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Abstract

Advances in digital pathology, specifically imaging instrumentation and data management, have 

allowed for the development of computational pathology tools with the potential for better, faster, 

and cheaper diagnosis, prognosis, and prediction of disease. Images of tissue sections frequently 

vary in color appearance across research laboratories and medical facilities due to differences in 

tissue fixation, staining protocols, and imaging instrumentation, leading to difficulty in the 

development of robust computational tools. To address this challenge, we propose a novel non-

linear tissue-component discrimination (NLTD) method to automatically register the color space 

of histopathology images and visualize individual tissue components, independent of color 

differences between images. Our results show that the NLTD method could effectively 

discriminate different tissue components from different types of tissues prepared at different 

institutions. Further, we demonstrate that NLTD can improve the accuracy of nuclear detection and 

segmentation algorithms, compared to using conventional color deconvolution methods, and can 

quantitatively analyze immunohistochemistry images. Together, the NLTD method is objective, 

robust, and effective, and can be easily implemented in the emerging field of computational 

pathology.
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Advances in imaging instrumentation and data management provide the foundation for 

computational approaches to analyze digitized images of tissue sections and derive 

objective, quantitative measurements at the tissue, cellular, subcellular, and molecular 

levels
1
. Computational pathology approaches offer a cost-effective platform to increase 

throughput, accuracy, and reliability of diagnoses of tissue samples
2, 3. Further, the 

quantitative nature of computational pathology can be used in combination with other assays 

to improve pathologists’ knowledge of disease and help inform treatment strategies and 

further stratify patient prognosis. It has been shown that, by integrating information derived 

from computational pathology with a patient's clinical data, a better prognostic model can be 

derived for many diseases, including prostate cancer
4-6, lung cancer

7
, breast cancer

8-12
, 

glioblastoma
13, 14

, basal cell carcinoma
15, 16

, and ovarian cancer
17, 18

.

One of central challenges of computational biology, which limits its large-scale applications, 

is that images of tissue sections frequently vary in color appearance across research 

laboratories and medical facilities due to differences in tissue fixation, staining protocols, 

and imaging instrumentation. The wide spectrum of image color appearance causes 

difficulty in robustly extracting the representative images of different tissue components, 

such as nuclei
19

. Previous studies have shown that technician variance or technique 

differences can lead to dramatic differences in staining
20

. For example, the conventional 

hematoxylin and eosin (H&E) staining techniques have been modified to reduce material use 

and processing time
21

 or to improve the contrast and detail in the digital image
22

. These 

technique differences provide some advantage to the pathologist, but also lead to variation in 

the staining of slides for use in computational pathology approaches that must be addressed.

Several stain normalization computational approaches- including color deconvolution
23

, 

histogram equalization
24

 and the use of the CMYK space
25

- have been developed to correct 

for the difference image appearance and facilitate the separation of tissue types
19, 20

. Of 

these approaches, color deconvolution is the most commonly used approach to extract 

nuclear and cellular images in both hematoxylin and eosin (H&E) and 

immunohistochemically (3,3' Diaminobenzidine, DAB) stained images
2, 9, 23, 26-28

. Color 

deconvolution utilizes the method of singular value decomposition (SVD), which seeks to 

linearly separate the color space to identify regions rich in each particular dye. However, a 

major disadvantage of color deconvolution is the requirement of prior knowledge for each 

dye's color spectrum in order to accurately visualize tissue components
29

. Due to color 

appearance difference between images, using the same stain vector across images will 

introduce variance in the representative image for each dye. Although there are automated 

methods to determine the stain vector for individual images, the additional processing step 

leads to significant increase in processing time across large image datasets
30

. Furthermore, 

color deconvolution only decouples the concentration of dye in the histo-pathological image, 

and further processing is needed to separate individual tissue components such as blood, 

nuclei, and extracellular matrix and cytoplasmic rich regions for quantification.

In this work, we propose a novel non-linear tissue-component discrimination (NLTD) 

method to automatically register the color space of histopathology images and obtain 

representative images for individual tissue components, such as nuclei or cytoplasm, 

irrespective of perceptual color differences between images. We demonstrate that the nuclei 
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image obtained from NLTD display consistent appearance for histopathology images- 

including those with distinct color differences- taken from different tissues types and 

prepared at different institutions, including The Cancer Genome Atlas project (TCGA, 

http://cancergenome.nih.gov/). Importantly, the processing time of NLTD is highly 

comparable to the color deconvolution for small images, and much more efficient for large 

images, notably whole slide images. Further, we demonstrated that the nuclei images derived 

using NLTD produce highly accurate nucleus tracing and counting, and NLTD allows for 

quantitative analysis of antigen presence in immunohistochemical images. Together, we 

show that NLTD is an effective approach to obtain quantitative tissue component images that 

can be easily integrated in emerging computational pathology applications.

Methods

The non-linear tissue-component discrimination (NLTD) method consists of five main steps 

(Fig. 1a), detailed further here:

1) Color joint-histogram creation

2) Ridge detection

3) Ridge set registration

4) Transformation function creation

5) Tissue component image creation

Color joint-histogram creation

In a typical 8-bit tissue image, I, the color of an individual pixel, p, at location (xp, yp) is 

expressed by three intensities (rp,gp,bp), each of which ranges from 0 to 255, discretely, i.e.

(1)

For example, if all the intensities of a pixel are zero the resultant color is black; conversely, 

if all are 255, the resultant color is white. The color joint-histogram is a three dimensional 

histogram created by counting the occurrence of pixels at all different set of red, green, and 

blue intensities in an image. However, calculating every color combination in RGB color 

space and analyzing 3D RGB color joint histogram is a highly computationally intensive 

process. An 8-bit image can contain more than 16 million unique combinations. To reduce 

computational time, it would be advantageous to only consider two of the three color axes, 

reducing the number of unique combinations 256-fold

In a cohort of 45 H&E images, we found that blue and green color components are highly 

correlated within individual images (Fig. 1b). Furthermore, we also found that the red and 

green color components are highly correlated in a set of 81 immunohistochemically stained 

images (DAB)
31

 (Fig. 1c). These observations show that in both H&E and DAB images 

green color channel encodes highly correlative information to other color channel and 

implies that the red-blue color joint-histogram can be a representative simplification of the 

histo-pathological image RGB color space. The red-blue color joint histogram (RBJH) is a 
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2-dimensional matrix, created by counting the frequency (n) of pixels at different red (r) and 

blue (b) intensity values in the image (I), i.e.

(2)

The resultant RBJH can be visualized as a three dimensional surface, with the x and y axes 

corresponding to the red and blue color space values, respectively, and the z axis 

corresponding to the incidence rate for each R-B intensity combinations.

Ridge detection

The RBJH shows the most abundant color combinations in the red-blue color space for an 

image. In the RBJH, distinct populations of red-blue combinations are readily observed, 

corresponding to different tissue components (Fig. 1d). However, to detect and segment 

individual tissue components in the RBJH is challenging due to the elongated non-linear 

distribution of red-blue color combinations that complicates separation of the populations 

and , consequentially, common approaches, such as Gaussian mixture models or k-means 

clustering, do not work well. Gaussian mixture models fail because most images’ RBJH do 

not follow strictly Gaussian distributions, often having one major peak, along with a long 

sparse tail. Similarly, k-means clustering is not effective at detecting sparse areas in the 

RBJH. Additionally, both models require prior knowledge of the numbers of components 

present, which we have found can vary from 1 to 3 in most images. Successful extraction of 

individual tissue components’ locations in the red-blue color space needs to incorporate the 

asymmetric and elongated distribution of red-blue color combinations that is observed in the 

RBJH. Therefore, we propose to identify locations of major tissue components in the red-

blue color space by tracing the location of ridges of distinct population in the RBJH (Fig. 
S2).

We first identified the major orientation of signal in RBJH using weighted principal 

component analysis (PCA) (Fig. S1a). PCA is applied to the each red and blue index of the 

RBJH, with the frequency (nr,b) associated with each color combination used as a weight. 

The principal component provides the major direction of the RBJH color space, which can 

be combined with the location of the global maximum of the RBJH to create a major axis 

(v0). Next, we identify the local maxima tangent along the major axis in RBJH (Fig. S1b). 

To ensure the all local maximum is detected, this routine is repeated along two other vectors 

at angles ±15 degrees of the major direction. A map of all local maxima identified is then 

created by counting the frequency of local maxima identified at each red-blue index (Fig. 
S1c). This map is further processed through morphological dilation and thinning operations 

to provide a binarized location of ridges for all distinct populations in RBJH (Fig. S1d).

Ridge set registration

To register the ridge set maps in RBJH to different tissue components, we developed a 

robust algorithm based on each ridge's proximity to specified reference color combination 

(Fig. S2a). Four reference color combinations are used: Red (r=255, b=0), Blue (r=0, 

b=255), Black (r=0, b=0), and White (r=255, b=255). The Euclidean distance transform
32

 is 
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calculated for each reference color combination, and the minimum distance along each ridge 

is found. The component with the smallest distance from a reference color combination is 

determined to be the closest. In H&E staining, in general nuclei would be closer to black and 

blue, while extracellular matrix and cytoplasm rich areas would be closer to white. Similar 

logic can be applied to DAB chromagen staining, where antigen rich areas are closer to red 

than nuclei, which are closer to blue.

In some cases, where the RBJH is more homogenous, it is possible that only one ridge is 

found (Fig. S2b). For H&E staining, in general, each image contains at least two distinct 

components- nuclei or extracellular matrix and cytoplasm rich components. The portion of 

ridge closer to white and red represents extracellular matrix and cytoplasm rich areas and the 

remaining portion of the ridge represents the nuclei-rich regions; this necessitates further 

segmentation of the ridge. To segment the ridge, the intensity profile (i.e. frequency of color 

combinations) of the RBJH along the ridge is first extracted. A peak, corresponding to the 

most frequently occurring color combination, commonly appears that represents the central 

location of extracellular matrix and cytoplasm rich regions on the ridge. Thus, we fit this 

intensity profile with a Gaussian distribution to measure the distribution of the extracellular 

matrix and cytoplasm rich areas along the ridge, and segment the single identified ridge 

using a distance of two standard deviations from the peak into two distinct ridges 

corresponding to nuclei or extracellular matrix and cytoplasm rich components. For DAB 

chromagen staining, the possibility of only one ridge being identified is most likely due to 

the lack of presence of antigen to probe in the tissue section and hence no further 

segmentation is needed.

Transformation function creation

We formulated tissue transformation functions (TF) to convert the red-blue color space to 

intensity of different tissue components (k=1,2,...,N). We assume the red-blue color space 

has different regions that exclusively correspond to different tissue components based on the 

proximity to each ridge in the ridge set. A watershed segmentation is applied to the ridge of 

the RBJH to identify regions of the red-blue color space that represent the unique tissue 

components (Fig. S3a). Additionally, the regions of the red-blue color space with the most 

absorption (i.e. lower r and/or b indices) correspond to the strongest signal within each tissue 

region. For each particular tissue component, the red and blue indices that are closest to the 

tissue's ridge indicate a higher likelihood of belonging to that tissue and also contribute to a 

stronger signal.

To account for these three factors, we developed a transformation function, TFk, that account 

for the tissue component's region in red-blue color space (fregion), its absorption (fabsorption), 

and the distance from each tissue component's ridge (fridge) (Fig. S3b), expressed by

(3)

k=1,2,...,N tissue component.
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The tissue region function, fregion, uses the watershed segmentation result as a basis to 

exclude any part of the red-blue color space not belonging to the same tissue component. 

The region of the red-blue color space corresponding to the kth tissue component is defined 

as Wk. A Gaussian filter, g, can be applied to the edge of the region to allow for a smoother 

transition between components (Fig. S3b[i]), i.e.,

(4)

The absorption function, fabsorption , for kth tissue component is obtained by first calculating 

the Euclidean distance transform
32

 (Ddark) of all points in red-blue color space from the 

point with highest absorption (i.e. darkest) on the kth tissue component ridge (Rk), defined as 

the point on the ridge closest to black (r=0, b=0). To scale the distance with level of 

absorption of dye, the absorption function (Fig. S3b[ii]), is expressed by

(5)

The ridge function, fridge, is derived from the Euclidean distance transform
32

, D, which is 

the minimum distance of any point in the red-blue color space to a point on the ridge of the 

kth tissue component, Rk. To scale the likelihood with distance, the ridge function (Fig. 
S3b[iii]), is expressed by

(6)

Tissue component image creation

To obtain the kth tissue component image, Tk , the red and blue pixel intensities (rp, bp) at 

each location (xp,yp) in the original image, I, were used to create a grayscale image 

according to the transformation function, TFk, i.e.

(7)

Sample Acquisition

Histo-pathological images were acquired from pathologists at the Johns Hopkins University. 

The tissue samples were formalin-fixed and paraffin embedded. Tissue sections were fixed 

for 3 hours in formalin on tissue processor, followed by 1-2 hours of gross room fixation. 

Paraffin sections were cut at 5μm thickness. Sections were then stained with hematoxylin 

and eosin and digitized using a DP27 5MP color camera, Sections of pancreatic cancer, 

colon cancer, ovarian cancer, and glioblastoma were included. Immunohistochemical (3,3’-

Diaminobenzidine (DAB)) stained tissue was acquired through an ovarian cancer tissue 

microarray, as described previously
31

. Additional tissue images were acquired from The 

Cancer Genome Atlas project (http://cancergenome.nih.gov) and published sources
33, 34

.
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Nuclei Detection

To perform a comparison of segmentation results between color deconvolution and the 

NLTD method, a publicly available dataset
33

, including both tissue images and ground truth 

nuclei locations, was analyzed. For the NLTD method, the corresponding nuclei image was 

obtained and nuclei location is obtained using following procedure:

1) Binarize each image using a dynamic threshold, calculated using 

Otsu's method
35

.

2) Remove small objects based on a size threshold of 50 pixels.

3) Watershed segmentation to separate clusters of nuclei.

The same segmentation approach was used for the color deconvolution image corresponding 

to the hematoxylin dye. For each segmented nucleus identified, the nearest ground-truth 

nucleus was found. If two segmented nuclei were attached to the same ground-truth nuclei, 

the nearest would be counted as a true positive (TP) and the other would be counted as a 

false positive (FP). Any segmented nucleus with the nearest ground-truth nuclei was more 

than one average cell diameter away was counted as a false positive (FP). Conversely, any 

ground-truth nucleus that did not have any segmented nuclei within one average cell 

diameter was counted as a false negative (FN).

Immunohistochemistry Scoring

A TMA of ovarian cancer tissue stained using an antibody for LINE-1 ORF1p
31

 was used to 

evaluate the utility of NLTD as an immunohistochemistry scoring aide. Each image in the 

TMA was separated into two images using the NLTD method, a nuclei-rich image and an 

antigen-rich image (Fig. S5). Pre-processing steps were performed in order to only analyze 

nuclei rich regions where antigen staining was present, and avoid background areas where 

no staining should occur. Briefly, the nuclei-rich image was segmented using Otsu's 

thresholding technique
35

. Small objects were removed from the image, followed by 

morphological opening and closing operations and another removal of small objects. After 

pre-processing, a transformation score was derived based on the ratio of antigen intensity to 

nuclei intensity (Eq. 8). Importantly, only antigen and nuclei intensity in the areas from the 

segmented, pre-processed image were counted.

(8)

Hardware and Software

All image processing was performed using MATLAB 2015 (Mathworks). To determine 

statistical significance, two-tailed t-tests were performed using Graphpad Prism 6. All 

computations were performed on Windows 7 Professional with an Intel Core i7-3820 
processor and 16 GB RAM.
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Statistics

To quantify the segmentation results, precision, recall, and F-Score statistics were used
36

. 

For this dataset it is not possible to assess accuracy or other statistics using true negative 

counts, since the classification system has no negative result included and only positive 

occurrences (i.e. nuclei) are identified. Each statistic is defined as follows:

(9)

(10)

(11)

Results

Overview of the non-linear tissue-component discrimination (NLTD) method

The NLTD method presented in this work consists of five major steps, as illustrated with an 

H&E-stained image and an immunohistochemically stained image in Fig. 1a. First, the red-

blue color joint-histogram (RBJH) is created. This joint-histogram represents the frequency 

at which each red-and-blue pixel intensity combination occurs in a histo-pathological image, 

and serves as the basis for tissue-component discrimination. The RBJH is reduced to a set of 

curves representing the ridges, or local maxima, utilizing an iterative approach. This ridge 

set is further registered with corresponding individual tissue components (e.g. nuclei, 

extracellular matrix and cytoplasm rich, etc.). Further, the ridge set serves as a basis for the 

creation of a set of transformation functions used to create individual, grayscale images from 

the original image representative of each tissue component present in the image (see more 

details in Methods section). The resulting set of tissue component images can then be used 

for additional tissue processing and analysis, including nuclei detection algorithms and 

quantitative scoring of immunohistochemically stained samples. The MATLAB package is 

available upon request.

Robustness of NLTD

To demonstrate the robustness of the NLTD method, we applied NLTD to a set of histo-

pathological images with wide range of apparent colors to show the uniformity in the images 

of nuclei extracted using the NLTD method (Fig. 2). The image set spans multiple tissue 

types, along with several different image sources: the Johns Hopkins School of Medicine; 

images from previous studies performed at University of California, Santa Barbara
34

 and the 

University of Berlin
33

; and publicly available images from the TCGA image database 

Sarnecki et al. Page 8

Lab Invest. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(http://cancergenome.nih.gov). The results show that even though the RBJH color space for 

different images have unique and different distributions, the NLTD method can successfully 

identify and register each tissue component and extract nuclei images consistently and 

robustly.

Processing time

For most computational pathology applications, the time associated with processing each 

image and gleaning important information can quickly become a barrier with image size 

and/or lager cohort of images. Previous work has compared stain normalization processing 

time for smaller images (256×256, 512×512, and 1024×1024)
29

. Whole slide imaging, 

however, often results in much larger images (10000×10000 or greater), and it is important 

for image processing time to scale well with the size of each image. In our work, we 

compared color deconvolution, color deconvolution using Macenko's color normalization 

method
37

, and the NLTD approaches. Macenko's approach involves an additional 

preprocessing step to determine each individual image's optimal stain vector and uses the 

optimal stain vector for color deconvolution. Both color deconvolution approaches were 

faster than the NLTD method at small image size (up to 2500×2500), but, as the image size 

approached whole slide levels (15000×15000), the NLTD method was much faster than both 

color deconvolution based methods and took only a quarter of the time to process each 

image (Fig. 3). This result suggests that NLTD can more efficiently analyze larger images, 

which can be very useful for large datasets, such as TCGA. Since color deconvolution is 

more time efficient at smaller sizes, it is possible to partition one large image into many 

smaller images (i.e. one 10000×10000 image into one hundred 1000×1000 images). 

However, this additional processing step would still lead to an increase in processing time 

compared to the NLTD approach (3.8sec for NLTD on one 10000×10000 image, 11.85sec 

for color deconvolution on one hundred 1000×1000 images). Therefore, the NLTD method 

can be more efficiently applied to whole slide images and reduce the time needed to analyze 

large cohorts of images.

Improving Nuclei detection with NLTD

Nuclei detection in histo-pathological images has been critical and often used in 

computational pathology approaches to develop prognostic and diagnostic 

models
7-9, 11, 12, 17, 33

. Currently, color deconvolution (CD) is commonly used to extract a 

representative nuclei image (corresponding to the hematoxylin dye levels) to apply nuclei 

detection algorithms
9, 28-30, 33, 38

. Here, we show that using the nuclei image derived from 

the NLTD method improves the detection of nuclei over the color deconvolution approach. 

We first evaluated the contrast of individual nuclei images created from both the NLTD and 

the color deconvolution method (Fig. 4 a-c). By examining the intensity profile along one 

axis across nuclei, we found that the nuclei image obtained from NLTD has a substantial 

decrease in intensity at the periphery of the nucleus compared to nuclei images from color 

deconvolution. This result suggests that the implementation of segmentation algorithms to 

the NLTD nuclei image would be less sensitive to the intensity threshold value and hence 

could lead to improvements in the accuracy and robustness of nuclei segmentation 

algorithms.
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To quantitatively examine the performance of the NLTD and color deconvolution methods in 

nuclei detection and segmentation, we applied previous proposed detection algorithm (see 

more details in Methods section) after applying both color normalization methods (NLTD 

and CD) to a published set of 35 images
33

. This dataset included nuclei locations that had 

been previously registered by a pathologist and were used as ground truth (Fig. 4d-e).

To assess each method, the precision, sensitivity, and F-score were measured. High precision 

and sensitivity are both valuable in a nuclei detection system. A system that lacks precision 

will lead to unnecessary calculation and validation by an observer with too many nuclei 

identifies. Conversely, a system that is not sensitive will miss many nuclei and potentially 

distort the values of nuclei counts or exclude rare nuclei events, such as mitotic or atypical 

nuclei. The F-score provides the harmonic mean between sensitivity and precision and 

serves as an overall measure of how accurate the system is.

Among the 35 images tested, we found that, overall, the images normalized using NLTD 

have significantly higher sensitivity in detecting nuclei than the corresponding color 

deconvolution images (NLTD=0.868; CD=0.753), but slightly lower precision 

(NLTD=0.938; CD=0.976) (Fig. 4f-h). The overall accuracy, as represented by the F-score, 

for NLTD images is 0.860 and is significantly higher than the color deconvolution images 

(F-score = 0.805). The slightly lower precision in our NLTD system correlates to an over-

detection, with more nuclei identified by the NLTD detection system than the ground truth. 

The higher sensitivity, however, means that the NLTD detection system leaves fewer ground 

truth nuclei undetected. Together, these results suggest that the NLTD method is able to 

provide more accurate nuclei segmentation results, compared with conventional color 

deconvolution methods.

NLTD for quantitative immunohistochemistry (IHC) analysis

In addition to providing a platform for image appearance normalization and nuclei detection, 

the NLTD method can be used as a companion diagnostic for analysis of 

immunohistochemical labeling quantitatively and objectively. The intensity level of DAB 

chromagen labeling is used to access the level of antigen presence in tissue sample by 

pathologists. We applied our method to an ovarian cancer tissue microarray cohort that had 

been immunolabeled for L1ORF1p, a cytoplasm-localizing protein associated with cancer
31 

(Fig. 5 and Fig. S4). Each tissue sample in this cohort was scored by a trained pathologist 

using a discrete scoring system (0, 1, 2, or 3). A score of 0 indicates no significant protein 

expression whereas a score of 3 was given for high expression. We applied our NLTD 

method to individual tissue images of the TMA to create component images for antigen rich 

regions and nuclei rich regions. These images were then used to calculate an overall score 

corresponding to the level of antigen, normalized by nuclei intensity (see more details in 

Methods section). Our results showed a strong correlation (Spearman's ρ = 0.8122) between 

our automated scoring platform and the scoring by the pathologist. Minor overlap exists 

between tissues with a score of 1 and 2 but both high expression (3) and very low expression 

(0) scores were well stratified. This result shows the utility of our NLTD method as a 

nonparametric tool to assess immunolabeling.
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Discussion

Color deconvolution
23

, and other associated methods
9, 26-29, 37

, are routinely used for dye 

separation in histo-pathological images, but are limited by difference in dye appearance 

between images, potentially time consuming automated image processing, and a need for 

further post-processing to identify specific tissue components, such as nuclei. The NLTD 

approach presented here is able to bypass these limitations, specifically the requirement of 

prior knowledge of color information for different batches of histo-pathological images. The 

NLTD approach makes no inherent assumptions about the histo-pathological image's color 

space, and yields consistent, batch-invariant tissue component separation in histo-

pathological images. We demonstrate that the NLTD method can successfully identify nuclei 

for a wide variety of histo-pathological images despite large variations in the perceptual 

color space (Fig. 2). Importantly, no prior knowledge or user input is required, as our 

algorithm will automatically register locations of for each tissue component, and the method 

can be used across multiple batches of images without additional user input. Therefore, 

NLTD method can be seamlessly integrated in computational pathology pipelines that aim to 

analyze large cohorts of images, such as the TCGA project (http://cancergenome.nih.gov/) 

or Human Protein Atlas Project
39

. The TCGA project also provides the opportunity to link 

morphological features of the histo-pathological images with genomic information, with 

potential for better understanding of what effect the changes in gene expression can have on 

the morphology of the tissue.

The tissue component images created through the NLTD method can be readily analyzed to 

yield additional information, such as nuclei information and immunohistochemical grading. 

We found that the NLTD method performs nuclei segmentation better than the color 

deconvolution approach. The segmentation approach presented here based on a simple 

implementation of Otsu's thresholding, but more refined approaches, as mentioned in 

reviews of computational pathology
19, 20

, should lead to greater accuracy using tissue 

component images from the NLTD method. We have demonstrated that the nuclei 

component images generated using the NLTD method have greater separation of signal from 

background compared to color deconvolution, suggesting simpler processes for nuclei edge 

detection can be used and lead to significantly reduced segmentation times. Nuclei detection 

requires very fast computation since an individual tissue image can have millions of nuclei, 

leading to large increases in total processing time with each additional nuclei detection step.

The field of computational pathology is rapidly growing, and there are many opportunities 

for computational approaches to provide additional prognostic and diagnostic information 

that cannot be provided by pathologists alone
40-42

. The NLTD method presented here 

provides a framework that can be easily implemented for many different applications, 

including nuclei detection and immunohistochemistry grading. In addition to these 

applications, NLTD could be used as a visualization tool to normalize tissue appearance 

across batches, provide texture information for abundance of certain tissue components in a 

sample, or identify rare occurrences in whole slide images, such as mitotic nuclei. Further, 

the NLTD method requires no prior knowledge of an image's color space and requires no 

parameterization from the user, which can allow for pathologists or medical technicians to 

apply this approach without requiring more sophisticated knowledge that may be needed for 
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optimization methods or complex, linear algebraic approaches. Together, the proposed 

NLTD method presents an opportunity to establish a pipeline for classification and analysis 

of histo-pathological images that, in combination with pathologists’ expertise, can lead to 

better diagnosis and treatment planning for patients in the future.
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Acknowledgements

The authors acknowledge funding from the National Cancer Institute (U54CA143868) and American Heart 
Association (12POST12050638).

Abbreviations

H&E hematoxylin and eosin

IHC Immunohistochemistry

DAB 3,3' Diaminobenzidine

NLTD Non-Linear Tissue-component Discrimination

TCGA The Cancer Genome Atlas

RBJH Red-Blue Joint-Histogram

PCA Principal Component Analysis
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Figure 1. Brief overview of NLTD approach
(a) NLTD applied to an image of a hematoxylin and eosin (H&E) stained section (top) and 

immunohistochemically (IHC) stained image (bottom). Shown are a typical H&E image of a 

small artery, exhibiting multiple tissue components (nuclei (N), ECM-rich and cytoplasm 

(E), blood (B)) and a typical IHC image, stained for LINE-1 ORF1p expression
31

, exhibiting 

two tissue components (antigen (A) and nuclei (N)). The NLTD method is schematically 

shown in center. Briefly, the red-blue joint-histogram is first segmented to identify each 

region in the red-blue color space. The x-axis corresponds to each red color, the y-axis 

shows each blue-color, and the color-axis represents the frequency of each discrete color 

combination. Ridges for each tissue component are overlaid, on the RBJH. The ridge set is 

registered and transformed to yield the pseudo-colored transformation function for each 

component. The pseudo-colored grayscale images are shown for the nuclei, non-nuclei, and 

blood components (purple, pink, and red, respectively) in the far right box. (b-c) Grayscale 

correlation values for the red-blue joint histogram, blue-green joint histogram, and red-green 

joint-histogram, with a value of 1 corresponding to a completely correlated colorset. (b) 

Pancreatic cancer H&E dataset (n=45). (c) Ovarian immunohistochemistry dataset (n=81). 

(d) Separation of red-blue color space into individual tissue components: nuclei (purple 

box), extracellular matrix and cytoplasm rich (pink box).
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Figure 2. Application of NLTD across a wide variety of tissue types
The NLTD method is applied on many different types of tissue. The original tissue image, 

RBJH, registered RBJH, and the nuclei component grayscale image (pseudo-colored purple) 

are shown (left to right). The registered RBJH shows a purple line for the nucleus 

component, a pink line for the ECM/cytoplasmic component, and a red line for the blood 

component. The sample tissue types are: (a) Colon cancer, (b) Kidney cancer, (c) Ovarian 

cancer, (d) Lung adenocarcinoma, (e) Gastric mucosa, (f) Astrocytoma, (g) Skin cutaneous 

melanoma, (h) Breast cancer.
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Figure 3. Processing time of NLTD and color deconvolution
Comparison time for processing of images of various sizes using three different color 

normalization techniques: NLTD (squares), color deconvolution (CD, circles), and color 

deconvolution using Macencko's method of automated stain vector determination (MMCD, 

diamonds). Each image used was a three-dimensional RGB image, with side lengths defined 

by the x-axis. Processing time is shown on the y-axis in seconds as the median of 10 runs for 

each method at each image size.
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Figure 4. Evaluation of NLTD method
(a-c) Nuclei intensity comparison between NLTD and color deconvolution approaches. 

Representative nuclei from several tissue types are shown, along with the NLTD and color 

deconvolution nuclei transformations. The intensity of each color space is integrates along 

the dotted lines shown, with the NLTD intensity shown in purple and the color 

deconvolution intensity in brown. Intensity values are normalized linearly between 0 and 1, 

with 0 corresponding to the minimum value in the input image, and 1 corresponding to the 

maximum. (d) Typical breast cancer image
33

. (e) Example of segmentation results from Otsu 

thresholding of the nuclei NLTD color space. Detected nuclei are overlaid on top of the 

image from panel (d). True positives are represented by a green dot, false positives by a red 

dot, and false negatives by a yellow dot. (f) Precision, (g) sensitivity, and (h) F-score values 

for segmentation results from 35 images. (i) Receiver operating characteristic curve for 

change in segmentation parameterization (threshold value) for nuclei detection. Recall 

(sensitivity) is shown on the x-axis, with precision shown on the y-axis. Results from NLTD 

method are shown in black, with color deconvolution (CD) shown in gray.

Sarnecki et al. Page 18

Lab Invest. Author manuscript; available in PMC 2016 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. NLTD method as a quantitative descriptor for IHC
Ovarian tissue samples were stained with an antibody for LINE-1 ORF1p and manually 

scored by a pathologist
31

 on a discrete scale of 0 (no expression) to 3 (high expression). A 

quantitative score is calculated using the NLTD grayscale images. The scores correlate well, 

with a Pearson r = 0.85.
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