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Abstract

Microvolt T-wave alternans (MTWA) testing identifies heart failure patients at risk for lethal 

ventricular arrhythmias at near-resting heart rates (<110 beats per minute). Since pressure 

alternans occurs simultaneously with MTWA and has a higher signal to noise ratio, it may be a 

better predictor of arrhythmia, although the mechanism remains unknown. Therefore, we 

investigated the relationship between force alternans (FORCE-ALT), the cellular manifestation of 

pressure alternans, and APV-ALT, the cellular driver of MTWA. Our goal was to uncover the 

mechanisms linking APV-ALT and FORCE-ALT in failing human myocytes and to investigate 

how the link between those alternans was affected by pacing rate and by physiological conditions 

such as sarcomere length and heart failure induced-remodeling of mechanical parameters. To 

achieve this, a mechanically-based, strongly coupled human electromechanical myocyte model 

was constructed. Reducing the sarcoplasmic reticulum calcium uptake current (Iup) to 27% was 

incorporated to simulate abnormal calcium handling in human heart failure. Mechanical 

remodeling was incorporated to simulate altered thin filament activation and crossbridge (XB) 

cycling rates. A dynamical pacing protocol was used to investigate the development of 

intracellular calcium concentration ([Ca]i), voltage, and active force alternans at different pacing 

rates. FORCE-ALT only occurred in simulations incorporating reduced Iup, demonstrating that 

alternans in the intracellular calcium concentration (CA-ALT) induced FORCE-ALT. The 

magnitude of FORCE-ALT was found to be largest at clinically relevant pacing rates (<110 bpm), 

where APV-ALT was smallest. We found that the magnitudes of FORCE-ALT, CA-ALT and 

APV-ALT were altered by heart failure induced-remodeling of mechanical parameters and 

sarcomere length due to the presence of myofilament feedback. These findings provide important 

insight into the relationship between heart-failure-induced electrical and mechanical alternans and 

how they are altered by physiological conditions at near-resting heart rates.
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1. Introduction

Ventricular arrhythmias are the most common cause of sudden cardiac death, resulting in > 

300,000 US deaths annually (Lloyd-Jones et al., 2009). The standard procedure for 

preventing sudden cardiac death is to implant a cardioverter defibrillator (ICD), which 

delivers a strong electric shock to terminate arrhythmias. Since current methods for 

identifying patients who require ICDs have only been partially successful (Bardy et al., 

2005), there is a need for noninvasive predictors with high sensitivity and specificity. 

Indeed, robust methods for stratifying the risk of lethal cardiac arrhythmias would decrease 

morbidity and mortality in patients with cardiovascular disease and reduce health care costs 

(Goldberger et al., 2011). Approaches for stratifying risk of cardiac arrhythmias involve 

testing for abnormalities in the ECG, then using the results to identify patients who would 

benefit from ICD therapy. ECG-based risk stratification methods scan for abnormalities in 

ventricular depolarization (late potentials (Kuchar et al., 1987), fractionated QRS complexes 

(Das et al., 2006)) and repolarization (T-wave alternans (Rosenbaum et al., 1994), and QT 

variability, dispersion, and instability (Berger et al., 1997; Chen et al., 2011; Chen et al., 

2013; Chen and Trayanova, 2012; Couderc et al., 2007)). However, the mechanisms 

underlying these ECG indices, and their relationship to lethal cardiac arrhythmias, are not 

fully understood. This lack of knowledge likely explains why results of clinical trials to 

correlate surface EGG indices to lethal cardiac arrhythmias are often contradictory 

(Goldberger et al., 2011).

Of the above ECG indices, T-wave alternans have received possibly the most attention. 

Research has reported a strong correlation between increased arrhythmia risk and the 

presence of T-wave alternans (Narayan, 2006; Qu et al., 2010), defined as the beat-to-beat 

alternation of the timing or shape of the repolarization wave of the ECG. In the clinical 

setting, testing for Microvolt T-wave Alternans (MTWA) has been found to be a risk marker 

for lethal ventricular arrhythmias and sudden cardiac death (Cutler and Rosenbaum, 2009), 

to have high negative predictive power (Narayan, 2006) and to be particularly promising in 

dichotomizing patients that would and would not benefit from ICD therapy (Bloomfield et 

al., 2006; Hohnloser et al., 2009). However, the mechanistic basis of MTWA preceding 

lethal ventricular arrhythmias has long been under debate. Until the last decade, it was 

believed that a steep action potential duration (APD) restitution (>1) at rapid heart rates 

(Weiss et al., 2006) produces alternans in APD that underlie T-wave alternans and the 

genesis of fibrillation (Pastore et al., 1999). However, MTWA is most successful in 

stratifying risk in patients at near-resting heart rates <110 bpm, where APD restitution is flat 

(Narayan et al., 2007). Computational models of the LV wall in combination with clinical 

data revealed that abnormal handing of intracellular calcium underlies alternans in action 

potential voltage (APV-ALT), defined as the oscillation of the plateau voltage of the action 

potential, which results in MTWA at moderate heart rates, i.e. <110 bpm (Bayer et al., 2010; 
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Narayan et al., 2008). Thus APV-ALT is the cell-level driver of MTWA at these rates under 

the conditions of heart failure.

Alternatively, noninvasively measured pressure alternans, defined as the beat-to-beat 

oscillation of the amplitude of systolic pressure, has been found to be a predictor of 

worsening heart failure and increased cardiac mortality (Hirashiki et al., 2010; Hirashiki et 

al., 2006; Ito et al., 2012; Kashimura et al., 2014; Kim et al., 2014; Selvaraj et al., 2011). 

Pressure alternans also occurs simultaneously with MTWA in patients at near resting heart 

rates, thus indicating that pressure alternans, which have higher signal-to-noise ratio 

(Selvaraj et al., 2011), may be a better predictor of the propensity for ventricular arrhythmias 

and sudden cardiac death, however the mechanisms remain unknown.

At the cellular level, pressure alternans arise from force alternans (FORCE-ALT), defined as 

the beat-to-beat oscillations in the strength of active force production in cardiac muscle. 

APV-ALT at heart rates <110 bpm has been found to be driven by beat-to-beat fluctuations 

in the amplitude of the intracellular calcium concentration (CA-ALT) (Bayer et al., 2010; 

Narayan et al., 2008). CA-ALT has also been shown to underlie force alternans (FORCE-

ALT), in animal experiments with cardiac muscle preparations (Kihara and Morgan, 1991; 

Kotsanas et al., 1996; Lab and Lee, 1990; Orchard et al., 1991) and perfused hearts (Brooks 

et al., 1994; Lee et al., 1988), but only at fast pacing rates. Clearly, to date, no studies have 

investigated FORCE-ALT in human myocytes at rates <110 bpm, and although calcium 

dysregulation is a likely candidate, the exact mechanistic link between APV-ALT and 

FORCE-ALT in the failing human myocyte at the clinically important near-resting heart 

rates remains unknown. Therefore, our goal was to investigate the mechanisms linking 

FORCE-ALT to APV-ALT in the human failing myocyte, with emphasis on those acting at 

the clinically-relevant pacing rates of <110 bpm, and to uncover how the link between 

FORCE-ALT and APV-ALT is affected by various physiological conditions such as 

sarcomere length and heart failure induced-remodeling of mechanical parameters.

2. Methods

2.1. Human Electromechanical Myocyte Model

To uncover the mechanism linking FORCE-ALT to APV-ALT, a mechanistically-based 

human electromechanical myocyte model was used. The electromechanical model combined 

the human endocardial ventricular membrane kinetics model by ten Tusscher et al (ten 

Tusscher and Panfilov, 2006) and the myofilament dynamics model by Rice et al (Rice et 

al., 2008). The 2006 ten Tusscher et al formulation was used because it incorporated an 

extensive description of intracellular calcium handling, which was found to be critical in the 

development of APV-ALT in previous studies of human heart failure (Bayer et al., 2010; 

Narayan et al., 2008). The Rice et al model, which describes the activation of the thin 

filament by intracellular calcium binding to Troponin C as well as thin filament binding to 

thick filament crossbridges (XBs) using a 5 state Markov model, was chosen because it was 

computationally efficient while incorporating important biophysical detail and cooperativity 

mechanisms. Since the Rice et al myofilament model was developed based on rabbit data we 

adjusted it to match human force data. This was done by modifying XB cycling and 

calcium-based thin filament activation parameters following the approach in de Oliveira et 
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al (de Oliveira et al., 2013). To account for the differences between the ionic model used by 

de Oliveira et al (the 2004 formulation of the ten Tusscher et al model (ten Tusscher et al., 

2004)) and by us (ten Tusscher and Panfilov, 2006), additional modifications to calcium-

based thin filament activation were made. Specifically, we decreased thin filament activation 

by reducing kon, a parameter regulating the binding affinity of Ca to high and low regulatory 

sites on Troponin C, to 95% of the baseline value used in Rice et al, in order to increase the 

time to peak force value so that it fell in the physiological range of human values (Mulieri et 

al., 1992; Pieske et al., 1996).

The ionic and myofilament models were strongly coupled by incorporating myofilament 

feedback on calcium dynamics (Figure 1); this was done by incorporating a dynamic term 

for troponin buffering of intracellular calcium ([Ca]Troponin) using the approach in Rice et al. 

Strongly coupling the models with a dynamic representation of [Ca]Troponin was important 

and necessary, because it has been shown to be crucial for accurately reproducing contractile 

experiment data in myocyte simulations (Ji et al., 2015). This [Ca]Troponin term represents 

the amount of calcium bound to troponin and incorporates the cooperativity of calcium-

troponin binding due to strongly bound nearby XBs. However, in the 2006 ten Tusscher and 

Panfilov model, troponin buffering of calcium is combined with calmodulin buffering of 

calcium and is represented using a steady state approximation. Therefore, to incorporate 

feedback from the myofilament model to the ionic model, we separated the combined 

buffering term in ten Tusscher and Panfilov into two terms. The [Ca]Troponin term from Rice 

et al, calculated using ordinary differential equations, was used for troponin buffering of 

calcium, and a steady state approximation was used for calmodulin buffering of calcium 

([Ca]Calmodulin) using the same approach as de Oliveira et al. The following equation from 

de Oliveira et al was used to update the intracellular calcium concentration in the ionic 

model, using the [Ca]Troponin term calculated by the myofilament model, at each time step:

(1)

where [Ca]Total is the total calcium in the cytoplasm, [Ca]i is the free calcium in the 

cytoplasm, [Ca]Calmodulin is the total calcium buffered by calmodulin in the cytoplasm, and 

[Ca]Troponin is the total calcium bound to Troponin C.

A weakly coupled version of the model (with no feedback) was created by removing the 

[Ca]Troponin term from Equation 1. Its sole purpose was to aid in examining how 

myofilament feedback affected the development of alternans.

The model did not incorporate stretch-activated channels since there is no experimental 

evidence that heart-failure induced APV-ALT at low heart rates would be affected by a 

potential opening of the channel.

2.2. Incorporating Heart Failure Remodeling

We simulated human heart failure in our electromechanical model by incorporating 

electrical and mechanical remodeling. Electrical remodeling was represented by abnormal 

calcium handing. Specifically, we reduced the sarcoplasmic reticulum calcium uptake 

current (Iup) to 27% of its baseline value in the ten Tusscher et al model (Table 1), similar to 
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Narayan et al (Narayan et al., 2008) and Bayer et al (Bayer et al., 2010), to represent 

reduced SERCA2a expression (Hasenfuss et al., 1994) and increased dephosphorylated 

phospholamban (Schmidt et al., 1999) observed in human heart failure. This specific feature 

of heart failure remodeling was incorporated because it has been shown to be crucial to the 

development of APV-ALT in previous studies of human heart failure (Bayer et al., 2010; 

Narayan et al., 2008).

Mechanical remodeling was incorporated to simulate altered thin filament activation and XB 

cycling rates found in human heart failure. Changes in thin filament activation have been 

linked to altered phosphorylation of cardiac Troponin I (cTnI) (Messer et al., 2007), which 

has been shown to be decreased by up to 87% (Messer et al., 2007; Zaremba et al., 2007). 

Alterations in XB cycling rates have been linked to changes in phosphorylation of myosin 

light chain 2 (MLC-2) (Levine et al., 1996; Moss and Fitzsimons, 2006; Olsson et al., 2004; 

Patel et al., 1998) and cardiac myosin-binding protein C (cMyBP-C) (Coulton and Stelzer, 

2012; Flashman et al., 2004). Studies have found that phosphorylation of the two isoforms 

of MLC-2 is unchanged (van der Velden et al., 2003a) or reduced by 34%-69% (van Der 

Velden et al., 2001; van der Velden et al., 2003a; van der Velden et al., 2003b; Zaremba et 

al., 2007). Additionally, cMyBP-C has been shown to be decreased by at least 50% (El-

Armouche et al., 2007; Zaremba et al., 2007). Furthermore, myocardial Ca2+ sensitivity, 

which incorporates the combination of the effects of thin filament activation and XB cycling 

rates on force production, has been shown to be altered in human heart failure. In studies, 

myocardial Ca2+ sensitivity has been found to increase by 2–6% in human heart failure (van 

der Velden et al., 2000; van der Velden et al., 2006; Wolff et al., 1996) and by 1–2% in 

animal models of heart failure (de Waard et al., 2007; Lamberts et al., 2007; Wolff et al., 

1995), not change in human heart failure (Ambardekar et al., 2011), and decrease by 2–3% 

in animal models of heart failure (Belin et al., 2007; Belin et al., 2006).

Despite the uncertainty regarding the exact amount by which the mechanical properties 

outlined above are altered in heart failure, these studies indicate that mechanical parameters 

involved in thin filament activation and XB cycling are important components of the disease 

manifestation and therefore might contribute to the development of FORCE-ALT. To 

elucidate if and how changes to mechanical parameters in human heart failure promote or 

modulate FORCE-ALT, we incorporated mechanical remodeling into the Rice et al 

myofilament model. Specifically, we altered thin filament activation, embodied in the Rice 

et al model by these 6 parameters: perm50, koffL, koffH, kon, kn_p, and kp_n. knpT and kpnT are 

nonlinear transition rates that are functions of these 6 parameters and represent calcium 

based activation of the thin filament, which is shown in Figure 1 as the transition of the thin 

filament from the NXB state (XB formation is inhibited) to the PXB state (weakly bound XB 

formation is possible). Specifically, perm50 is the half activation constant for shift of a thin 

filament regulatory unit (RU) from NXB to PXB, koffH (koffL) is the rate constant for Ca2+ 

unbinding from the high (low) affinity binding site of Troponin C, and kon is rate constant 

for Ca2+ binding to Troponin C. kn_p and kp_n are constant scaling factors of the knpT and 

kpnT transition rates. We also altered XB cycling rates, expressed by these Rice et al 

parameters: fapp, gapp, hf, hb, and gxb. The rates fapp and gapp regulate the transition of the 

thin filament from the PXB state to the strongly bound XB state where the myosin head has 
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not yet rotated and induced strain in the neck region (XBPreR). hf and hb are transition rates 

between the XBPreR and XBPostR state (thin filament is strongly bound to a XB which has a 

rotated myosin head and has induced distortion). gxb represents the ATP consuming 

transition rate from XBPostR to PXB. Due to the uncertainty in the literature regarding the 

exact amount that these parameters change in heart failure, as described above, we explored 

heart failure –induced remodeling of these 11 myofilament parameters within the range of 

80% to 120% of their baseline values (Table 1).

2.3. Alternans Protocol

Clinical studies in patients with human heart failure have shown that APV-ALT arises at 

moderate pacing rates (Narayan et al., 2008); APV-ALT has also been induced, at these 

rates, in computational electrophysiological models of human myocytes and LV wedges 

with abnormal calcium handing by pacing the models with a dynamic pacing protocol 

(Bayer et al., 2010). To induce APV-ALT in our electromechanical model of the myocyte, 

we used a pacing protocol similar to that in Bayer et al. (Bayer et al., 2010). We first paced 

the myocyte at near resting pacing rates (850 ms; 71 bpm) until steady state was reached. 

Then, a dynamic pacing protocol was executed with pacing beginning at a cycle length (CL) 

of 650 ms (92 bpm) and decreasing by 50 ms every 100 beats, until loss of 1:1 capture 

occurred.

Since our myocyte model is a strongly coupled electromechanical model, the procedure used 

to induce APV-ALT was also expected to result in the generation of FORCE-ALT. We 

aimed to test this hypothesis and to uncover the mechanism linking FORCE-ALT to APV-

ALT. The pacing protocol also allowed us to probe the sensitivity of FORCE-ALT to CL.

To elucidate if altered thin filament activation and XB cycling rates found in human heart 

failure exacerbated or alleviated FORCE-ALT, we examined how each remodeled parameter 

described above individually affected FORCE-ALT; 11 sets of simulations were thus run 

using the dynamic pacing protocol, each including the electrical remodeling and the 

remodeling of one of the myofilament parameters. To uncover the effect of disease severity 

for each remodeled myofilament parameter, each set of simulations consisted of 41 unique 

simulations in which the chosen mechanical parameter was assigned a value in the range of 

80% to 120% of its baseline value in Rice et al (incremented by 1%). To discover if 

FORCE-ALT can be induced by mechanical remodeling and dynamic pacing alone, the 451 

simulations just described were executed again but without the inclusion of electrical 

remodeling.

Finally, since active force generation is known to be modulated by sarcomere length (SL) 

(Gordon et al., 1966), we wanted to uncover if FORCE-ALT was also sensitive to SL. To do 

this, the aforementioned 451 simulations (with the electrical remodeling) were each run 16 

times, during which we held SL constant at a different value for each simulation. SL values 

ranged from 1.65 μm to 2.4 μm, in increments of 0.05 μm. This range of SL values was 

chosen because it is in the operating range for cardiac myocytes (Trayanova and Rice, 

2011).
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2.4. Alternans Analysis

The magnitudes of alternans in active force, intracellular calcium concentration ([Ca]i), and 

transmembrane voltage (Vm) were each calculated using the following formula commonly 

used in the quantification of alternans (Kockskamper and Blatter, 2002; Shkryl et al., 2012; 

Xie et al., 2013):

(2)

where Small Amplitude is the peak value minus the minimum value during the small beat 

and Large Amplitude is the peak value minus the minimum value during the large beat. 

Alternans magnitude was calculated for each pair of beats during the final 64 beats of each 

CL, following the approach in Bayer et al (Bayer et al., 2010) and the largest alternans 

magnitude per CL for each simulation was recorded. APV-ALT was calculated, as described 

above, during the period from the start of Phase II until the end of Phase III of the action 

potential. Alternans occurred if ALT > 0.

3. Results

3.1. Abnormal Intracellular Calcium Handling Results in Force Alternans

Incorporating heart failure electrical remodeling in our strongly coupled cellular 

electromechanical model (as described in Methods) resulted, as expected, in intracellular 

calcium alternans (CA-ALT) that caused action potential voltage alternans (APV-ALT), 

similar to those shown previously (Bayer et al., 2010; Narayan et al., 2008). An example of 

CA-ALT as a function of time and as superimposed beats is shown in Figure 2, panels A and 

E respectively, for pacing at a CL of 650 ms (92 bpm) and for a SL of 2.1 μm (a typical 

length during the normal cardiac cycle). The superimposed beats emphasize the presence of 

CA-ALT and the difference in the Ca2+ transient between the odd (small [Ca]i transient) and 

even (large [Ca]i transient) beats. The corresponding APV-ALT is shown in Figure 2, panels 

B and F. CA-ALT also induced alternans in active force (FORCE-ALT), shown as a 

function of time (Figure 2C) and as overlaid beats (Figure 2H).

Due to myofilament feedback in our strongly coupled model (Figure 2, panels C and G), 

CA-ALT and APV-ALT differed from those obtained by Bayer et al and Narayan et al 

(Bayer et al., 2010; Narayan et al., 2008). We used the weakly coupled version of the model 

to explore the effects of myofilament feedback on CA-ALT, APV-ALT, and FORCE-ALT 

(compare rows 2 and 3 of Figure 2). The magnitudes of [Ca]i and CA-ALT (CA-ALTM) 

were both smaller in the strongly coupled model as compared to those in the weakly coupled 

([Ca]i: 0.44 μM vs 0.50 μM for odd beat, 0.51 μM vs 0.68 μM for even beat; CA-ALTM: 

21% vs 35%). Since Troponin C binds free intracellular calcium and thus removes those 

calcium ions from the pool of free calcium available in the cytoplasm ([Ca]i), the feedback 

via the [Ca]Troponin term (Equation 1) in the strongly coupled model resulted in a smaller 

magnitude of [Ca]i. Smaller CA-ALTM was due to the fact that Troponin C buffers more 

[Ca]i when [Ca]i transient is large (even beat) than when it is small (odd beat), thus reducing 

the peak magnitude of [Ca]i during the even beat relative to that of the odd and consequently 

decreasing CA-ALTM, as calculated according to Equation 2. The magnitude of APV-ALT 
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(APV-ALTM) was also smaller in the strongly coupled model (46% vs. 68% with no 

feedback) due to diminished CA-ALTM. The magnitude of [Ca]Troponin was smaller in the 

strongly vs weakly coupled model ([Ca]Troponin: 8.73 μM vs 13.19 μM for odd beat, 14.86 

μM vs 24.17 μM for even beat) due to diminished [Ca]i. The strong coupling also resulted in 

a smaller magnitude of the active force due to the decreased [Ca]i transient (0.18 vs 0.36 

normalized force for odd beat, 0.46 vs 0.79 for even beat). However, the magnitude of 

FORCE-ALT (FORCE-ALTM) was 5% greater in the case of myofilament feedback than 

without (60% vs. 55%), despite the smaller CA-ALTM in the former case. This was due to a 

smaller amount of calcium bound to Troponin C during both the odd and even beats, 

resulting from the reduced [Ca]i in this case. Since calcium binding to Troponin C activates 

the thin filament, less thin filament regulatory units (RUs) transitioned from the non-

permissive (NXB; XB formation is inhibited) to the permissive (PXB; weakly-bound XBs 

formation possible) state, (Figure 1) resulting in less RUs transitioning from PXB to the 

states with strongly-bound XBs (XBPreR and XBPostR). Since active force is generated by 

the rotation of the thick filament, fewer RUs in the pre-rotated (XBPreR) state caused less 

RUs to transition from it to the post-rotated (XBPostR) state, producing less active force. 

However, since the presence of strongly bound XBs is known to enhance the binding 

affinity of Troponin C to calcium on nearby thin filament RUs and since Rice et al (Rice et 

al., 2008) incorporated this nonlinear cooperativity mechanism, the relatively smaller 

amount of strongly bound XBs during the odd (smaller [Ca]i) beat resulted in greater 

reduction of active force generation relative to the even (larger [Ca]i) beat. This resulted in 

enhanced FORCE-ALTM in the strongly coupled model as calculated according to Equation 

2.

3.2. Sensitivity of Alternans to Pacing Rate

Simulations with our strongly coupled electromechanical myocyte model revealed that 

FORCE-ALTM has a non-monotonic dependence on CL (Figure 3A, solid line), with a local 

minimum at CL=400 ms. CA-ALTM monotonically increased with increased pacing rate, 

while APV-ALTM remained relatively small at slower pacing rates and increased at faster 

pacing rates (Figure 3B–C, solid line). No alternans occurred for pacing CLs>650 ms. An 

important observation here is that for all clinically relevant pacing rates (as discussed in the 

Introduction, <110 bpm; CL>=550 ms), CA-ALTM, ranging 21%-31%, induced smaller 

APV-ALTM (ranging 46–48%) but larger FORCE-ALTM (ranging 51–61%), consistent 

with the results presented in Figure 2. However, at faster pacing rates (CL<500 ms), larger 

CA-ALTM induced smaller FORCE-ALTM. This was due to elevated [Ca]i, which occurred 

due to a buildup of diastolic intracellular calcium as a result of insufficient time between 

beats for the SERCA pump and the Na/Ca2+ exchanger to restore [Ca]i to normal. During 

the large (even) beat, this abnormally large [Ca]i transient saturated Troponin C prior to 

reaching its peak magnitude, preventing additional free calcium from binding to Troponin C 

and thus preventing an increase in thin filament activation. This prevented further thin 

filament RUs from transitioning to the PXB, XBPreR and XBPostR states from the NXB state 

(Figure 1). Since no additional rotation of the thick filament occurred, no added active force 

was generated during the even beat, despite additional free calcium becoming available as 

the [Ca]i transient increased from the value at which Troponin C saturated to its peak 
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magnitude. This resulted in diminished FORCE-ALTM at faster pacing rates, according to 

Equation 2.

Eliminating myofilament feedback reduced FORCE-ALTM at all CLs on average by 11%, 

flattened the CA-ALTM dependence, and increased APV-ALTM (Figure 3A–C, dashed 

line), rendering the latter similar to the dependence documented by Bayer et al and Narayan 

et al (Bayer et al., 2010; Narayan et al., 2008). CA-ALTM was smaller for the strongly 

verses the weakly coupled model at slower pacing rates (CL>450 ms), consistent with the 

results presented in Section 3.1 for CL=650 ms (Figure 2). However, CA-ALTM became 

larger than that for the weakly coupled model at faster pacing rates (CL<400 ms) due to 

diminished myofilament feedback during the even but not the odd beat. As CL decreased, 

[Ca]i, was elevated and saturated Troponin C during the even beat, preventing both 

additional free calcium from binding to Troponin C, and additional thin filament RUs from 

transitioning from the NXB to the PXB and strongly-bound XB states, as discussed in the 

preceding paragraph. Since [Ca]Troponin is a function of the amount of calcium bound to 

Troponin C and of the number of RUs in the strongly-bound XB states, myofilament 

feedback was diminished during the even beat more than the odd, thus reducing the 

magnitude of [Ca]i more during the odd beat. This resulted in larger CA-ALTM for the 

strongly coupled model at faster rates.

3.3. Dependence of Force, Calcium and Voltage Alternans on Sarcomere Length

Simulations with our strongly coupled electromechanical myocyte model showed that, 

alternans magnitude changed as SL decreased from 2.4 to 1.65 μm. An example of the 

dependence of the three types of alternans magnitude on SL functions for pacing at a CL of 

600 ms (100 bpm) is shown in Figure 4A–C, solid line. CA-ALTM increased for SL>2.05 

μm (in Figure 4B) due to diminished myofilament feedback during the even beat only, 

which occurred as a result of a progressive increase in the fraction of single-overlap thin 

filament apposing the thick filament as SL increased. Since this portion of the thin filament 

has a higher binding affinity to calcium, a larger fraction of it caused greater calcium-

Troponin C binding for a given [Ca]i. This progressively lowered the [Ca]i threshold at 

which Troponin C became saturated, preventing additional free calcium from binding to 

Troponin C, despite the peak magnitude of the [Ca]i transient being greater than the [Ca]i 

threshold for saturation. This saturation only occurred during the even beat due to its larger 

[Ca]i magnitude. Since [Ca]Troponin is a function of the amount of calcium bound to 

Troponin C, myofilament feedback was increasingly diminished at progressively larger SLs 

during the even beat relative to the odd, thus steadily reducing the magnitude of [Ca]i during 

the even beat (according to Equation 1). This resulted in progressively larger CA-ALTM, 

according to Equation 2, at increasingly greater SLs for SL>2.05 μm. The saturation of 

Troponin C during the even beat also prevented enhanced thin filament activation, which, as 

described in Section 3.2., resulted in progressively diminished FORCE-ALTM, as shown for 

SL increasing above 2.05 μm in Figure 4A. APV-ALTM decreased for SL>2.05 μm, despite 

increased CA-ALTM, due to increasingly diminished [Ca]Troponin during the even beat (as 

described above), which caused the [Ca]i transient during the even beat to have a notched 

appearance similar to Figure 2A (red lines). As SL increased, the [Ca]i magnitude prior to 

the [Ca]i notch became increasingly large (due to reduced [Ca]Troponin), causing CA-ALTM 
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to increase in accordance with Equation 1. However, the [Ca]i transient quickly decreased 

from the peak value preceding the notch in [Ca]i to an increasingly smaller value as SL 

increased, thus shortening Phase II of the action potential and reducing its magnitude during 

the even beat and inducing smaller APV-ALTM. CA-ALTM also increased for SL<2.05 μm. 

As SL became progressively smaller, the fraction of single-overlap thin filament that was 

apposed to thick filament decreased, causing reduced calcium-Troponin C binding for a 

given [Ca]i. This diminished thin filament activation and decreased the number of RUs that 

transitioned from NXB to PXB, thus reducing the number of RUs that transitioned to 

strongly-bound XB states. Since [Ca]Troponin is a function of the amount of calcium bound 

to Troponin C and of the number of RUs in the strongly-bound XB states, myofilament 

feedback was progressively diminished during the even relative to the odd beat as SL 

decreased, thus increasing the magnitude of [Ca]i more during the even beat. This resulted in 

progressively larger CA-ALTM as SL decreased for SL<2.05 μm. FORCE-ALTM and 

APV-ALTM were large at SL<2.05 μm due to large CA-ALM. The trends for CA-ALTM 

and APV-ALT as functions of SL were different at slow and fast pacing rates (Figure 4E–F), 

while the dependence of FORCE-ALTM held true at all CLs (Figure 4D).

Eliminating myofilament feedback expanded the range of FORCE-ALTM (Figure 4A, 

dashed line) without altering the shape of its dependence on SL. As expected, the removal of 

myofilament feedback rendered CA-ALTM and APV-ALTM insensitive to SL changes 

(Figure 4B–C, dashed line). FORCE-ALTM was larger in the weakly coupled model at 

SL<2.0 μm due to larger CA-ALTM; it was smaller at SL>2.0 μm due to enhanced 

saturation of Troponin C caused by the larger [Ca]i magnitudes shown to occur in the 

weakly coupled model (Figure 2I). This resulted in smaller peak active force generation 

during the even beat and thus diminished FORCE-ALTM (via Equation 2) in the weakly 

coupled model.

3.4. Effect of Heart Failure Induced-Remodeling of Mechanical Parameters on Force, 
Calcium and Voltage Alternans

Incorporating heart failure induced-remodeling of both electrical and mechanical parameters 

in simulations with our strongly coupled electromechanical myocyte model demonstrated 

that of the mechanical parameters involved in thin filament activation and XB cycling, only 

remodeling in perm50 (half activation constant for shift of a thin filament RU from NXB to 

PXB), koffH (rate constant for Ca2+ unbinding from the high affinity binding site of Troponin 

C), and kon (rate constant for Ca2+ binding to Troponin C) caused appreciable alterations in 

FORCE-ALTM, CA-ALTM, and APV-ALTM. Of these three, perm50 was the most 

important because changes to it had the most profound effects on FORCE-ALTM, CA-

ALTM, and APV-ALTM. Examples of these functions are shown in Figure 5 for perm50 

(row 1), koffH (row 2), and kon (row 3) for pacing at a CL of 600 ms and SL of 2.1 μm, 

where each remodeled parameter is displayed as a percent of its normal value. By definition, 

increasing perm50 diminishes thin filament activation. As perm50 was progressively 

increased above 102%, thin filament activation was increasingly reduced, which steadily 

increased CA-ALTM, FORCE-ALTM and APV-ALTM, via the mechanisms described in 

Section 3.3 for SL<2.05 μm. As perm50 was decreased below 102%, thin filament activation 

was increasingly enhanced, which increased the transition rate of NXB to PXB and decreased 
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the reverse rate, causing more RUs to transition to PXB. A greater number of RUs in the PXB 

state induced additional RUs to transition to the strongly-bound XB states, increasing the 

fraction of total RUs with strongly-bound XBs. Therefore, achieving the maximum fraction 

of RUs in the XBPreR and XBPostR states could be attained with increasingly less activating 

calcium as perm50 decreased. Since [Ca]Troponin is a function of the fraction of total RUs in 

strongly-bound XB states and since during the even beat [Ca]i was large enough to attain 

that maximum fraction, myofilament feedback was progressively diminished during the 

even relative to the odd beat as perm50 decreased, thus increasing the magnitude of [Ca]i 

more during the even beat. This caused progressively larger CA-ALTM. Active force, which 

is also a function of the fraction of total RUs in strongly-bound XB states, was progressively 

diminished during the even verses the odd beat (similar to [Ca]Troponin), which resulted in 

progressively smaller FORCE-ALTM, despite enhanced CA-ALTM, as perm50 decreased. 

APV-ALTM was enhanced due to larger CA-ALTM. By definition, a decrease in koffH or an 

increase in kon increases the binding affinity of Troponin C to calcium. As koffH was 

progressively decreased below 103% and kon increased above 92%, binding affinity was 

increased (thus enhancing calcium-Troponin C binding for a given [Ca]i), which 

progressively enhanced CA-ALTM and diminished FORCE-ALTM and APV-ALTM, in the 

same manner as described in Section 3.3. for SL>2.05 μm. koffH>103% and kon<92% 

decreased the binding affinity of Troponin (thus diminishing thin filament activation), which 

progressively increased CA-ALTM, FORCE-ALTM and APV-ALTM as described in 

Section 3.3 for SL<2.05 μm. Removing myofilament feedback decreased FORCE-ALTM 

for nearly all values of perm50, koffH, and kon (Figure 5, column 1, dashed line), and as 

expected, rendered CA-ALTM and APV-ALTM insensitive to remodeling of those 

mechanical parameters. FORCE-ALTM was diminished due to enhanced saturation of 

Troponin C caused by the larger [Ca]i magnitudes occurring in the weakly coupled model 

(Figure 2I) in the same manner as described for SL>2.0 μm in Section 3.3.

Finally, simulations were run incorporating only mechanical remodeling (no electrical 

remodeling). For all CLs and SLs studied, there was no FORCE-ALT, demonstrating that 

abnormal intracellular calcium handling and thus CA-ALT was necessary for the generation 

of FORCE-ALT.

4. Discussion

The present study examines the cellular mechanisms underlying the formation of pressure 

alternans (FORCE-ALT) in the presence of MTWA (APV-ALT), which have been shown to 

be predictors of worsening heart failure and lethal ventricular arrhythmias, respectively. The 

goals of this study were to uncover the mechanisms linking APV-ALT and FORCE-ALT in 

failing human myocytes and to investigate how the link between those alternans was 

affected by pacing rate and various physiological conditions. Using a strongly coupled 

human electromechanical myocyte model, we showed that CA-ALT, induced by decreased 

Iup, was the link between APV-ALT and FORCE-ALT and that FORCE-ALTM was largest 

at clinically-relevant slow to moderate pacing rates (<110 bpm), where APV-ALT was 

smallest. We found that FORCE-ALTM, CA-ALTM and APV-ALTM were altered by heart 

failure induced-remodeling of mechanical parameters and by sarcomere length; this was due 

to the presence of myofilament feedback. Together these findings link FORCE-ALT to 
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APV-ALT and suggest that pressure alternans is directly linked to MTWA via calcium 

dysregulation and may be a better predictor of the propensity for ventricular arrhythmias at 

clinically relevant pacing rates (<110 bpm).

4.1. Calcium Alternans Link Action Potential Voltage Alternans to Force Alternans

MTWA is caused by CA-ALT predominantly as a result of decreased sarcoplasmic 

reticulum calcium uptake current (Iup) in heart failure patients at near resting heart rates 

(Bayer et al., 2010; Narayan et al., 2008). In addition, MTWA and pressure alternans have 

been shown to occur simultaneously in patients at such pacing rates (Selvaraj et al., 2011). 

Furthermore, patients with pressure alternans have significantly lower amounts of 

sarcoplasmic reticulum Ca2+-ATPase (SERCA) mRNA than patients without (Hirashiki et 

al., 2010; Hirashiki et al., 2006). Finally, FORCE-ALT, the cellular manifestation of 

pressure alternans, has been found to be regulated by calcium dysregulation in animal 

experiments with cardiac muscle preparations (Kihara and Morgan, 1991; Kotsanas et al., 

1996; Lab and Lee, 1990; Orchard et al., 1991) and perfused hearts (Brooks et al., 1994; Lee 

et al., 1988), paced at fast rates. Taken together, the results from these previous studies have 

suggested that CA-ALT, due to reduced Iup, is a likely candidate to underlie FORCE-ALT in 

human heart failure. Our results presented here provide the proof that CA-ALT, via reduced 

Iup, drove the formation of FORCE-ALT at clinically relevant pacing rates.

4.2. Force Alternans Are Large at Slow Pacing Rates and May Be Undetectable at Faster 
Pacing Rates

Studies have shown that the mean heart rate onset at which pressure alternans were first 

detected in pacing studies was 606 ms (99 bpm) (Hirashiki et al., 2006), and 517 to 571 ms 

(116 bpm – 105 bpm) (Selvaraj et al., 2011). In addition, a study conducted during normal 

sinus rhythm found that patients with pressure alternans had significantly slower heart rates 

than those without (81.0 bpm vs 93.1 bpm) (Kim et al., 2014). That same study also showed 

that patients with both MTWA and pressure alternans had slower heart rates than those with 

only MTWA (81.0 bpm vs 92 bpm, not statistically significant), suggesting that patients 

with only MTWA may have had small yet undetectable pressure alternans due to the 

alternans magnitude being markedly reduced at faster heart rates. One study further 

supported this hypothesis by showing that the amplitude of pressure alternans declined at 

increasingly faster pacing rates for four patients, three of whom lost pressure alternans when 

pacing rates exceeded 120, 130 and 140 bpm (500, 462, 400 ms) respectively (Kashimura et 

al., 2013). The present study provided support of this finding, since we demonstrated that 

FORCE-ALTM was greatest at slower pacing rates (>109 bpm) and declined significantly at 

faster pacing rates (<109 bpm). However, the outcome of one study contradicted these 

findings and reported that the magnitude of pressure alternans increased from 600 ms to 500 

ms (Selvaraj et al., 2011). This conflicting evidence might have arisen from the method of 

calculating pressure alternans magnitude in that study, which differed from ours (spectral 

analysis versus measuring the amplitude change between the odd and even beats). To date, 

few patient studies have investigated the effects of pacing rate on the detection and 

magnitude of pressure alternans. However, as we have shown, pacing rate affects FORCE-

ALTM and could explain why some patients with MTWA do not have detectable pressure 

alternans despite having underlying abnormal calcium handling. Additional studies of 
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pressure alternans in heart failure patients are needed to investigate this phenomenon in 

greater detail.

4.3. Implications of Heart Failure-Induced Mechanical Remodeling for Alternans Severity

Studies have shown that thin filament activation can be altered in human heart failure. 

Specifically, decreased phosphorylation of cardiac Troponin I has been shown to be 

significantly decreased in human heart failure (Messer et al., 2007; Zaremba et al., 2007), 

resulting in reduced sliding speed and an increased Ca2+-sensitivity. Although this change 

in thin filament activation has been observed in human heart failure, to date no studies have 

investigated whether it is reduced in patients with pressure alternans or MTWA. Here we 

demonstrated that heart failure-induced mechanical remodeling of parameters that modify 

thin filament activation can both exacerbate and diminish FORCE-ALT, CA-ALT, and 

APV-ALT. These results could explain the results of some studies which have revealed two 

different populations of patients with alternans: those with both MTWA and pressure 

alternans and those with only MTWA (Kim et al., 2014; Kodama et al., 2001; Selvaraj et al., 

2011). The patient population with both types of alternans could have calcium handling 

abnormalities and reduced thin filament activation, which would (as our results suggest) 

result in larger and thus more easily detectable pressure alternans. The patients in which 

only MTWA were detectable may either have less severe reductions in thin filament 

activation or no abnormalities at all, and thus have smaller and undetectable pressure 

alternans. Furthermore, one study has shown that the magnitude of MTWA in patients with 

both MTWA and pressure alternans is larger than in patients with only MTWA (Kim et al., 

2014), suggesting that if those patients had reduced thin filament activation as we 

speculated, then that would enhance the magnitude of MTWA, in agreement with our results 

(Figure 5).

5. Conclusions

APV-ALT and FORCE-ALT are linked via CA-ALT, resulting from reductions in 

sarcoplasmic reticulum calcium uptake current, in a strongly coupled electromechnical 

model of the failing human myocyte. Our results demonstrate that the magnitude of 

FORCE-ALT is largest at clinically relevant pacing rates (<110 bpm), where APV-ALT was 

smallest. The magnitudes of FORCE-ALTM, CA-ALTM and APV-ALTM were dependent 

on pacing rate. Due to myofilament feedback, the magnitude of the alternans was also 

dependent on sarcomere length, and on the level of heart failure induced-remodeling of 

mechanical parameters involved in thin filament regulation. These findings provide 

important insight into the cellular mechanisms underlying pressure alternans at clinically 

relevant pacing rates (<110 bpm) and may aid in investigating whether pressure alternans is 

an improved and reliable predictor of propensity for ventricular arrhythmias in human heart 

failure.
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Abbreviations

APV-ALT action potential voltage alternans

APV-ALTM action potential voltage alternans magnitude

[Ca]i free intracellular calcium concentration

CA-ALT [Ca]i alternans

CA-ALTM [Ca]i alternans magnitude

CL cycle length

[Ca]Troponin total calcium bound to Troponin C

FORCE-ALT active force alternans

FORCE-ALTM active force alternans magnitude

RU regulatory unit

SL sarcomere length

XB crossbridge
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Figure 1. 
Strongly Coupled Human Electromechanical Myocyte Model with myofilament feedback 

via [Ca]Troponin. A modified version of the Markov state diagram of the myofilament model 

from Rice et al, which describes the activation of the thin filament by intracellular calcium 

binding to Troponin C as well as thin filament binding to thick filament crossbridges (XBs), 

is shown. The transition rates (knpT and kpnT) between the thin filament states where XB 

formation is inhibited (NXB) and where weakly bound XB formation is possible (PXB) are 

both functions of perm50, kon, koffH, and koffL. The rate knpT is also dependent on kn_p, and 

kpnT is additionally dependent on kp_n. The XBPreR and XBPostR states represent a thin 

filament with a strongly bound XB that do not and do, respectively, have rotated myosin 

heads which induced strain (Rice et al., 2008).
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Figure 2. 
CA-ALT (column 1), APV-ALT (column 2), [Ca]Troponin (column 3), and FORCE-ALT 

(column 4) for simulations incorporating electrical remodeling in the absence of mechanical 

remodeling for a pacing CL of 650 ms and for SL=2.1 μm. Alternans are plotted over time in 

row 1 showing that CA-ALT was sufficient to produce APV-ALT, [Ca]Troponin alternans, 

and FORCE-ALT. Odd (blue) and even (red) beats from row 1 are superimposed to illustrate 

that the magnitude of alternans in rows 2 (strongly coupled simulations) and 3 (weakly 

coupled simulations) were different with and without myofilament feedback.
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Figure 3. 
Dependence of FORCE-ALTM (A), CA-ALTM (B), and APV-ALTM (C) to CL in 

simulations with electrical remodeling in the absence of mechanical remodeling at SL=2.1 

μm for both the strongly (solid lines) and weakly coupled (dashed lines) models. The purple 

dashpot line indicates where the data in Figure 4 are taken from (CL=600 ms). No alternans 

occurred for pacing CLs>650 ms for either the strongly or weakly coupled model.
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Figure 4. 
Sensitivity of FORCE-ALTM (A), CA-ALTM (B), and APV-ALTM (C) to SL in 

simulations with electrical remodeling in the absence of mechanical remodeling at CL=600 

ms for both the strongly (solid lines) and weakly (dashed lines) coupled models. Plots of the 

dependence of FORCE-ALTM (D), CA-ALTM (E), and APV-ALTM (F) on SL are shown 

for slow and fast pacing rates for the strongly coupled model. The purple dashpot line 

indicates where the data displayed in Figure 3 are from (SL=2.1 μm).
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Figure 5. 
Dependence of FORCE-ALTM (column 1), CA-ALTM (column 2), and APV-ALTM 

(column 3) on the level of mechanical remodeling for pacing CL=600 ms and SL=2.1 μm 

for the strongly coupled model (solid lines). Dashed line in the FORCE-ALTM refers to the 

weakly coupled model. Heart-failure remodeling mechanical parameters perm50 (row 1), 

koffH (row 2), and kon (row 3), are displayed as a percent of their normal values.
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Table 1

Control and Heart Failure values for important model parameters. Iup is from the ten Tusscher et al ionic 

model (ten Tusscher and Panfilov, 2006). All other parameters are from the Rice et al myofilament model 

(Rice et al., 2008).

Parameter Control Value (CV) Heart Failure Value Effect of HF remodeling on Alternans

Iup 0.006375 mM/ms CV*27% Required for alternans to occur

perm50 0.5 (unitless)

Range of Values (Increments of 1%):
CV*80% to CV*120%

Largest effect on alternans magnitude

kon 47.5 1/μMs Large effect on alternans magnitude

koffH 25 1/s Large effect on alternans magnitude

koffL 250 1/s

Negligible effects on alternans magnitude

kn_p 0.61 1/ms

kp_n 0.016 1/ms

fapp 4.8 1/ms

gapp 0.093 1/ms

hf 0.010 1/ms

hb 0.035 1/ms

gxb 0.030 1/ms
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