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Abstract

Over the last two decades, our understanding of gut microbiotal composition and its association 

with intra- and extra-intestinal diseases including risk factors of cardiovascular disease (CVD) 

namely metabolic syndrome and atherosclerosis, have been increased exponentially. A pertinent 

question which often arises in researchers’ community is on how to manipulate the gut microbial 

ecology to ‘cure’ the cardiovascular risk factors. Accordingly, in this review we summarized the 

potential strategies, based on our current knowledge on gut microbiota in modulating CVD, how 

gut microbiota can be therapeutically exploited by targeting their metabolic activity to alleviate the 

risk factors of CVD.

Keywords

Microbiota; Atherosclerosis; Metabolic Syndrome; Probiotics; Nutraceuticals; Fecal 
Bacteriotherapy

Introduction

Centuries ago, Hippocrates recognized the key role of gut in human health and proclaimed 

that “All Diseases Begin in the Gut”. Current research advancement accumulated more 

evidence to support his assertion specifically, the link between the gut microbiota (GM) and 

‘New Age’ disorders: obesity [1], insulin resistance [2], cancer [3] and neurological 

complications [4]. The influence of GM on human health are extensive as they modulate the 

therapeutic response of drugs by altering its metabolism [5] and also dictate host responses 

to anti-cancer therapeutics [6–8].

Out of 52 known bacteria phyla on earth, only five to seven phyla (predominantly 

Firmicutes and Bacteroidetes) colonize the mammalian gut [9]. Microbes colonize the 

human gut immediately after birth and proliferate to number in the trillions, which vastly 

outnumbers host cells. The composition of the human GM changes with age; Proteobacteria 
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predominates in the gut of neonates, but is then substantially reduced from childhood (~16% 

in neonates) to adulthood (~4.6%) [9]. As a ‘virtual endocrine organ’, the GM performs 

various metabolic activities that influence host physiology, including stimulating the release 

of gut hormones such as incretin and peptide YY [10]. The GM can rapidly alter its 

composition to adapt to changing dietary components [11,12]. These alterations can be 

adverse as for example, New Age foods rich in calorie with reduced fiber facilitate the 

aberrant expansion of Proteobacteria observed in both inflammatory bowel disease (IBD) 

and metabolic disorders [9,13]. Notably, augmented Firmicutes/Bacteroidetes ratio has been 

found to be associated with many potential risk factors of CVD [1,9,14].

Although the role of GM on intestinal health has been investigated ad nauseam, there is 

limited information regarding their extra-intestinal effects, especially in CVD. IBD patients 

appear to have a higher risk for coronary heart disease despite a lower prevalence of 

'classical' risk factors, indicating a link between the gut and the heart [15]. It is postulated 

that such gut-cardiovascular axis could be linked by translocation of bacterial products 

across ‘leaky’ intestinal barrier into systemic circulation which causes metabolic 

endotoxemia, resulting in low-grade chronic inflammation [16]. Indeed, microbiota and their 

metabolites are reported to profoundly modulate atherosclerosis, the most common cause of 

heart attacks, stroke and peripheral vascular disease [17]. Despite so, the mechanism by 

which the GM drives atherosclerosis and CVD remains elusive and is currently under active 

investigation.

Compelling evidences from recent findings on microbiota-obesity-metabolic syndrome axis 

further unravel the profound influence of GM on the initiation and progression of CVD and 

its risk factors. In this review, we focus on the current advancements made on delineating 

the role of GM in CVD and conceptualize the GM-targeted strategies that are actively being 

explored.

The triad of gut microbiota, metabolic syndrome and cardiovascular 

diseases

Obesity, insulin resistance, hyperglycemia, hyperlipidemia and hypertension collectively 

termed as metabolic syndrome, are major risk factors for CVD. Our group have 

demonstrated that gut dysbiosis induces hyperphagia that culminates in the development of 

metabolic syndrome in mice lacking the toll-like receptor 5 (TLR5-KO) [18]. The increased 

mucosal translocation of bacterial LPS in mice supports the hypothesis that metabolic 

endotoxemia eventuate metabolic syndrome [19]. However, bacterial metabolites are not 

necessarily 'bad' as for instance, bacteria-derived short chain fatty acids (SCFA: acetate, 

butyrate and propionate) benefit the host as a source of carbon and energy. Indeed, 

beneficial effects of SCFA on modulating obesity, appetite and colonic inflammation are 

well-documented in numerous studies [20••, 21•, 22]. Despite all that, elevated fecal SCFA 

is positively associated with metabolic syndrome in humans [23,24]. Similarly, we 

demonstrated that uncontrolled prolonged generation of SCFA by dysbiotic microbiota 

promotes metabolic syndrome in TLR5-KO mice [18]. These observations are further 

supported by a recent study which demonstrates the positive correlation between obesity and 
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the augmented abundance of propionate/acetate producers Phascolarctobacterium, Proteus 

mirabilis and Veillonellaceae in high fat diet-fed rats [25].

Atherosclerosis is perhaps the most common cause of cardiovascular complications. Koren 

et. al observed that the amount of bacterial DNA in human atherosclerotic plaques correlates 

with the extent of leukocytes present in the plaque [26]. Furthermore, elevated plasma 

cholesterol was found to correlate with alterations in several bacterial taxa from oral cavity 

and the gut [26]. The identification of dental plague-forming Veillonella and Streptococcus 

bacterial DNA in atherosclerotic plagues [26] implicated a possible causal role of bacteria in 

atherosclerosis.

Recent findings from Stanley Hazen and colleagues elegantly describe the role of GM in 

producing the pro-atherogenic molecule trimethylamine N-oxide (TMAO) [17,27,28••]. 

Specifically, dietary choline and L-carnitine are metabolized by the GM into trimethylamine 

(TMA), which is further converted into TMAO by hepatic flavin monooxygenase 3 (FMO3) 

in the liver [17,27]. Intriguingly, dietary supplementation of choline or TMAO blunts 

reverse cholesterol transport and augments the formation of foam cells that precede 

atherosclerosis in mice [17]. The transfer of high TMAO-producing cecal microbiota is 

sufficient to accentuate atherogenesis in atherosclerosis-prone apolipoprotein E deficient 

mice [29•]. Further, elevated plasma TMAO levels are also associated with increased risk of 

major adverse cardiovascular events in humans [28••].

Our current understanding on the interplay between the GM and the risk factors for CVD 

may be just only the tip of the iceberg. Recent advancements in this exciting area of research 

have certainly fuel the concept that pharmacological interventions of microbiotal metabolic 

processes can alleviate CVD risk factors. Accordingly, there have been increasing interests 

to employ the following GM-targeted strategies to reduce the incidence of CVD:

1. Gut microbiotal metabolism: A potential therapeutic target for CVD

It is not the 'census' but the metabolic activity of the GM that is key in dictating host 

metabolism. Based on this notion, researchers begin to explore the efficacy of 

pharmacological intervention that targets specific metabolic activity in the gut. For instance, 

the aza-analogue of carnitine can be utilized to suppress production of proatherogenic 

TMAO by shifting microbiotal degradation pattern of dietary quaternary amines [30]. 

Archaebiotic intervention can be employed by administering Methanomassiliicoccus 

luminyensis B10, an Archea strain that reduces TMA formation in the gut by converting it 

into an inert molecule [31].

2. Fecal transplantation: resetting your gut microbiota

Fecal microbiota transplantation (FMT) is an intervention designed to displace intestinal 

pathogens by introducing fecal contents from healthy subjects into the gastrointestinal (GI) 

tract of patients. Despite being a relatively old concept from the late 1960s [32], FMT has 

caught much attention specifically in its utility to treat intestinal diseases in the last 5–8 

years [33]. Indeed, FMT is demonstrated to be effective in treating recurrent spore-forming 

Clostridium difficile infection in humans [34]. Now, researchers view FMT as an emerging 
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therapy to manage microbiota-driven extra-intestinal diseases, including obesity and CVD. 

Remarkably, fecal transplantation from lean to obese humans has been shown to improve 

insulin sensitivity and plasma triglycerides in the recipients [35]. However, the use of FMT 

is currently limited due its associated risks including possible transfer of endotoxins or 

infectious agents [36] that could cause deterioration of existing IBD or appearance of new 

GI complications [37]. Instead of fecal contents, the transplantation of only a defined group 

of bacteria (e.g. Altered Schaedler Flora) [38] would be a rational alternative to FMT.

3. Genetically engineered probiotics

The human gut houses an extensive collection of bacteria, many of which exhibit probiotic 

effects that can be exploited to mitigate the risk factors of CVD. For example, the probiotic 

bile salt hydrolase-active Lactobacillus reuteri strain is clinically-tested to be effective in 

reducing cholesterol levels via modulating the composition of the bile acid pool [39]. In 

some studies, probiotic bacteria are genetically modified to further enhance their beneficial 

effects. N-acylphosphatidylethanolamines (NAPEs)-expressing E. coli Nissle 1917 is one 

such genetically engineered probiotic that can alleviate high fat diet-induced obesity, insulin 

resistance and hepatosteatosis in mice [40••]. Among other therapeutic target of interest, the 

intestinal alkaline phosphatase (IAP) is well-known to detoxify bacterial LPS by de-

phosphorylating its lipid A moiety [41]. Hence, the use genetically engineered, next 

generation, probiotics that express IAP could be a feasible strategy to reduce luminal LPS 

and thus metabolic endotoxemia.

4- Dietary modulation: Nutraceuticals

Among environmental factors, diet robustly alters the composition of GM. Fiber-rich diets 

(e.g. agrarian diet) promote the growth of beneficial commensal bacteria and consequently 

limit the growth of opportunistic pathogen [42]. Recognizing the interplay between diets and 

the GM [12], researchers have initiated the formulation of therapeutic functional foods that 

can improve gut health. Recently, a study has shown that dietary intervention [whole grains, 

traditional Chinese medicinal foods, and prebiotics (WTP diet)] resulted in the reduction of 

opportunistic pathogen Enterobacteriaceae and increase in gut barrier-protecting 

Bifidobacteriaceae, with concomitant improvement in insulin sensitivity and lipid profile 

[43•].

In addition, nutritional compounds such as the inulin-type prebiotics are advocated for their 

beneficial effects, including promoting the growth of the probiotic Bifidobacteria species in 

the gut [44,45]. Moreover, co-administration of prebiotic polydextrose and probiotic 

Bifidobacteria B420 further enhances the efficacy of anti-diabetic drugs in improving 

glycemic control and insulin resistance in mice [46••].

Bacterial fermentation of prebiotic soluble fiber generates SCFA, which exerts several 

beneficial effects including amelioration of CVD risk factors [20••, 21•, 22]. SCFA can be 

exploited therapeutically for cardiovascular benefits but, a long-term study needs to be 

carried out to evaluate the desirable and undesirable effects of SCFA specifically in 

diabetics [47] before its recommendation for therapeutic use.
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Altogether, such observations raise an intriguing possibility that dietary schemes which 

either modulate the gut microbial composition or its metabolic activities (e.g. modulating 

fermentation, targeting iron-chelating siderophore expression) can be a valuable approach to 

reduce CVD risk [48].

5- Keeping your intestinal flora unaltered: A preventive approach to reduce cardiovascular 
risk factors

Although therapeutic alterations in gut microbiotal composition can improve host well-

being, major abrupt changes within the gut milieu (e.g. intake of antibiotics) can counter-

intuitively do more harm than good. Notably, the use of antibiotics in humans during the 

first six month of life is associated with childhood obesity [49]. Similar results were 

observed in mice whereby subtherapeutic dose of antibiotics increased adiposity in young 

mice [50]. Quite surprisingly, ApoE-KO mice fed standard low cholesterol diet and 

maintained in germ-free conditions develop severe atherosclerosis compared to their 

conventionally-housed counterparts [51], suggesting that microbiota or their metabolites 

also mediate protective effects against CVD in a manner akin to a double-edged sword.

Altogether, these observations implicate that therapeutic intervention should not only 

focused on eliminating disease-causing bacteria, but they also have to preserve the beneficial 

ones that are central in maintaining well-being. A summary of therapeutic approaches that 

can be employed to alleviate CVD is shown in the schematic diagram (Fig. 1).

Conclusion

Humans may share more than 99.9% homology in their genes, yet their GM/metagenome 

can be substantially distinct from one person to another. As the adage goes "we are what we 

eat", it is not a superfluity to assert that CVD prevention can begin from the gut via 

manipulating the microbiota. However, most of the studies come from North American and 

European countries where environmental and health regulations are much stringent than 

Asian countries like India, Bangladesh and Pakistan. Indeed, a study reported that South 

Asian migrants appear to have higher risk of CVD than their Europeans counterparts, which 

provide a great opportunity to explore the possible role of microbiota in cardiovascular 

health [52]. Yet, the discrepancies between the GM among dissimilar human populations 

means that a generalized therapeutic approach may not work for all humans. In this regard, 

personalized medicine that take into account individual GM disposition may set the 

paradigm by which future therapeutics are designed. The advent of next-generation high-

throughput sequencing technology, in addition to inclusion of multiple platforms of meta-

‘omics’ analysis (metagenomics, metatranscriptomics, metaproteomics, metabolomics) will 

further aid such endeavors.
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Highlights

1. The gut microbiota (GM) plays a key role in host macromolecule metabolism

2. GM generates both pro- and anti-inflammatory metabolites

3. GM metabolism modulation can alleviate risk factors of cardiovascular disease 

(CVD)

4. Probiotics and fecal microbiota transplantation have potential to reduce CVD

Singh et al. Page 10

Curr Opin Pharmacol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Shaping the gut microbiota for cardiovascular benefits
Selective enrichment, using pre- and probiotics, of beneficial bacteria alleviates major risk 

factors of cardiovascular disease. FMT: Fecal microbiota transplantation.
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