the details regarding role of autophagy 

for chemoresistance, it would be interesting to test if there are any ABCTs expressed on the 

membrane of autophagosomes. Do these ABCTs cleanse the drug that has already entered 

the cytoplasm by pumping the drug from the cytoplasm into autophagosomes? Then does 

the cell somehow send the drug-loaded autophagosomes out of the cell? Recent studies have 

shown that in addition to the plasma membrane, nuclear membrane also expresses some of 

the ABCTs (131–134). Do these ABCTs, like the cell surface ABCTs, pump the drug that 

has entered the nucleus out of it so that the nuclear DNA can be protected? This would be 

another interesting possibility to look into.

2.3.2. Quiescence and dormancy—What if the drug has already entered the cytoplasm 

and even nucleus and is ready to attack the vital intracellular machineries? What does the 

cell do in this phase to avoid the state susceptible to the potential attack? One of the ‘safe’ 

states is non-dividing, i.e., quiescence or dormancy. As described above, chemotherapy (as 

well as radiotherapy) targets fast proliferating cells. It is generally believed that both normal 

ASCs and CSCs stay in the quiescent phase of the cell cycle most of the times (135–137). 

Therefore, unlike the rapidly dividing cells, the relatively quiescent CSCs can avoid the 

attacks from most of the chemotherapeutic drugs. A recent study tracing glioma stem cells in 

a transgenic mouse model (15) has demonstrated that the slow-cycling tumor cells survived 

the alkylating drug temozolomide, which eventually led to recurrence. The tumor bearing 
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mice survived for a much longer time if the slow-cycling cells were removed from the 

tumor. In melanoma, expression of the H3K4 demethylase JAR-ID1B is restricted to a small 

subset of slow-cycling cells with a doubling time of > 4 weeks. Knockdown of JARID1B 

from these cells leads to their failure to expand, resulting in reduction in tumor growth and 

metastases (138). A very small subset of slowly cycling cells specifically retaining the 

lipophilic labeling dye DiI or the carboxyfluorescein diacetate succinimidyl ester was 

identified in pancreatic, colon and breast tumors to be responsible for the invasive potential, 

chemoresistance and relapse (139, 140). Several studies have shown that induction of 

dormant leukemic CSCs to enter the cell cycle using granulocyte colony-stimulating factor 

(G-CSF), promyelocytic leukaemia protein (PML) inhibitors or histone deacetylase 

inhibitors can prime the sensitization of the otherwise slow-cycling CSCs to the subsequent 

chemotherapies (39, 141, 142).

2.4. Fix damages caused by the drugs - the 4th line

2.4.1. DNA-damage response and repair—The vast majority of chemotherapeutic 

drugs kill cells by inducing DNA damage (143). Fast dividing cells are sensitive to 

chemotherapy because they give the drug more chances to interact with and damage their 

nuclear DNA. DNA damage is inevitable as long as the cell has exposed its DNA to the drug 

even if to a much slower rate as in the case of slow-cycling CSCs. In normal cells there exist 

a variety of DNA damage response (DDR) and DNA repair mechanisms that constantly 

monitor and repair DNA damage to maintain the genomic stability and protect the cell from 

DNA damage-mediated death. Unfortunately, these mechanisms are inherited by tumor cells 

and even enhanced in CSCs (144). Unless un-repairable DNA damage occurs, DNA repair is 

another main reason for chemoresistance of tumor cells particularly CSCs (143, 145).

DNA repair mechanisms are largely categorized into two classes, 1) those that fix single-

strand damages including dealkylation (that removes alkyl group from DNA to restore 

normal DNA structure), base excision repair (BER that removes the wrong base to fix 

minor, non-structure-distorting damage to DNA), nucleotide excision repair (NER that 

replaces a fragment of the strand containing a DNA adduct to fix larger, helix-distorting 

damage), mismatch repair (MMR that corrects miscopied DNA sequences overlooked by 

DNA polymerases that are responsible for microsatellite instability of the genome) and 

error-prone repair (EPR that fixes the damaged strand based on a guess of identity of the 

nucleotide damaged using enzymes lacking proofreading capability), and 2) those that fix 

double-strand breaks including homology-directed repair (HDR, a sister chromatid based re-

synthesis of DNA to fill the gap formed after the double strand break is excised) and non-

homologous end joining (NHEJ that re-synthesizes DNA using the resection-generated 

single strand DNA on the end of the DNA as template to fill the gap formed after the double 

strand break is excised when sister chromatid is not available particularly on the G1 phase of 

the cell cycle).

It is an obvious anticancer strategy to combine DNA-damaging agents with DNA repair 

inhibitors. Inhibiting poly (ADP-ribose) polymerase 1 (PARP1) prevents BER, leading to 

the double-strand breaks. However, if the cancer cells have a functional double strand break 

repair mechanism such as the expression of breast cancer associated genes (BRCAs), 
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inhibiting PARP1 alone would not cause un-repairable, death-inducing DNA damage. 

Cancer cells that do not express functional BRCAs (146) are particularly sensitive to PARP1 

inhibitors, suggesting that targeting redundant DNA repair mechanisms simultaneously for 

induction of so-called synthetic lethality is important to sensitize cancer cells to DNA 

damaging drugs (147). Notably, aberrant high expression of the excision repair cross-

complementing 1 (ERCC1) protein has been associated with chemoresistance to cisplatin in 

cancer of the lung, stomach and ovary (148, 149) but not testis where there is only marginal 

expression of ERCC1 (150). MMR deficiency, such as hypermethylation of MLH1 or 

MLH2, mediates the microsatellite instability that has been linked to resistance of numerous 

cancer types to a variety of chemotherapeutic agents including the alkylating agents 

procarbazine, temozolomide, the busulfan, cisplatin and carboplatin, the antimetabolite 6-

thioguanine, and the topoisomerase II inhibitors etoposide and doxorubicin (151).

Rapidly growing evidence supports a role of DNA repair for CSC chemoresistance. It has 

been shown that DNA damage checkpoint and repair proteins such as the ATM, Chk1/2, 

p53, BRCAs and XRCC5 are aberrantly overexpressed or overactivated in CSCs but not in 

non-CSCs (152), and is further activated by DNA-damaging therapy such as radiation 

rendering delayed cell division and prolonged DNA repair time leading to resistance (153–

155). Indeed, inhibition of the DNA repair pathways can sensitize CSCs of various cancer 

types to chemotherapy or radiotherapy. Inhibition of Chk1 or ATM sensitizes the CD24+/

CD44+/ESA+ pancreatic or breast CSCs to gemcitabine (156) or radiation (157) treatment. 

Knockdown of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) 

or inhibition of the G2 checkpoint kinase Wee1 sensitizes gliomas to temozolomide as well 

as radiotherapy (158–160). Inhibition of DNA-PKcs sensitizes glioblastoma CSCs to 

radiation-induced death (161). BMI1, the polycomb group E3-ubiquitin ligase, plays a 

critical role in assembling DNA repair machinery. Recent studies have shown that BMI1 

expression is higher and enhanced by irradiation in CSCs (162–165). Ablation of bmi1 in 

CSCs promotes double-strand breaks and subsequent radiosensitivity whereas 

overexpressing BMI1 increases radioresistance (163, 166). These data support DNA repair 

pathway targeted therapies to overcome CSC resistance.

2.5. Lift up the pro-survival and anti-apoptotic power - the 5th line

2.5.1. Over-activation of pro-survival signaling—If left unrepaired, DNA damage 

will eventually lead to programmed cell death or apoptosis. Apoptosis is a physiological 

program controlled by a tightly regulated balance between pro-survival, anti-apoptotic 

mechanisms and pro-apoptotic mechanisms that eliminate sick, aged or unwanted cells. 

However, in cancer cells, this balance is frequently and aberrantly tilted to prevent apoptosis 

even when DNA repair fails. The same is more evident in CSCs. Similar to normal stem 

cells CSCs rely on specific signaling pathways for maintaining essential proliferation, 

survival and the balance between self-renewal and differentiation. In response to therapies, 

CSCs either over-activate pro-survival and anti-apoptotic signaling or down-regulate pro-

apoptotic signaling as another mechanism of resistance to therapies.

Several pro-survival signaling pathways have been indicated to play a role in CSCs 

including the pathways of Notch, Hedgehog (Hh), Wnt, epidermal growth factor receptors 
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(EGFR), bone morphogenetic proteins (BMP), insulin growth factor (IGF), extracellular 

signal regulated kinases (ERKs), phosphatidylinositol-3-kinase (PI3K)/protein kinase B 

(PKB or AKT), Janus kinase/signal transducers and activators of transcription (JAK/STAT), 

and nuclear factor (NF)-κB. Inhibition of these pathways has led to abrogation of CSCs and 

tumorigenicity (167–173). Notch pathway regulates cell interaction, proliferation, 

differentiation and apoptosis. Notch signaling can be blocked by impeding its interaction 

with ligand, inhibiting γ-secretase or interfering with its co-activator MAML1 (167). 

Inhibition of Notch signaling has been shown to cause a reduction in Akt activity and Mcl-1 

expression in glioblastoma CSCs (174) and enhance CSC apoptosis in medulloblastoma 

(175). Clinical trials of the Notch inhibitors are in progress for treating glioblastoma, 

leukemia and breast cancer (167). Hh pathway plays a role in maintaining tissue polarity and 

stemness. Overactivation of Hh pathway was found in CSCs of breast cancer and chronic 

myeloid leukemia (CML) (167). Inhibition of Hh pathway using cyclopamine reduces 

glioblastoma stemness (176, 177). Clinical trials of the Hh inhibitors are underway for 

cancers of the breasts, prostate, lungs, and brain (167). Wnt signaling regulates cell fate 

determination and tissue self-renewal. This pathway is highly associated with CSC activity 

(167). Its overactivation has been shown in 5-FU-resistant colorectal CSCs and silencing its 

downstream main effector TCF4 sensitizes the tumor to radiotherapy (178). EGFR plays a 

critical role in cancer resistance to various chemotherapies (179–182). EGFR-targeted 

therapies sensitize various tumor types to agents such as 5-FU, irinotecan, paclitaxel and 

TRAIL (180–182). Glioblastoma CSCs are resistant to irradiation with aberrantly high Akt 

activity and double strand break DNA repair capacity. Inhibiting Akt in the CSCs by 

blocking EGF (168, 183) or Wnt (184) signaling suppresses the cell proliferation and 

enhances the irradiation-induced DNA damages. Inhibition of Akt has achieved similar 

sensitizing effect in breast CSCs (185). Forced expression of BMP receptor 1B leads to 

differentiation and reduced tumorigenecity of patient glioblastoma CSCs (169). Knockdown 

of IGF-R sensitizes the resistant non-small cell lung cancer (NSCLC) CSCs to radiation 

(172). Inhibition of STAT3 induces apoptosis in the CSCs in HNSCC (170) and NSCLC 

(171) tumors resulting in reduced stemness and tumorigenecity. Inhibition of NF-κB hinders 

the stemness of CSCs in pancreatic cancer (173) and glioblastoma (186). It should be noted 

that these stem cell signaling pathways often act together and for this reason, simultaneous 

inhibition of more than one of them is likely needed for effective CSC targeting.

2.5.2. Overactivation of anti-apoptotic and overinhibition of pro-apoptotic 
signaling—Chemoresistance of cancer cells are typically linked to aberrantly 

overexpressed or overactivated anti-apoptotic proteins including the BCL-2 family proteins, 

inhibitors of apoptosis (IAPs) and the caspase 8 inhibitor FLIP (187) and aberrant reduction 

in expression or activity of the pro-apoptotic proteins such as BIM. These proteins are 

localized at mitochondria where they play counteracting roles against each other (188–190). 

Drugs mimicking the IAP antagonist second mitochondria-derived activator of caspases 

(SMAC) or causing IAP protein degradation have been shown to sensitize various tumor 

types to chemotherapy and their clinical trials are underway (191). Germline deletion of bim 

gene has been reported in an Asian population of cancer patients with CML and EGFR-

mutated lung cancer intrinsically resistant to tyrosine kinase inhibitor (TKI) therapies (192). 

Treatment with TKIs induces BIM expression and apoptosis in these cancer cells with 
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inhibition of Akt and Erk (193–195). For this reason, BIM expression has recently been used 

to predict clinical responsiveness to inhibitors of EGFR, HER2 and PI3K (196). A recent 

study has shown that treatment with pro-apoptotic BH3 peptide can sensitize chemoresistant 

cells of several cancer types to chemotherapy (197). This indicates that BCL-2 family 

proteins play a critical role for cancer cell survival and chemoresistance. It is shown that the 

glioblastoma CSCs (CD133+) isolated from primary cultures express higher levels of 

BCL-2, BCLXL, XIAP and FLIP than the non-CSCs (CD133−) (29), and the CSCs are 

resistant to TRAIL-induced cell death (198). Inhibiting Bcl-2 sensitizes these CSCs to 

TRAIL death effect both in culture and in tumor-bearing mice (199). Silencing c-FLIP 

sensitizes CSCs to cisplatin or TRAIL therapy (200, 201). Inhibition of Bcl-2, survivin and 

XIAP sensitizes prostate CSCs to apoptosis (202, 203). These results hold promise for tilting 

down anti-apoptotic activity to effectively sensitize cancer to chemotherapy (204).

The role of autophagy in cancer is paradoxical as it functions both to suppress tumor 

progression and promote cell survival in response to catastrophic stresses (205). CSCs take 

advantage of the pro-survival side of this double-edged sword feature of autophagy. Many 

anticancer therapies including chemo-, radio- and targeted therapies have been shown to 

activate autophagy and subsequent therapy resistance in cancer cells, and inhibiting 

autophagy sensitizes tumor to chemotherapies resulting in tumor regression (129, 130). In 

addition, resistance to drug-induced differentiation may also play a role in protecting CSCs 

from chemotherapeutic death effect.

2.6. Regenerate self - the 6th line

2.6.1. Epithelial-mesenchymal transition (EMT)—EMT is physiologically designed 

for the epithelial cells to change so that the cells can migrate away during embryonic 

developmental processes such as gastrulation. During EMT, epithelial cells undergo 

morphological changes into fibroblast-like mesenchymal phenotype. Typically, the 

epithelial cells change from a polarized monolayer where they are connected side-by-side 

and shoulder-by-shoulder via various types of cell-cell junctions into isolated or scattered 

cells that lose cell-cell interactions and become more motile and invasive. At the molecular 

level, an expression switch from epithelial marker genes such as E-cadherin and β-catenin to 

mesenchymal marker genes such as vimentin and fibronectin is turned on by various types 

of EMT-inducing transcription factors (EIFs) such as Snail, Twist, Zebs and krüppel-like 

factor 8 (KLF8). These EIFs have recently been found to work closely with microRNAs 

particularly the miR200 family and miR146a to control EMT, CSC induction and therapy 

resistance (206–216) (A recent review has more details (217)). In addition to embryonic 

development, wound healing also requires EMT on the wound edges so that the cells can 

migrate efficiently towards the center of the wound to eventually heal the wound. Invasive 

tumor cells hijack this wound healing mechanism to dissociate from the primary tumor 

mass, migrate away and invade through the stromal matrix including basement membrane 

that constrains the tumor mass and envelops the vascular vessels to eventually enter the 

circulation and reach distant metastatic sites (218).

Importantly, EMT has recently been linked to both CSCs and therapy resistance of cancer. 

Cells undergone EMT gain CSC-like features and CSCs exhibit a mesenchymal phenotype 
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(22, 219, 220). EMT induced by Twist (22), Snail (221) and KLF8 (214) is all accompanied 

by the induction of CSC properties. Mouse mammary stem cells exhibit a mesenchymal 

phenotype (22, 222) and transforming growth factor beta (TGF-β) induces both EMT and 

cell renewal capabilities in human mammary epithelial cells (220). Association of EMT with 

the CSC properties was also found in metastatic breast (223) and colorectal (224) cancer 

cells. Many other EMT-regulating signaling pathways such as the Wnt, Notch and 

Hedgehog pathways were also found to be critical for CSCs (222, 225, 226). Lastly, CSCs 

express high levels of EMT markers (12). Drug resistance is an intrinsic mechanism of 

normal stem cells that protects them like seeds for embryonic development or tissue 

regeneration and repair. Like normal stem cells, CSCs have been found to associate with 

EMT as well as acquired therapy resistance in various types of cancer (12). Mesenchymal 

(but not epithelial) phenotype and/or gene expression signature has been linked to therapy 

resistance in many cancer types including cancers of the lungs (227, 228), head and neck 

(229, 230), pancreas (44, 231, 232), colon (233), breast (214, 234–238) and ovaries (231, 

239) against targeted therapies using erlotinib, gefitinib, lapatinib or tamoxifen as well as 

chemotherapies using cetuximab, taxol, paclitaxel, vincristine and oxaliplatin, gemcitabine 

or oxaliplatin. Various studies have provided evidence supporting a role of Notch signaling 

for cancer chemoresistance (214, 240–243).

2.6.2. CSC plasticity and dynamics—For more than a century, “terminally 

differentiated cell” has been the terminology used to describe cells that have completed 

cellular differentiation pathway and believed to no longer be capable of proliferating. The 

vast majority of this cell category happens to be a component of the epithelia that cover the 

skin surface or line the lumen of the tubular or ductal organs and are the tumor origin of 

more than 80% of all cancer types. This terminology, however, has no longer been correct 

since the induced pluripotent stem cells (iPSCs) were created via dedifferentiation of the 

“terminally differentiated” cells by re-activation of a few reprogramming transcription 

factors (RPFs) (244–247) as illustrated above in Figure 1. Similarly to RPFs, EIFs 

specifically grant the stem capability back to “terminally differentiated” normal or non-

tumorigenic epithelial cells. This EMT-associated regeneration of stem or stem-like cells 

may be critical for refreshing adult epithelial stem cell pool in response to their loss due to 

any cause. For example, depletion of hair follicle stem cells is followed by repopulation of 

the stem cells from differentiated skin cells (12). However, the same mechanism could 

contribute to the initiation of tumorigenic CSCs as is seen in the cells overexpressing the 

EIFs Twist, Snail or KLF8 (22, 214, 221). This same mechanism could also be utilized in 

cancer to regenerate CSCs from non-stem cancer cells in the tumor in response to loss of 

CSCs due to anticancer therapies (248–250). Thus, regeneration of CSCs by EMT is a likely 

mechanism for chemoresistance of cancer and relapse just as normal ASCs repopulate and 

redistribute when encountering massive damage by radiation. Indeed, rapid repopulation of 

CSCs is believed to occur in human tumors during radiotherapy (251), and redistribution of 

CSCs to the quiescent phase of the cell cycle makes the cells more resistant to radiotherapy 

(137, 252). The regeneration process could be responsible for the heterogeneous phenotypes 

of CSCs within a same tumor as recently discovered in melanoma (138). This mechanism of 

CSC plasticity associated with EMT provides a new challenge for the concept of anti-CSC 

monotherapy that has been thought to be capable of eradicating the source of tumor. 
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Obviously, elimination and prevention of the regeneration of CSCs are equally important for 

CSC-targeted therapy.

2.7. Perish together - the last line of defense

The large overlap of the mechanisms of action in CSCs with those in normal stem cells or 

non-stem cells makes CSC targeting difficult because of likely toxic side effects on the 

normal cells. This makes CSC-specific targeted therapy particularly important to prevent 

normal cells and eventually the patient from being harmed alongside the CSCs.

3. An update on CSC-targeted therapy studies

The definition of targeted anticancer therapy is two-fold: 1) To disable the molecules in the 

tumor cells being targeted and thus the tumor cells. 2) To destroy the tumor cells being 

targeted by cancer cell-specific molecule-guided delivery of non-targeted drug, mostly 

chemotherapeutic drugs. Several scores of CSC-targeted small molecule compounds have 

been reported as outlined in Table 1. These compounds are designed or selected to directly 

inhibit CSC. Not surprisingly, most of these compounds target the survival/apoptosis and 

stem signaling pathways in CSCs. Others target the ABCTs and EMT. While this list of 

compounds is rapidly growing, CSC-specific molecule, such as CD44, directed delivery of 

non-targeted drugs has drawn increasing attention (253, 254).

4. Conclusion

Studies on CSCs have raised tremendous hope for designing tumor cell eliminating 

anticancer therapy. These same studies have also revealed significant challenges due to the 

multiple step defense strategy used by CSCs against chemotherapy, leading to the important 

clinical concerns such as chemoresistance, metastasis and relapse. Since other types of 

anticancer therapies, particularly radiotherapy, share much in therapeutic mechanisms of 

action, the mechanisms underlying CSCs chemoresistance might as well be applicable to 

other types of therapy such as radiotherapy, targeted therapy as well as anti-stromal therapy. 

The similarity in self-defense between CSCs and normal stem cells and even non-stem cells 

requires development of smart CSC-specific anticancer therapy. The CSC plasticity and 

regeneration underscore the importance of combination of CSC-specific therapy with other 

therapies including the mainstream conventional therapies such as chemotherapy and 

radiotherapy to prevent regeneration, repopulation and redistribution of CSCs from non-

stem tumor cells. Lastly, patient’s individual difference in CSC properties may require 

patient stratification as well for effective CSC-based anticancer strategies.
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Abbreviations

5-FU 5-fluorouracil

ABCT ATP-binding cassette transporter

ALDH aldehyde dehydrogenase

AML acute myeloid leukemia

ASC adult stem cell

BCRP or ABCG breast cancer resistance protein

BER base excision repair

BMP bone morphogenetic proteins

BRCA breast cancer associated gene

CML chronic myeloid leukemia

CSC cancer stem cell

DDR DNA damage response

DNMT DNA methyltransferase

ECM extracellular matrix

EGFR epidermal growth factor receptor

ERCC1 excision repair cross-complementing 1

EMT Epithelial-mesenchymal transition

EIF EMT-inducing factor

EPR error-prone repair

ERK extracellular signal regulated kinase

FGF fibroblast growth factor

G-CSF granulocyte colony-stimulating factor

HDR homology-directed repair

HGF hepatocyte growth factor

Hh Hedgehog

HIF hypoxia-inducible factor

HSC hematopoietic stem cells

IAP inhibitor of apoptosis

iPSC induced pluripotent stem cell

IGF insulin growth factor

IL interleukin
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JAK Janus kinase

KLF8 krüppel-like factor 8

MDS myelodysplastic syndrome

MRD minimal residual disease

ROSs reactive oxygen species

MDR1 or ABCB1 multidrug resistance protein 1

MMR mismatch repair

MRP1 or ABCC1 multidrug resistance-associated protein 1

NER nucleotide excision repair

NF-κB nuclear factor-kappa B

NHEJ non-homologous end joining

HNSCC head and neck squamous cell carcinoma

NSCLC non-small cell lung cancer

PARP-1 poly (ADP-ribose) polymerase 1

PI3K phosphatidylinositol-3-kinase

PKB or AKT protein kinase B

PML promyelocytic leukaemia

RPF reprogramming factors

SMAC second mitochondria-derived activator of caspase

SP cell side-population cell

STAT signal transducer and activator of transcription

TGF-β transforming growth factor beta

TKI tyrosine kinase inhibitor

TSG tumor suppressor gene

UGT1A1 uridine diphosphate (UDP) glucuronosyltransferase 1

VEGF vascular endothelial growth factor
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Figure 1. 
Cancer stem cell (CSCs) origins and mechanisms of formation. The three hypotheses are 

highlighted in bold blue arrows. 1. The epithelial to mesenchymal transition (EMT) induced 

by EMT-inducing factors (EIFs) turns normal epithelial cell (the red square-shaped) to 

fibroblast-like cell (the blue star-shaped). The latter subsequently becomes CSC particularly 

with mutations of oncogenes and/or tumor suppressor genes (TSGs). This process mirrors 

the formation of induced pluripotent cell (iPSC, green round-shaped) from normal fibroblast 

(red star-shaped) activated by the reprogramming factors (RPFs) shown on the left. 2. 

Normal adult stem cell (ASC, light-blue round shaped) is transformed into CSC by 

mutations of oncogene(s) and/or TSG(s). 3. EMT drives the tumor non-CSC (pink pentagon-

shaped) back to be CSC.
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Figure 2. 
The multiple lines of defense cancer stem cells use to resist chemotherapy.
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Table 1

CSC-targeted small molecule monotherapy studies

Mechanisms Agents Cancer Types References

Targeted

Survival/apoptosis

NF-κB Eriocalyxin Ovarian (255)

NF-κB MK-5108 Ovarian (256)

NF-κB Morusin Cervical (257)

NF-κB Parthenolide Multiple myeloma (258)

NF-κB Andrographolide Multiple myeloma (258)

STAT3 Galiellalactone Prostate (259)

STAT3 STX-0119 Glioblastoma (260)

STAT3 Tanshinone IIA Breast (261)

STAT3 WP1193 Glioblastoma (262)

Akt, mTOR Rottlerin Pancreatic (263)

Akt, MAPK Sorafenib Glioblastoma (264)

Akt, MAPK Strigolactone Breast (265)

Akt Harmine Glioblastoma (266)

Metabolism Niclosamide Ovarian (267)

Metabolism 3-bromopyruvate Pancreatic (268)

Metabolism 2-deoxyglucose Breast (269)

MAPK Icaritin Breast (270)

MAPK Imatinib Glioblastoma (271)

Survivin LLP-3 Glioma (272)

Bcl-2 ABT-737 Glioma (199)

FAK, ROCK1 Atorvastatin Prostate (273)

AMPK Metformin Pancreatic (274)

Telomerase MST312 Lung (275)

Mcl-1 Omacetaxine CML (276)

Stem signaling

Wnt Phosphosulindac Breast (277)

Wnt Salinomycin Endometrial (278–281)

Wnt Acetaminophen Breast (282)

Wnt Celecoxib Colon (283)

Wnt, IGF-1R Adamantyl retinoid Pancreatic (284)

Wnt Oximatrine Breast (285)

Wnt, hedgehog Sulforaphane Breast, pancreatic (286–288)

Hedgehog Cyclopamine Glioblastoma (176)

Hedgehog Erismodegib Prostate (203)

Hedgehog Vismodegib Pancreatic (289)
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Mechanisms Agents Cancer Types References

Hedgehog GANT-61 Pancreatic (290)

Notch DAPT Ovarian (291)

Notch MRK-003 Breast (292)

Notch Retinoic acid Brain (293, 294)

Notch RO4929097 Melanoma (295)

Stem factors SB-T-1214 (taxoid) Colon (281)

c-Met Cabozantinib Pancreatic (296)

ABCTs

ABCG2 Curcumin Colon (297)

ABCG2 Imatinib, nilotinib Hematopoietic (298)

ABCG2 Mithramycin Lung, esophageal (299)

DNA repair

ATM, ATR CCT129202 Lung (300)

PARP-1 NSC747854 Lung (301)

CSC niches/stroma

HIF1α 17-AAG Lymphoma (302)

Glycosaminoglycan G2.2 colon (303)

EMT

EMT/Stem factors Resveratrol Pancreatic (304)

EMT/NF-κB Lupeol Head and neck (305)

EMT Cystatin C Breast (306)

EMT Dasatinib Breast (307)

Drug metabolism

AhR Tranilast Breast (308)
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