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Abstract

Retinopathy of prematurity (ROP), a significant morbidity in prematurely born infants, is the most 

common cause of visual impairment and blindness in children and persists till adulthood. Strict 

control of oxygen therapy and prevention of intermittent hypoxia are key in the prevention of 

ROP, but pharmacologic interventions have decreased risk of ROP. Various drug classes such as 

methylxanthines (caffeine), VEGF inhibitors, anti-oxidants, and others have decreased ROP 

occurrence. The timing of pharmacologic intervention remains unsettled, but early prevention 

rather than controlling disease progression may be preferred. These drugs act through different 

mechanisms and synergistic approaches should be considered to maximize efficacy and safety.

INTRODUCTION

Retinopathy of prematurity (ROP) is a developmental vascular disorder characterized by 

abnormal growth of retinal blood vessels in the incompletely vascularized retina of 

extremely low gestational age neonates (ELGANs) who are <1250 grams, < 28 weeks 

gestation (1–3). In the United States, ROP afflicts about 16,000 ELGANs annually (1), and 

remains the third leading cause of childhood blindness (14%) with much higher rates in 

developing countries (5). Incomplete retinal vascularization due to prematurity and oxygen 

are key factors in ROP, however, the etiology of this “new” form of ROP is multivariate and 

complex, and involves hypersensitivity of the immature retina to changes in oxygen (4,6,7).
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Pathophysiology of ROP

In humans, the retina develops in utero where tissue oxygen is low (7). Vascular precursor 

cells are laid from 12 to 21 weeks gestational age creating a scaffold for future vessel 

development. The vessels emerge from the optic disk and follow a VEGF template 

established by astrocytes which populate the retina before the vessels (8). Angiogenesis 

begins at approximately 16 to 17 weeks gestational age, with new vessels budding from 

existing vessels. The metabolic demands of the developing retina exceed the oxygen 

supplied by the choroidal circulation resulting in ‘physiologic hypoxia,’ and thus stimulate 

angiogenesis (7). Vasoactive factors, such as insulin-like growth factor (IGF)-1, vascular 

endothelial growth factor (VEGF) and erythropoietin (Epo), in addition to maternally 

derived factors, stimulate new vessel formation. The vessels reach the nasal ora serrata by 

36 weeks and the temporal ora serrata by 40 weeks. In ELGANs, the retinal vasculature is 

immature and thus vulnerable to oxidative damage. Early studies by Ashton et al. (9) 

demonstrated that exposure to oxygen causes vaso-obliteration and vaso-proliferation when 

room air breathing was resumed. Those early studies led to a two-phase hypothesis of ROP: 

1) Phase 1 or vaso-obliteration, begins at preterm birth with the transition from an 

intrauterine to extrauterine environment causing a rise in PaO2 of 30–35 mm Hg to 55–80 

mmHg and loss of placental and maternal growth factors. During this phase, exposure to 

supplemental oxygen, required for treatment of respiratory distress syndrome, further 

suppresses retinal growth factors which are already compromised due to preterm birth and 

poor nutrition (10), thus leading to arrest and retraction of the developing retinal vessels, or 

vaso-obliteration; and 2) Phase 2 or vaso-proliferation, begins at approximately 32–34 

weeks (11). As the infant matures, the avascular retina becomes metabolically active, 

inducing a second phase, or retinal neovascularization (3). This phase of ROP is driven by 

hypoxia and subsequent upregulation of VEGF and IGF-I which leads to abnormal vascular 

overgrowth into the vitreous, retinal hemorrhages, retinal folds, dilated and tortuous 

posterior retinal blood vessels, or “Plus” disease, and retinal detachment. ELGANs with 

chronic lung disease experience numerous alterations in their O2 saturations or apneas 

(12,13). Infants who experience the greatest fluctuations in their PaO2 seem to be at a higher 

risk for the development of threshold ROP (6,13). In these infants with “new” ROP, 

intermittent hypoxia (IH) occurs during supplemental oxygen treatment, or Phase 1, thus 

worsening the outcomes during Phase 2. Indeed this was demonstrated in a rat model which 

utilized brief episodes of hypoxia during hyperoxia, simulating apnea of prematurity (14–

17). The fluctuating oxygen model also shows a higher incidence of intravitreal 

neovascularization (18) with corresponding high levels of retinal VEGF (19) and vitreous 

fluid growth factors (14,15). The pattern of IH may also play a role in the development of 

ROP (13) and OIR (14–17). Clustering IH episodes resulted in a more severe form of OIR 

with increased retinal hemorrhages, vascular tufts, leaky vessels, vascular tortuosity, and 

vascular overgrowth, compared to dispersed IH episodes. This may be due to differences in 

exposure time of the retina to hypoxia at a given time point. Clustering episodes of brief 

hypoxia or grouping of desaturations with minimal time for recovery between episodes 

causes the retina to remain hypoxic for a longer period of time thus leading to a more 

exaggerated increase in VEGF resulting in characteristics consistent with “Plus” disease 

(14). In light of these new findings, the Phase 1/Phase 2 hypothesis of ROP originally 
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proposed in 1954 by Ashton et al. (9), may need to be redefined with respect to “new” ROP 

and IH.

Oxygen

Oxygen is the most commonly used drug in neonatal care for respiratory support (20). The 

widespread use of unrestricted oxygen in preterm infants began in the early 1940s in 

response to observations that inspired oxygen improved the irregular breathing pattern of 

premature infants (21,22). This led to the first epidemic of ROP, described in 1942 by Terry 

et al. (23) and then known as retrolental fibroplasia or fibroblastic overgrowth behind the 

crystalline lens.. In 1951, it was suggested that oxygen use was associated with ROP (24). 

This was confirmed in 1952 in humans (25) and later in animals (26). By 1953, 

approximately 10,000 infants worldwide were blinded (21). The first multicenter 

randomized clinical trial to study ROP started in 1953 and involved 18 centers. The study 

enrolled infants <1500 grams in two arms: 1) FiO2 >50% for 28 days; and 2) FiO2 < 50%. 

In 1954, one of the centers reported that blindness was prevented if oxygen did not exceed 

40%. Six years later, review of autopsies revealed that curtailed use of oxygen increased the 

incidence of mortality such that for every eye sight gained, 16 lives were lost (Bolton, 

Lancet 1974). Despite the introduction of transcutaneous oxygen monitoring and pulse 

oximetry in the 1960s to 1980s, and many nonrandomized and randomized clinical trials, the 

optimum range of oxygenation in preterm infants remains elusive and controversial. The 

Phase 1 (hyperoxia)/Phase 2 (hypoxia) hypothesis of ROP led to the premise that 

administration of oxygen during Phase 2 would increase tissue oxygen, decrease VEGF and 

curtail vessel overgrowth. This hypothesis was tested in the Supplemental Therapeutic 

Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP) randomized clinical trial 

in 2000 (28). The study randomized 649 infants with prethreshold ROP and O2 saturation 

<94% at 35 weeks to oxygen saturation targets of 89–95% or 96–99%. The STOP-ROP 

study failed to decrease progression of the disease or reduce the number of infants requiring 

peripheral ablative surgery and showed no differences in the development of threshold ROP. 

ELGANs experience continuous fluctuations in arterial O2 saturation, therefore increasing 

inspired oxygen may not be an appropriate approach (29,30). Instead, low and stable oxygen 

therapy may be more beneficial (2). The Australian Benefits of Oxygen Saturation Targeting 

(BOOST) randomized, double-blind, multicenter trial involving 358 preterm infants, kept 

the saturation ranges at 91–94% or 95–98%. The incidence of severe ROP was comparable 

between the groups (31). Five large multicenter, masked, randomized, control trials 

(collectively known as The Neonatal Oxygen Prospective Meta-Analysis, or NeOPRoM 

Collaboration) enrolled approximately 5000 ELGANs <28 weeks, compared 85–89% versus 

91–95%. In the United States, the Surfactant Positive Pressure and Pulse Oximetry 

(SUPPORT) trial reported that SpO2 levels of 85–89% was associated with increased 

mortality and a higher incidence of severe ROP was found in the 91–95% group (32). This 

was reflected in the BOOST II trial (Australia, New Zealand and United Kingdom) after 

interim analysis, and enrollment was stopped (33). The Canadian Oxygen Trial (COT) 

reported no difference in mortality or severe ROP (34). A recent meta-analysis of all 

published randomized trials evaluating the effect of restricted versus liberal oxygen 

exposure in preterm infants show no difference in ROP (35). After over 70 years of oxygen 

use, and despite large multi-center, randomized clinical trials, there is still no consensus 
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regarding optimal oxygen therapy for ELGANs. Oxygen remains the most commonly used 

drug in neonatal intensive care units worldwide (36) and the incidence of severe ROP has 

not appreciably declined.

PHARMACOLOGIC INTERVENTIONS IN ROP

In addition to better control of oxygen therapy, numerous pharmacologic interventions have 

been tried and some appears promising for the prevention of ROP and stopping its 

progression. These pharmacologic agents are discussed.

Antioxidants

Oxygen used in excess has damaging effects particularly when used in ELGANs. In normal 

respiration, oxygen is reduced in the mitochondria to two molecules of water during the 

process of aerobic energy metabolism, or oxidative phosphorylation (OXPHOS), which 

produces more than 90% of our cellular energy (37). During OXPHOS, reactive oxygen 

species (ROS) are produced as a byproduct. ROS are highly reactive chemical molecules 

that react with lipids to initiate lipid peroxidation and DNA damage (38). Major ROS 

produced in the mitochondria are superoxide anion, hydrogen peroxide (H2O2), hydroxyl 

radical, and hydroperoxyl radical. Reactive nitrogen species (RNS) such as nitric oxide 

(NO), nitrogen dioxide (NO2), dinitrogen trioxide (N2O3), and peroxynitrite, are also 

produced. The primary endogenous scavengers of ROS, or antioxidants, are superoxide 

dismutase (SOD), catalase and glutathione peroxidase (Gpx). SOD acts on superoxide anion 

to produce hydrogen peroxide (H2O2), catalase converts H2O2 to water, and Gpx detoxifies 

peroxides and hydroperoxides. Other antioxidants include peroxiredoxins (which catabolize 

H2O2 to water), peroxiredoxin, heme oxygenase, glutaredoxin and thioredoxin, and 

nonenzymatic agents such as β-carotene, retinol, vitamin C, and vitamin E. When 

endogenous antioxidant systems are inadequate or overwhelmed by ROS many pathologies 

including hypoxia/reperfusion injury and ROP develop. The retina is rich in mitochondria 

and has a high rate of OXPHOS thus rendering it a target for ROS and oxidative damage 

(39,40). Excessive ROS production contributes to mitochondrial damage and vascular 

dysfunction, particularly in ELGANs with immature antioxidant systems (41–43). 

Therefore, many investigators tested the hypothesis that antioxidants are beneficial for 

treatment and/or prevention of ROP.

Vitamin E was the first antioxidant to be used for treatment and/prevention of ROP (44). 

Several later trials of supplementing preterm infants with vitamin E for preventing or 

limiting ROP have been conducted with conflicting results (45–51). A randomized trial of 

755 VLBW infants found no significant decrease of severe ROP although the progression 

from moderate to severe ROP was less frequent following vitamin E treatment (47). Phelps 

et al. (52) and Rosenbaum et al. (53) found increased retinal hemorrhages and an increased 

rate of grade 3 and 4 IVH in the vitamin E group. Two meta-analyses reported beneficial 

effects of Vitamin E for reducing the risk of ROP and blindness. The earlier report analyzed 

6 clinical trials and found a 52% reduction in the incidence of Stage 3+ ROP (54). The later 

report analyzed 26 randomized clinical trials and a reduction in severe ROP and blindness 

(55). A third report found no effect at all (56). In this report, the authors analyzed 9 

randomized controlled trials and concluded that not more than about 4% of all very low-
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birthweight infants are likely to benefit from routine vitamin E supplementation. Vitamin E 

was the most commonly used antioxidant for ROP spanning over 4 decades. Its use has now 

been largely abandoned secondary to increased risks of morbidity with no conclusive 

evidence for protection against severe ROP.

Other antioxidants used to treat/prevent ROP include: D-Penicillamine (DPA) an 

antioxidant and suppressor of VEGF bioavailability (57). DPA was introduced to prevent 

ROP in the 1980s. In a prospective controlled trial, DPA was administered to preterm 

infants at 26–35 weeks gestation and found to be effective for ROP with no serious adverse 

effects (58) and at one year follow-up, (59). Later trials refuted those findings (60,61); 

Superoxide Dismutase (SOD) dismutates the extremely toxic superoxide anion into H2O2 

and H2O. SOD is the first line of defense against oxidative stress in the mitochondria, with 

MnSOD located in the inner mitochondrial matrix. A multicenter trial of intratracheal 

rhSOD showed a reduction in severe ROP above stage 2 in rhSOD-treated infants born at 

<25 weeks (62); Lutein and zeaxanthin are antioxidants in the eye. A single center, double-

blind randomized controlled trial comparing lutein administration versus placebo, showed 

no differences in the incidence of ROP at any stage (63). These findings were later 

confirmed (64,65); Vitamin A is one of the most important micronutrients necessary for 

growth and differentiation of tissues (66). Vitamin A supplementation reduces infant 

mortality (67). Retinal vitamin A allows adequate rhodopsin availability for 

phototransduction and protects the photoreceptors from the harmful effects of hypoxia and 

hyperoxia (68). Studies show a trend for decreased incidence of threshold ROP in ELBW 

infants treated with 10,000 IU intramuscular vitamin A three times a week (0%) compared 

with 16% in those who received half this dose (69). A recent double-blind, randomized 

controlled trial of early high-dose intramuscular vitamin A supplementation for infants at 

risk of ROP showed improves retinal function at 36 weeks' PMA (68). A meta-analysis of 

the three studies suggests a trend towards reduced incidence of ROP in vitamin A 

supplemented infants (70). Although promising, there is a paucity of studies examining the 

benefits of vitamin A for severe ROP. Considering its antioxidant properties and possible 

beneficial effects on the photoreceptors, further studies are warranted; and Allopurinol is a 

xanthine oxidase and superoxide anion inhibitor. A randomized, controlled, clinical trial 

involving 400 preterm infants who received either allopurinol or placebo showed no benefit 

(71).

Cyclooxygenase Inhibitors

In preterm infants who are exposed to supraphysiologic levels of oxygen, and have 

compromised antioxidant systems, the imbalance of oxidant/antioxidants in favor of 

oxidants lead to oxidative stress and activation of proinflammatory mediators, including 

prostanoids (72, 73). The primary pathway through which prostanoids are activated is 

through arachidonic acid (AA), a long-chain polyunsaturated fatty acids released from 

phospholipids through the action of phospholipase A1 (PLA2) (74). AA is the precursor of 

the eicosanoids, including prostanoids, through the cyclooxygenase (COX) enzyme, and 

leukotrienes, through the lipoxygenase (LOX) pathway. The two main COX isoforms are 

the constitutively expressed COX-1, responsible for maintaining basal prostanoid levels, and 

the inducible COX-2 which is generally absent and is induced in inflammation (75,76). Both 
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isoforms transform AA into prostaglandin H2, which is then transformed by synthases into 

prostaglandins (PGs) and thromboxanes. A third isoform, COX-3 was identified in 2002 

(77) as a variant of COX-1. This variant is more sensitive to acetaminophen (78). The role 

of prostanoids in ROP has been demonstrated (73,79–81). Other prostanoid compounds, the 

F-isoprostanes, are generated by lipid peroxidation of AA, independent of COX (82,83). 

One of these isomers, 8-epi-prostaglandinF2α (8-epiPGF2α), is a potent mitogen and 

constrictor of vascular smooth muscle, and is highly correlated with oxidative stress (83). 

Studies have demonstrated that 8-epi-PGF2α is functionally linked to, and activates the 

thromboxane A2 (TxA2) receptor (84), and may be involved in retinal vasoconstriction and 

ischemic retinopathies (85). The importance of the prostanoid cascade in ROP and the role 

of COX-2 in inflammation led to the premise that COX inhibition could have potential 

benefits. Nonselective COX inhibitors, such as indomethacin and ibuprofen improve OIR 

and ocular biomarkers of angiogenesis in animal models (86–90). However, there are only 

two clinical studies involving the use of COX inhibitors for prevention of ROP. One 

controlled study administered topical ketorolac (a non-selective COX inhibitor) to 59 infants 

(<30 weeks gestation, <1250 grams birth weight) every 8 hours in each eye compared to 53 

untreated preterm infants. Ketorolac reduced the risk of developing severe ROP with no 

significant adverse side effects (91). A later study of 47 preterm infants (<29 weeks, <1000 

grams) who receive ketorolac in one eye and placebo in the other eye showed two infants 

did not develop ROP, 6 showed different ROP staging between the two eyes, 4 of which had 

a better outcome in the eye receiving ketorolac and no significant treatment-related side 

effects occurred (92). Dexamethasone is a selective COX-2 inhibitor with anti-inflammatory 

effects has been demonstrated to reduce the incidence of ROP (93,94). However, its use is 

associated with significant side effects (95–100) and its efficacy in preventing ROP is 

controversial. Despite overwhelming evidence for the role of COX metabolites in oxidative 

stress and inflammation, only one prospective randomized, controlled multicenter clinical 

trial to investigate the benefits of COX inhibitors for prevention of ROP has been initiated 

and is currently underway (Aranda JV, Clinicaltrials.gov Identifier: NCT02344225).

Inositol

Inositol is a nonglucose carbohydrate that is present in high amounts in the umbilical cord 

and maternal serum at term (101). Inositol is also present at high concentrations in human 

breast milk, particularly colostrum suggesting an importance for postnatal growth (102). In 

1992, Hallman et al. (103) showed a reduction in ROP in inositol-treated infants (13%) 

versus placebo (26%) and none of the infants given inositol had stage 4 disease compared to 

7 in the placebo group. These findings were later confirmed by Friedman et al. (104). In 

2015, a meta-analysis of 4 clinical trials showed reduced stage 3 ROP in 2 trials of the 4 

trials (105). A large size multi-center, randomized, controlled trial is currently ongoing to 

further investigate the benefits of inositol for ROP (Clinicaltrials.gov Identifier: 

NCT01954082).

Propranolol

Propranolol is one of the newest proposed treatments for ROP despite weak and 

contradictory animal preclinical data Propranalol is a nonselective β-adrenoreceptor blocker 

shown to reduce the growth of infantile capillary haemangiomas (106). The mechanism of 

Beharry et al. Page 6

Semin Perinatol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Clinicaltrials.gov
http://Clinicaltrials.gov


action is likely due to suppression of VEGF. Studies have shown that polymorphisms of the 

β-adrenergic receptor in many black infants may be responsible for the lower incidence of 

ROP (107). Clinical trials have shown reduction in the incidence of ROP with oral 

propranolol with few side effects (108–110). Clinical trials in Israel and Italy are being 

conducted to evaluate efficacy and safety of this beta blocker for ROP prevention in preterm 

neonates. (ClinicalTrials.Gov : NCT01238471 ; NCT02014454, NCT02504944,) One Italian 

Trial using propranolol eye drops of 0.5mg/Kg oral, every 6 hours was discontinued due to 

serious adverse effects attributed to the pharmacologic actions of propranolol such as 

severe hypotension, bradycardia or bronchospasm. (Clinical Trials.Gov NCT01079715)

Caffeine

Caffeine is the most widely used drug worldwide (111). It is a methylxanthine that acts to 

antagonize adenosine receptors and block the release of endogenous adenosine. Caffeine 

also stimulates dopaminergic activity by removing the negative modulatory effects of 

adenosine at dopamine receptors (112). Caffeine was first demonstrated to be effective for 

treatment of apnea of prematurity (AOP) in the 1970s by Aranda et al. (113). After over 40 

years, caffeine is now the drug of choice for AOP. It is one of the most commonly 

prescribed drugs for use in ELGANs (114,115). It is a respiratory stimulant in ELGANs and 

is effective for reducing the duration of mechanical ventilation (116). The Caffeine for 

Apnea of Pre- maturity (CAP) trial found that caffeine was also beneficial for reduction the 

incidence of bronchopulmonary dysplasia (BPD), improving long-term neurodevelopmental 

outcome, and reducing the incidence of severe ROP (117). The mechanism of caffeine 

effects on severe ROP remain to be determined, but may involve effects on regulators of 

angiogenesis such as VEGF, sonic hedgehog matrix metalloproteinases (MMPs), and 

oxidative stress (118–121). Additionally, caffeine potentiates the anti-inflammatory effects 

of COX inhibitors in activated microglia which may also occur in the retina (122). Caffeine 

has been used in combination with non-steroidal anti-inflammatory drugs (NSAIDs) for 

many decades to enhance their analgesic effects, suggesting that caffeine may be an 

effective adjuvant to NSAIDs (122–124). Due to its significant impact on major acute 

neonatal morbidities including AOP, BPD, PDA, and ROP, caffeine is now recognized as 

the “wonder drug in neonatology” (125) and the “silver bullet in neonatology” (126). 

Notwithstanding, only one prospective randomized, controlled multicenter clinical trials to 

investigate the benefits of caffeine for prevention of ROP has been initiated (Aranda JV, 

Clinicaltrials.gov Identifier: NCT02344225).

Angiogenic Factors

ROP is characterized by the formation of new and aberrant retinal vasculature, suggesting 

that angiogenic factors play a major role. The role of angiogenic factors in retinal 

development was first hypothesized 1948 (127). In 1983, Senger et al. (128) discovered an 

angiogenic growth factor present in tumor cells which he named vascular permeability 

factor due to its ability to induce vascular leakage. In 1989, Ferrara and Henzel identified, 

purified and characterized a heparin-binding angiogenic growth factor specific for vascular 

endothelial cells which they named VEGF (129). Several other angiogenic factors have been 

identified, including fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), 

transforming growth factor (TGF), the angiopoietin family, insulin-like growth factor (IGF), 
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and the Ephrin family, all of which work together to promote functional vascular systems 

(130). VEGF is a vascular permeability factor. Consistent with this characteristic is its 

ability to induce the expression of plasminogen activators and MMPs to increase vascular 

permeability (131,132) which may be the first step in angiogenesis (133). It is now widely 

accepted that the VEGF family is the most potent inducer of angiogenesis and ROP. Levels 

of VEGF in the vitreous humor correlate with the degree of neovascularization (134,135). 

Plasma levels of preterm infants in the first week of life were found to be low (48 pg/mL) 

compared to term infants (200–450 pg/mL) and adults (10–110 pg/mL) (136). VEGF levels 

in the aqueous humor of Stage 4 (1,109 pg/mL) and Stage 5 (3520 pg/mL) eyes were 

considerably higher than control eyes (158 pg/mL) (137). Infants with stage 4 ROP had 

elevated VEGF levels in the subretinal fluid and decreased levels in Stage 5 (138). Induction 

of VEGF is also associated with generation of ROS, inflammatory cytokines and 

prostanoids, possibly via inducible COX-2 (139–141). VEGF is now considered the most 

important target for therapeutic interventions for prevention of severe ROP.

VEGF Inhibitors

Several anti-VEGF drugs have been developed. The first anti-VEGF drug to be approved by 

the FDA for cancer use was bevacizumab, or Avastin (142). Bevacizumab is a recombinant 

humanized antibody that binds all forms of VEGF-A. Although it is used off-label, it is not 

formulated for use within the eye (142). However, off-label use by ophthalmologists 

demonstrated that Avastin was beneficial when injected into the vitreous of adults with 

macular degeneration. Later, a truncated form of Avastin called ranibizumab (Lucentis) was 

FDA approved for ocular use. The first FDA-approved drug for use in ocular 

neonvascularization was pegaptanib (Macugen). Aflibercept (Eyelea), a human soluble 

VEGF receptor, which acts as a decoy to trap VEGF, was recently FDA-approved for ocular 

use. Bevacizumab is the first anti-VEGF drug to be used for treatment of ROP in 2007 

(143). Since then, many single center trials and case reports have been published making 

Bevacizumab, the most widely used drug for treatment of severe ROP. The first meta-

analysis of bevacizumab use for ROP was published in 2009 (144). The authors analyzed all 

case reports, and retrospective and prospective trials in peer-reviewed journals reporting the 

use of bevacizumab in ROP, including 9 articles, 6 case reports, 1 case series, and 2 

retrospective studies of 48 infants administered doses from 0.4 to 1.25 mg and cautioned 

against potential systemic complications and long-term effects of intravitreal bevacizumab 

in preterm infants. From 2007 to 2009, all investigators reported favorable outcomes with 

bevacizumab use in ROP. However, the first report of adverse effects was published in 2010 

demonstrating choroidal ruptures at 10 weeks post treatment with laser (145). Other reports 

of adverse events included vitreous or pre-retinal hemorrhage (146), delayed bilateral retinal 

detachments at 1 month post treatment (147), and retinal detachment (148). The first 

multicenter randomized, controlled trial was the BEAT-ROP study which demonstrated an 

advantage of intravitreal bevacizumab over laser therapy for zone 1 or zone II with stage 3+ 

ROP by improving structural outcomes, decreasing recurrence, and allowing continued 

development of peripheral retina (149). In the BEAT-ROP study however, assessments of 

local and systemic safety profile was not determined and follow-up was only 54 weeks' 

postmenstrual age. Moshfeghi and Berrocal (150) estimated that 47.7% of recurrences 

would have occurred after the 54 weeks. This was demonstrated by Hu et al. (151). Studies 
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have since tried to address safety of intravitreal bevacizumab use in ROP and demonstrated 

numerous acute and latent retinal adverse effects (151–168). Interestingly, serum 

concentrations of bevacizumab concurrent with suppressed systemic VEGF levels lasted up 

to 60 days post intravitreal administration (169–172), and the levels were significantly lower 

than previously reported in preterm infants (173). These reports demonstrate that 

bevacizumab escapes from the eye into the systemic circulation and has long-lasting effects 

on systemic VEGF levels in infants with ROP. A recent meta-analysis of 8 prospective 

studies of 278 eyes of ROP infants and 15 retrospective studies involving 385 eyes of ROP 

infants treated with intravitreal bevacizumab showed reoccurrence and acceleration of 

fibrous traction (174). Other anti-VEGF drugs used in ROP include ranibizumab which has 

a shorter half-life with the potential for decreased systemic toxicity. Treatment with 

ranibizumab was also associated with significant adverse outcomes (147,175,176). 

Combination treatment of intravitreal pegaptanib or bevacizumab injection and laser 

photocoagulation showed significant benefits in the management of stage 3+ ROP 

(177,178). Evidence now exist that intravitreal administration of anti-VEGF drugs can have 

prolonged suppressive effects on systemic VEGF in ELGANs. Considering the role of 

VEGF in the development of vital organs, more randomized, controlled multicenter trials 

should be conducted to evaluate dose-response effects and long-term safety profiles in this 

vulnerable population (179–186).

Insulin-like Growth Factor (IGF)-1

Although VEGF plays an important role in the development of ROP, its inhibition does not 

completely prevent ROP. Another growth factor that is currently being studied for 

prevention of ROP is IGF-1. IGF-1 influences endothelial cell growth and angiogenesis 

(187, 188), and plays a critical role in the retinal vasculature development through its 

interaction with VEGF, acting as a permissive factor for maximum VEGF stimulation of 

angiogenesis (189,190). Mean IGF-1 level has been shown as significantly and 

proportionately lower in post-menstrual age matched babies with each stage of ROP than 

without ROP (191–194). Work by Hellstrom and colleagues (191,194) have demonstrated 

that preterm infants who do not develop ROP have significantly higher circulating levels of 

IGF-I than those who do. Serum IGF-1 levels to predict ROP has been shown to be a 

reliable prognostic tool by some studies (195,196), but not others (197–199). Only one small 

single center clinical trial of Premiplex (rhIGF1/rhIGFBP3) pharmacokinetics in 5 preterm 

infants was conducted. None of the infants developed severe ROP (200). A clinical trial to 

determine the dose of hIGF-1/rhIGFBP-3 given as a Continuous Infusion, to establish and 

maintain physiologic levels of serum IGF-1 Levels to prevent ROP is ongoing. 

(ClinTrials.gov NCT01096784)

Polyunsaturated Fatty Acids (PUFAs)

Omega 6 and Omega-3 PUFAs are essential fatty acids that are important for normal 

growth, vision and neurodevelopment. Omega-6 PUFAs are formed from linolenic acid 

(LA) which is converted by desaturation and chain elongation to arachidonic acid (AA), the 

precursor to eicosanoids (prostaglandins, thromboxane and leukotrienes) (201). Omega-3 

PUFAs are formed from alpha-linolenic acid (ALA) which is desaturated and chain 

elongated to docosahexaenoic acid (DHA) (202). PUFAs are important components of the 
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phospholipid bilayer of cell membranes and contributes to cell structural integrity and 

function (203). Deficiency of AA and DHA in the membrane alters the physical properties 

of the lipid bilayer and induces vascular leakage (204). It is well established that omega-3 

PUFAs play a key role in the protection against oxidative stress and inflammation. Among 

the benefits of omega-3 PUFAs, is the ability to regulate eicosanoid metabolism. COX 

catalyzes the initial oxygenation of PUFAs to produce prostaglandin H (PGH2), a short-

lived intermediate, which is further metabolized to prostanoids (205). DHA and its 

precursor, eicosapentaenoic acid (EPA) reduce the formation of COX-2-derived PGE2 

(206), a metabolite of omega-6 PUFA-derived AA. COX-2-derived PGE2 increases VEGF-

stimulated invasiveness and angiogenesis through NF-κB (207). There is compelling 

evidence that EPA could function as a selective COX-2 inhibitor (207–209). In the retina, 

PUFAs accumulate rapidly during the later stages of gestation and early postnatal life 

(210,211). The retina contains the highest concentration of DHA of all tissues where it is 

cytoprotective and plays a key role in angiogenic regulation and neuroprotection (212). 

Administration of fish oil to preterm infants from the first day of life showed a significantly 

lower incidence and severity of ROP and risk of laser therapy in the treated group (213–

215). However, two meta-analyses examined the potential benefits of lipid administration 

and found no significant benefits for the outcome of ROP (216,217). Treatment with 

omega-3 fatty acids appears to be a promising therapy for prevention and/or treatment of 

ROP, but there is a paucity of multi-center randomized clinical trials.

DRUGS ASSOCIATED WITH INCIDENCE OF ROP

Surfactant

One of the earlier drugs found to be associated with ROP is surfactant, despite conflicting 

reports. In the 1990s, there were 3 report of a higher occurrence of ROP with surfactant use 

(218–220). However, comparing the two commonly used surfactants at that time, Exosurf 

and Survanta, there was a higher occurrence of ROP in the Exosurf group (220). A later 

meta-analysis involving 10 randomized clinical trials and over 2,000 preterm infants 

confirmed those findings of a higher risk for ROP with Exosurf (221). Numerous other 

clinical trials and meta-analyses showed no increased risk for ROP with surfactant therapy.

Erythropoietin (Epo) is routinely used in to treat anemia of prematurity. Epo is a 

glycoprotein hormone, expressed mainly in the kidney and fetal liver. It is highly responsive 

to HIF-1α and hypoxia, and is the main regulator of red blood cell production. Many 

observational and retrospective studies have reported that Epo is associated with an 

increased risk of ROP (222– 228), while other studies report no risk (229–231). Early meta-

analyses involving 23 studies and 2074 preterm infants in 18 countries showed a significant 

increase in the risk of stage >3 ROP in the Epo group (232). An update in 2014 showed no 

significant increase in the rate of stage >3 ROP for studies that initiated EPO treatment at 

less than eight days of age (233). Another meta-analysis done in 2015 also concluded that 

there were no differences in the incidence of stage >3 ROP with Epo use (234). Clearly, 

there are major conflicts regarding the role of Epo in the development of ROP, and the 

reasons for this remain unclear. However, it is well established that both Epo and VEGF are 
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stimulated via HIF-1α during hypoxia, which then leads to angiogenesis (235,238), 

therefore timing of administration may be crucial.

Steroids

In 1992, two conflicting retrospective studies were published regarding the incidence of 

ROP requiring laser therapy and postnatal dexamethasone. Batton et al. (237) reported that 

of the 21 factors examined, only the use of steroids was significantly associated with the 

need for cryotherapy. On the other hand, Sobel et al. (238) showed a reduction in the need 

for cryotherapy with prolonged dexamethasone. Several other reports confirmed the findings 

of Baton et al. (237) of an increased risk of ROP with steroids (239–244), while other 

studies showed no association (245–249). However, meta-analyses showed that early 

exposure to steroids was not associated with a risk of severe ROP (250,251), while exposure 

at > 7days (252) and >3weeks (253), caused an increase in severe ROP. The use of antenatal 

steroids was associated with significantly less stage 2 or higher ROP (254,255). Another 

study comparing antenatal betamethasone with antenatal dexamethasone showed a trend for 

greater risk of severe ROP associated with dexamethasone (256). Due to its association with 

increased incidence of cerebral palsy (98), the use of dexamethasone has been restricted.

Indomethacin

Indomethacin is a non-selective COX inhibitor used in neonatology for closure of a patent 

ductus arteriosus. While studies found no relationship between indomethacin and ROP 

(257,258), one retrospective study of over 34,000 preterm infants from 162 sites showed a 

higher incidence of severe ROP (stages 3 and 4) in the group treated with indomethacin on 

the first day of life (259). Darlow et al. (260) reported that infants treated with indomethacin 

were 1.5 times more likely to have ROP than untreated infants. Another study involving 105 

preterm infants <28 weeks gestation who received low versus high indomethacin showed a 

significant increase in the incidence of moderate/severe ROP which was directly related to 

the indomethacin serum concentrations (261). Conversely, a retrospective chart review 

found that indomethacin use for PDA was protective for ROP (262). It is suggested, that the 

contradictory effects of indomethacin on ROP may be related to the infant's postnatal age 

(263). This may indicate that the exact timing of treatment may be crucial and further 

studies in this regard are needed.

Conclusions

ROP is a multifactorial disease, the cause of which remains largely unknown. Infants at risk 

suffer from numerous conditions, and are exposed to many forms of polypharmacy which 

likely add to the etiology of the disease. Since its appearance in the 1940s, pharmacologic 

interventions for treatment and/or prevention of ROP have predominantly targeted oxidants 

and VEGF. Furthermore, an overwhelming majority of human and animal studies have 

focused on rescue treatment of ROP when damage to the retina has already occurred. Given 

the multi-factorial characteristic of ROP and complexity of the disease, the use of a single 

therapeutic agent may not be prudent. No one therapy has proven to be effective without 

adverse effects. The timing of treatment must be considered as it is preferred to prevent any 

form of ROP rather than minimize its progression. There are conflicting reports regarding 
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the benefits of many of the past and current therapies, most of which were initiated based on 

anecdotal/observational reports, and in some cases have resulted in severe adverse events to 

the detriment of the treated infant. Therefore, only data from well-designed, randomized, 

multi-center, placebo-controlled trials, as well as long-term follow-up studies should be the 

criteria for implementing a change in clinical practice to use off-label pharmaceuticals in 

these vulnerable patients.
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