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Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many
fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a
list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based
cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum
temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list
is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity
of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is
robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.

1. Introduction

Simulated annealing (SA) algorithm, which was first inde-
pendently presented as a search algorithm for combinato-
rial optimization problems in [1, 2], is a popular iterative
metaheuristic algorithm widely used to address discrete and
continuous optimization problems. The key feature of SA
algorithm lies in means to escape from local optima by
allowing hill-climbing moves to find a global optimum. One
of the major shortages of SA is that it has several parameters
to be tuned, and its performance is sensitive to the values of
those control parameters. There are two special strategies for
parameter tuning: the online parameter tuning and the off-
line parameter tuning. In the online approach, the param-
eters are controlled and updated dynamically or adaptively
throughout the execution of the SA algorithm [3-7], whereas
in the oft-line approach, the values of different parameters
are tuned before the execution of the SA algorithm and are
fixed during its execution. Fine-tuning parameter values is
not trivial, and those parameters are quite often very poorly
made by trial and error. So, SA algorithm, which has less

parameter or is less sensitive to parameter setting, is very
attractive for practical users.

Recently, a metaheuristic algorithm called the list-based
threshold-accepting (LBTA) algorithm has been developed
and has shown significant performance for combinatorial
optimization problems that are NP-complete. The advantage
of LBTA over the majority of other neighbourhood search-
based metaheuristic methods is that it has fewer controlling
parameters that have to be tuned in order to produce
satisfactory solutions. Since its appearance, LBTA has been
successfully applied to many combinatorial optimization
problems [8-14].

In this work we are motivated by the success of LBTA
in simplifying parameter tuning to study how list-based
parameter control strategy can be applied to SA algorithm.
Towards by this goal, our paper presents a novel list-based
cooling schedule for SA algorithm to solve travelling sales-
man problem (TSP), and we call our proposed algorithm
as list-based simulated annealing (LBSA) algorithm. In list-
based cooling schedule, all temperatures are stored in a list
which is organized as a priority queue. A higher temperature
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has higher priority. In LBSA, a list of temperatures is created
first, and then, in each generation, the maximum value in
the list is used as current temperature to calculate acceptance
probability for candidate solution. The temperature list is
updated adaptively according to the topology of the solution
space of the problem. Using the list-based cooling schedule,
SA algorithm has good performance on a wide range of
parameter values; and it also has competitive performance
compared with some other state-of-the-art algorithms. The
parameter robustness of list-based cooling schedule can
greatly simplify the design and implementation of LBSA
algorithm for practical applications.

The remainder of this paper is organized as follows:
Section 2 provides a short description of TSP problem and
SA algorithm. Section 3 presents our proposed list-based
SA algorithm. Section 4 gives the experimental approach
and results of experiments carried out on benchmark TSP
problems. Finally, in Section 5 we summarize our study.

2. Preliminaries

2.1. Traveling Salesman Problem. TSP problem is one of
the most famous hard combinatorial optimization problems.
It belongs to the class of NP-hard optimization problems.
This means that no polynomial time algorithm is known to
guarantee its global optimal solution. Consider a salesman
who has to visit # cities. The TSP problem consists of finding
the shortest tour through all the cities such that no city is
visited twice and the salesman returns back to the starting city
at the end of the tour. It can be defined as follows. For  cites
problem, we can use a distance matrix D = (d; ;),,,, to store
distances between all the pair of cites, where each element d, ;
of matrix D represents the distance between cities v; and v;.
And we use a set of permutations 7 of the integers from 1 to
n, which contains all the possible tours of the problem. The

goal is to find a permutation 7 = (7(1), 7(2),...,7(n)) that
minimizes
n—1
f(m= Z iy n(is1) t Dniuymr)- 1)
i=1

TSP problem may be symmetric or asymmetric. In the
symmetric TSP, the distance between two cities is the same in
each opposite direction, forming an undirected graph. This
symmetry halves the number of possible solutions. In the
asymmetric TSP, paths may not exist in both directions or
the distances might be different, forming a directed graph.
Traffic collisions, one-way streets, and airfares for cities with
different departure and arrival fees are examples of how this
symmetry could break down.

2.2. Simulated Annealing Algorithm. SA algorithm is com-
monly said to be the oldest among the metaheuristics and
surely one of the few algorithms that have explicit strategies
to avoid local minima. The origins of SA are in statisti-
cal mechanics and it was first presented for combinatorial
optimization problems. The fundamental idea is to accept
moves resulting in solutions of worse quality than the
current solution in order to escape from local minima. The
probability of accepting such a move is decreased during the
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FIGURE 1: Flowchart of simulated annealing algorithm.

search through parameter temperature. SA algorithm starts
with an initial solution x, and candidate solution y is then
generated (either randomly or using some prespecified rule)
from the neighbourhood of x. The Metropolis acceptance
criterion [15], which models how a thermodynamic system
moves from one state to another state in which the energy is
being minimized, is used to decide whether to accept y or not.
The candidate solution y is accepted as the current solution x
based on the acceptance probability:

1, if )< f(x),
b f)<f .

e U@t Gtherwise,

where ¢ is the parameter temperature. The SA algorithm can
be described by Figure 1.

In order to apply the SA algorithm to a specific problem,
one must specify the neighbourhood structure and cooling
schedule. These choices and their corresponding parameter
setting can have a significant impact on the SA’s performance.
Unfortunately, there are no choices of these strategies that
will be good for all problems, and there is no general easy
way to find the optimal parameter sets for a given problem.
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A cooling schedule should consist of starting temperature,
temperature decrement function, Markov chain length, and
termination condition. Geometric cooling schedule, which
can be described by the temperature-update formula ¢;,, =
aty, is probably the most commonly used in the SA literature
and acts as a base line for comparison with other more
elaborate schemes [16]. Typical values of a for moderately
slow cooling rates are 0.8 through 0.99.

For practical application where computation complexity
of objective function is high, SA algorithm may run with
constant Markov chain length and use fixed iteration times
as termination condition. As a result, initial temperature
and cooling coeflicient a are the two key parameters that
impact the performance of SA algorithm. Even in this simple
situation, it is not an easy task to find optimal values for
those two parameters, because SA’s performance is sensitive
to those parameters. One way to tackle the parameter setting
problem of SA algorithm is to use adaptive cooling strategy
[3-7]. Adaptive cooling strategy is definitely efficient and it
makes SA algorithm less sensitive to user defined parameters
than canonical SA, but it also makes SA algorithm lose the
feature of simplicity. Another way to tackle this problem is to
find new cooling schedule which has fewer parameters or the
parameters are more robust.

2.3. Simulated Annealing Algorithm for TSP Problems. In
order to use SA algorithm for TSP problem, we can represent
solution x as a permutation 7. Then, a large set of operators,
such as the famous 2-Opt, 3-Opt, inverse, insert, and swap
operators, can be used to generate candidate solution y. Since
its appearance, SA algorithm has been widely and deeply
studied on TSP problems [17-21]. Many cooling schedules,
such as geometric, exponential, logarithmic, and arithmetic
ones and their variants, have been used in literature.

The theory convergence conditions of SA make it very
time consuming in most cases [22]. Wang et al. [23] proposed
a two-stage SA algorithm which was tested on 23 TSP
benchmark instances with scale from 51 to 783. The numerical
results show that it is difficult for SA algorithm to solve TSP
benchmark instances with scale exceeding 1000 cities based
on time complexity. Geng et al. [24] proposed an adaptive
simulated annealing algorithm with greedy search (ASA-
GS), where greedy search technique is used to speed up the
convergence rate. The ASA-GS achieves a reasonable trade-
offamong computation time, solution quality, and complexity
of implementation. It has good scalability and has good
performance even for TSP benchmark instances with scale
exceeding 1000 cities. Wang et al. [25] proposed a multiagent
SA algorithm with instance-based sampling (MSA-IBS) by
exploiting learning ability of instance-based search algo-
rithm. The learning-based sampling can effectively improve
the SA’s sampling efficiency. Simulation results showed that
the performance of MSA-IBS is far better than ASA-GS in
terms of solution accuracy and CPU time. In this paper, MSA-
IBS is used as basis to use list-based cooling schedule.

3. List-Based Simulated Annealing Algorithm

3.1. The Neighbourhood Structure. In this paper, we use the
greedy hybrid operator proposed by Wang et al. [25] to

produce candidate solution. This is a kind of multiple move
operators, which select the best one from three neighbours.
Specifically, after two positions i and j are selected, it
uses inverse operator, insert operator, and swap operator
to produce three neighbour solutions. And the best one is
used as the candidate solution. The inverse, insert, and swap
operators can be defined as follows.

Define I (inverse operator inverse(r, i, j)). It means to inverse
the cities between positions i and j. The inverse(, i, j) will
generate a new solution 7' such that 7' (i) = n(§), nG+1) =
n(j—l),...,n'(j) =7(i),wherel <i,j<nAl<j-i<n-1;
in addition, if j —i = n— 1, it meansi = 1 and j = », and then
7' (i) = n1(j) and 7'['(]') = 71(i). Two edges will be replaced by
inverse operator for symmetric TSP problems.

Define 2 (insert operator insert(r, i, j)). It means to move the
city in position j to position i. The insert(r, 7, j) operator will
generate a new solution 7' such that 7' (i) = n(§), nG+1) =
n(@),... n'(j) = 71(j — 1), in the case of i < j, or ﬂ'(j) =
ﬂ'(j+1),..., '(i-1) = n(), ' (G) = (), in the case of i > j.
In general, three edges will be replaced by insert operator.

Define 3 (swap operator swap(rm, i, j)). It means to swap the
city in position j and city in position i. The swap(r, i, j)
operator will generate a new solution 7' such that 7' (i) = 7( 7)
and 7'( j) = n(i). In general, four edges will be replaced by
swap operator.

Using the above three operators, the used hybrid greedy
operator can be defined as follows:

7' = min (inverse (71,1 + 1, ) , insert (7, + 1, j),
()
swap (m,i + 1, 7)),

where min returns the best one among its parameters.

3.2. Produce Initial Temperature List. As in LBTA algorithms
[8-14], list-based parameter controlling strategy needs to
produce an initial list of parameters. Because temperature in
SA is used to calculate acceptance probability of candidate
solution, we use initial acceptance probability p, to produce
temperature t as follows. Suppose x is current solution and
y is candidate solution which is randomly selected from x’s
neighbours. Their objective function values are f(x) and
f(y), respectively. If y is worse than x, then the acceptance
probability p of y can be calculated using formula (2).
Conversely, if we know the acceptance probability p,, then
we can calculate the corresponding temperature ¢ as follows:

() -f )
In (p,)

Figure 2 is the flowchart of producing initial temperature
list. In Figure 2, after a feasible solution x is produced, a can-
didate solution y is randomly selected from x’s neighbours. If
y is better than x, then x is replaced by y. And using formula
(4), the absolute value of f(y) — f(x) is used to calculate an
initial temperature value t. Then ¢ will be inserted into initial

t ) (4)
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FIGURE 2: Flowchart of producing initial temperature list.

temperature list. The temperature list is a priority list, where
higher temperature has higher priority. The same procedure
is repeated until the list of temperature values is filled.

3.3. Temperature Controlling Procedure. In each iteration
k, the maximum temperature in list is used as current
temperature ... If Markov chain length is M, then t,,, may
be used at best M times for the calculation of acceptance
probability of candidate solution. Suppose there are n times
that bad solution is accepted as current solution; we use d; and
p; to represent the difference of objective function values and
acceptance probability, respectively, wherei = 1---n, and the
relation between d; and p; can be described as the following
equation:

pi = o il tmax (5)

According to the Metropolis acceptance criterion, for
each time a bad candidate solution is met, a random number
r is created. If r is less than the acceptance probability, then
the bad candidate solution will be accepted. So, for each pair
of d; and p;, there is a random number r; and r; is less than
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p;- We use d; and r; to calculate a new temperature ¢; as the
following formula described:

M 6
i_ln(ri)' ©)

We use the average of t; to update the temperature list.
Specifically, t,,,. will be removed from list, and average of t;
will be inserted into list. Because ¢; is always less than ¢, the
average of t; is less than ¢, also. In this way, the temperature
decreases always as the search proceeds.

3.4. Description of LBSA Algorithm. Because the main pur-
pose of this paper is to study the effectiveness of list-based
cooling schedule, we use a simple SA framework which uses
fixed iteration times for outer loop and fixed Markov chain
length in each temperature. The detailed flowchart of the
main optimization procedure is shown in Figure 3. Besides
the creation of initial temperature list, the main difference
between the flowchart of LBSA and the flowchart of canonical
SA is about the temperature control strategy. In canonical
SA, the temperature controlling procedure is independent of
the topology of solution space of the problem. Conversely,
the temperature controlling procedure of LBSA is adaptive
according to the topology of solution space of the problem.
In Figure 3, K is maximum iteration times of outer loop,
which is termination condition of LBSA. M is Markov chain
length, which is termination condition of inner loop. Counter
k is used to record the current iteration times of outer loop,
m is used to record current sampling times of inner loop,
and c is used to record how many times bad solution is
accepted in each temperature. Variable t is used to store the
total temperature calculated by formula (6), and the average
temperature t/c will be used to update the temperature list.
We can use a maximum heap to implement the temperature
list. As the time complexity of storage and retrieval from heap
is logarithmic, the use of temperature list will not increase the
time complexity of SA algorithm.

4. Simulation Results

In order to observe and analyse the effect of list-based
cooling schedule and the performance of LBSA algorithm,
five kinds of experiments were carried out on benchmark
TSP problems. The first kind of experiments was used to
analyse the effectiveness of the list-based cooling schedule.
The second kind was carried out to analyse the parameter
sensitivity of LBSA algorithm. The third kind was carried out
to compare the performance of different ways to update the
temperature list. The fourth kind was carried out to compare
the performance of different neighbourhood structures. And
the fifth kind was carried out to compare LBSA’s performance
with some of the state-of-the-art algorithms.

4.1. The Effectiveness of List-Based Cooling Schedule. To
illustrate the effectiveness of list-based cooling schedule, we
compare the temperature varying process and search process
of LBSA algorithm with SA algorithms based on the classical
geometric cooling schedule and arithmetic cooling schedule.
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FI1GURE 3: Flowchart of list-based SA algorithm.

Those experiments were carried out on BCL380, XQL662,
XIT1083, and XSC6880 problems from VLSI data sets. The
best known integer solutions of those problems are 1621, 2513,
3558, and 21537, respectively. The iteration times of outer loop
are 1000, and the Markov chain length in each temperature is
the city number of the problem, which is 380, 662, 1083, and
6880, respectively.

Figure 4 compares the temperature varying process of
different cooling schedules on the four benchmark problems.
List-based cooling schedule can be viewed as a kind of
geometric cooling schedule with variable cooling coefficient.
Compared with the temperature varying of geometric cool-
ing schedule, temperature of list-based cooling schedule
decreases quicker in the early stage, but slower in the later
stage. As indicated by Abramson et al. [16], geometric cooling

schedule always uses constant cooling coefficient regardless
of the stages of search. However, at high temperatures
almost all candidate solutions are accepted, even though
many of them could be nonproductive. To use variable
cooling coeflicients, which depend on the stages, would allow
SA algorithm to spend less time in the high temperature
stages. Consequently, more time would be spent in the low
temperature stages, thus reducing the total amount of time
required to solve the problem.

Figure 5 compares the search process of different cooling
schedules on the four benchmark problems. Compared with
geometric cooling schedule and arithmetic cooling schedule,
list-based cooling schedule has quicker convergence speed
and has good long-term behaviour also. This good perfor-
mance may be due to the variable cooling coefficient feature
of list-based cooling schedule. The temperature is updated
adaptively according to the topology of solution space of the
problem. As a result, LBSA algorithm can spend more time
to search on promising area finely.

4.2. Sensitivity Analysis of Temperature List Length and Initial
Temperature Values. We observe the sensitivity of list length
on BCL380, XQL662, XIT1083, and XSC6880 problems. For
each problem, we test 30 different list lengths from 10 to
300 with a step 10. For each list length, we run LBSA
algorithm 50 times and calculate the average tour length
and the percentage error of the mean tour length to the
best known tour length. Figure 6 is the relation between
percentage error and list length. It shows the following: (1)
for all the problems, there is a wide range of list length for
LBSA to have similar promising performance; (2) list length
is more robust on small problems than on large problems;
(3) list length should not be too big for large problems. For
big problems, the used Markov chain length, which is the
city number of the problem, is not big enough for LBSA to
reach equilibrium on each temperature. Big list length means
the temperature decreases more slowly, so the algorithm will
spend too much time on high temperature and accept too
much nonproductive solutions. As a result, a big list length
will dramatically deteriorate LBSA’s performance for large
problems. Because of the robust temperature list length, we
use fixed temperature list length in the following simulations,
which is 120 for all instances.

In order to observe the sensitivity of initial temperature
values, we carried out experiments with different initial
temperature values on BCL380, XQL662, XIT1083, and
XSC6880 problems. Because the initial temperature values
are produced according to initial acceptance probability p,,
we use 30 different p;, which range from 1072 to 0.9, to create
initial temperature values. Specifically, the set of p, is the
union of geometric sequence from 1072° to 10~ with common
ratio 10 and arithmetic sequence from 0.1 to 0.9 with common
difference 0.1. For each initial acceptance probability, we run
LBSA algorithm 50 times and calculate the average tour
length and the percentage error of the mean tour length to
the best known tour length. Figure 7 is the relation between
percentage error and index of initial acceptance probability.
It shows the following: (1) the performance of LBSA is not
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FIGURE 4: Compare the temperature varying process of different cooling schedule.

sensitive to the initial temperature values; (2) there is a
different varying direction among different problems. For
small problems, the initial temperature should not be too low,
but for big problems, the initial temperature should not be
too high. This difference is due to the limited computation
resource used and the nonlinear computation complexity
of TSP problem. The LBSA algorithm can have similar
promising performance on a wide range of initial temperature
values; this high robustness of initial temperature is due to the
adaptive nature of list-based cooling schedule.

4.3. Comparing Different Temperature Updating Schemes. In
our algorithm described in Section 3.4, we use the average of
temperature ¢; to update temperature list. There are several
variants, such as using maximum ¢; or minimum t;. To show

the advantage of using average of t;, we compare the results
and the decreasing process of temperature using those three
updating schemes. Table 1 is the simulation results; it is clear
that using average temperature to update temperature list
has far better performance than the other methods. The
temperature decreasing process of different strategies on
BCL380, which is showed in Figure 8, can explain why using
average temperature is the best option. If we use maximum
temperature to update the temperature list, the temperature
will decrease very slowly. As a result, the acceptation proba-
bility of bad solution is always high, and SA algorithm will
search randomly in the solution space. Conversely, if we
use minimum temperature to update the temperature list,
the temperature will decrease sharply. As a result, the SA
algorithm will be trapped into local minimum quickly and
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TaBLE 1: Comparison of different temperature list updating schemes.

TaBLE 2: Comparison of different neighbourhood structures.

Instance OPT Average Maximum Minimum Instance Inverse Insert Swap Hybrid
BCL380 1621 1630.2 2357.4 1651.9 BCL380 1631.96 1776.24 2666.44 1630.84
XQL662 2513 2527.2 4117.8 2565.8 XQL662 2535.2 2836.52 44372 2527.2

XIT1083 3558 3592.9 6663.0 3674.6 XIT1083 3603.48 4118.72 6760.84 3592.08
XSC6880 21537 21920.0 63472.2 22649.8 XSC6880 22115.6 29048 64263.4 21930.6

lose the advantage of escaping from local minimum by using
Metropolis acceptance criterion.

4.4. Comparing Different Neighbourhood Structures. In our
algorithm, we use a greedy hybrid neighbour operator pro-
posed by Wang et al. [25] to produce candidate solution. This

hybrid operator uses the best one produced by inverse, insert,
and swap operators. To show its advantage, we compare
the results produced by inverse, insert, swap, and hybrid
operators. And we compare the percentage of inverse, insert,
and swap operators accepted when we use hybrid operator.
Table 2 is the simulation results; it is clear that hybrid
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operator has the best performance. Among the three basic
operators, inverse is the best. If we compare the percentages
of different basic operators accepted when we use hybrid
operator, we found that inverse operator is accepted most.
Figure 9 is the percentages of different operators accepted on
instance BCL380. The percentages of inverse, insert, and swap
operators are 65%, 31%, and 4%, respectively. The relative
percentages of the three operators accepted are similar on
other instances as on BCL380. The good performance of
inverse operator is due to its ability to produce more fine-
grained neighbourhood structure, because it changes two
edges only. The hybrid operator, which uses inverse, insert,
and swap operators at the same time, has a bigger neighbour-
hood structure. So it has higher probability to find promising
solutions.
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4.5. Competitiveness of LBSA Algorithm. We compare LBSA
algorithm with genetic simulated annealing ant colony
system (GSAACS) [26] and MSA-IBS on 24 benchmark
instances with cities from 51 to 1655. The GSAACS is a hybrid
algorithm which uses the ant colony system (ACS) to generate
the initial solutions of the genetic algorithms. Then, it uses
genetic algorithm (GA), which uses SA as mutation operator,
to generate offspring solutions based on the initial solutions.
If the solutions searched by GA are better than the initial
solutions, GSAACS will use these better solutions to update
the pheromone for the ACS. After a predefined number
of generations, GSAACS uses particle swarm optimization
(PSO) to exchange the pheromone information between
groups.
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TaBLE 3: Compare LBSA with GSAACS and MSA-IBS on 24 benchmark instances from TSPLIB.
Number  Instance OPT GSAACS MSA-IBS LBSA
Best Mean PEav Best Mean PEav Best Mean PEav

1 eil51 426 427 42727 0.30 426 426 0 426 426 0
2 eil76 538 538 540.20 0.41 538 538 0 538 538 0
3 eill01 629 630 635.23 0.99 629 629 0 629 629 0
4 berlin52 7542 7542 7542.00 0 7542 7542 0 7542 7542 0
5 bier127 118282 118282 119421.83 0.96 118282 118291.2 0.01 118282 118282 0
6 ch130 6110 6141 6205.63 1.57 6110 6110 0 6110 6110.6 0.01
7 ch150 6528 6528 6563.70 0.55 6528 6544.4 0.25 6528 6537.5 0.15
8 rd100 7910 7910 7987.57 0.98 7910 7910 0 7910 7910.1 0
9 1in105 14379 14379 14406.37 0.19 14379 14379 0 14379 14379 0
10 lin318 42029 42487 43002.90 2.32 42040 42170.9 0.34 42029 42138.55 0.26
11 kroA100 21282 21282 21370.47 0.42 21282 21282 0 21282 21284.15 0.01
12 kroA150 26524 26524 26899.20 1.41 26524 26524.15 0 26524 26524.05 0
13 kroA200 29368 29383 29738.73 1.26 29368 29383.45 0.05 29368 29371.9 0.01
14 kroB100 22141 22141 22282.87 0.64 22141 22174.2 0.15 22141 22184.2 0.2
15 kroB150 26130 26130 26448.33 1.22 26130 26134.05 0.02 26130 26137.9 0.03
16 kroB200 29437 29541 30035.23 2.03 29438 29439.4 0.01 29437 29438.65 0.01
17 kroC100 20749 20749 20878.97 0.63 20749 20749 0 20749 20749 0
18 kroD100 21294 21309 21620.47 1.53 21294 21342.75 0.23 21294 21294.55 0
19 kroE100 22068 22068 22183.47 0.52 22068 22114.4 0.21 22068 22092.6 0.11
20 rat575 6773 6891 6933.87 2.38 6813 6824.65 0.76 6789 6815.55 0.63
21 rat783 8806 8988 9079.23 3.10 8845 8869.7 0.72 8846 8866.6 0.69
22 rl1323 270199 277642 280181.47 3.69 270893 271972.3 0.66 270475 271415 0.45
23 11400 20127 20593 21349.63 6.07 20299 20392.4 1.32 20140 20182.2 0.27
24 d1655 62128 64151 65621.13 5.62 62786 62966.3 1.35 62454 62610.1 0.78

Average 1.62 0.25 0.15

The results of GSAACS are from [26]. GSAACS uses 120
ants and 1000 generations. In each generation of GSAACS,
GA runs 100 generations. In MSA-IBS and LBSA algorithm,
we set the population size to 30 and the iteration times of
outer loop to 1000, and the Markov chain length in each
temperature is two times the number of cities. The end
condition is that either it finds the optimal solution or the
iteration times of outer loop reach 1000. The algorithm was
executed 25 times on each TSP problem, and the results are
listed in Table 3.

In Table 3, the columns Instance, OPT, Best, Mean, and
PEav denote the name of the TSP problem, the optimal tour
length from TSPLIB, the shortest tour length found, the
average tour length among the 25 trials, and the percentage
error of the mean tour length to the OPT, respectively. As
can be seen in Table 3, both MSA-IBS and LBSA have better
performance than GSAACS on all 24 instances. LBSA is a
little better than MSA-IBS in terms of average percentage
error.

We compare LBSA algorithm with GA-PSO-ACO [27]
and MSA-IBS on 35 benchmark instances with cities from
48 to 33810. GA-PSO-ACO combines the evolution ideas of
the genetic algorithms, particle swarm optimization, and ant

colony optimization. In the GA-PSO-ACO algorithm, the
whole process is divided into two stages. In the first stage, GA
and PSO are used to obtain a series of suboptimal solutions
to adjust the initial allocation of pheromone for ACO. In the
second stage, ACO is used to search the optimal solution. The
results of GA-PSO-ACO are from [27]. GA-PSO-ACO uses
100 individuals and 1000 generations. In LBSA and MSA-IBS
algorithm, we set the number of population size to 10 and the
iteration times of outer loop to 1000, and the Markov chain
length in each temperature is the number of cities. The end
condition of LBSA is that either it finds the optimal solution
or the iteration times of outer loop reach 1000. Like GA-PSO-
ACO and MSA-IBS, LBSA was executed 20 times on each TSP
instance, and the results are listed in Table 4.

As can be seen in Table 4, both MSA-IBS and LBSA have
better performance than GA-PSO-ACO on all 35 instances.
LBSA is a little bit better than MSA-IBS in terms of average
percentage error.

We compare LBSA algorithm with ASA-GS [24] and
MSA-IBS algorithm on 40 benchmark instances with cities
from 151 to 85900. The experiments were run on a 2.8 GHz
PC, and the ASA-GS was run on a 2.83 GHz PC. For all
instances, we set the iteration times of outer loop to 1000
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TaBLE 4: Compare LBSA with GA-PSO-ACO and MSA-IBS on 35 benchmark instances from TSPLIB.
Instance OPT GA-PSO-ACO MSA-IBS LBSA
Best Mean PEav Mean PE Best Mean PEav

Att48 33522 33524 33662 0.42 33522 33554.64 0.10 33522 33536.6 0.04
Eil51 426 426 431.84 1.37 426.48 0.1 426 426.5 0.12
Berlin52 7542 7544.37 7544.37 0.03 7542 0 7542 7542 0
St70 675 679.60 694.60 2.90 677.16 0.32 675 675.55 0.08
Eil76 538 545.39 550.16 2.26 538.2 0.04 538 538 0
Pr76 108159 109206 110023 1.72 108159 108288 0.12 108159 108268.3 0.10
Rat99 1211 1218 1275 5.28 1211.04 0.00 1211 1211.1 0.01
Rad100 7910 7936 8039 1.63 7914.56 0.06 7910 7914.7 0.06
KroD100 21294 21394 21484 0.89 21294 21340.64 0.22 21294 21314.2 0.09
Eill01 629 633.07 637.93 1.42 629.6 0.10 629 629 0
Linl05 14379 14397 14521 0.99 14379 14380.48 0.01 14379 14379 0
Pr107 44303 44316 44589 0.65 44303 44379.88 0.17 44303 44392.25 0.20
Pri24 59030 59051 60157 1.91 59030 59032.88 0.00 59030 59031.8 0.00
Bier127 118282 118476 120301 1.71 118282 118334.6 0.04 118282 118351.2 0.06
Ch130 6110 6121.15 6203.47 1.53 6121.96 0.20 6110 6127.95 0.29
Pr144 58537 58595 58662 0.21 58537 58549.72 0.02 58537 58570.15 0.06
KroAl50 26524 26676 26803 1.05 26524 26538.2 0.05 26524 26542.6 0.07
Pr152 73682 73861 73989 0.42 73682 73727.96 0.06 73682 73688.8 0.01
U159 42080 42395 42506 1.01 42080 42182.32 0.24 42080 42198.85 0.28
Rat195 2323 2341 2362 1.68 2334.2 0.48 2328 2331 0.34
RroA200 29368 29731 31015 5.61 29368 29422.64 0.19 29368 29405.35 0.13
Gil262 2378 2399 2439 2.57 2383.56 0.23 2379 2382.45 0.19
Pr299 48191 48662 48763 119 48192 48263.08 0.15 48191 48250 0.12
Lin318 42029 42633 42771 177 42076 42292.04 0.63 42070 42264.35 0.56
Rd400 15281 15464 15503 1.45 15324 15377.56 0.63 15311 15373.75 0.61
Pcb442 50778 51414 51494 1.41 50879 51050.12 0.54 50832 51041.7 0.52
Rat575 6773 6912 6952 2.64 6854.64 1.21 6829 6847.95 L1
U724 41910 42657 42713 1.92 42150 42302.12 0.94 42205 42357.8 1.07
Rat783 8806 9030 9126 3.63 8897 8918.28 1.28 8887 8913.25 1.22
Pr1002 259045 265987 266774 2.98 261463 262211.7 1.22 261490 262202.5 1.22
DI1291 50801 52378 52443 3.23 51098 51340.84 1.06 51032 51358.7 1.10
D1655 62128 64401 65241 5.01 62784 63011.96 1.42 62779 62994.65 1.39
Nl4461 182566 18933 192574 5.48 185377 185631.1 1.68 185290 185501.7 1.61
Brd14051 469385 490432 503560 7.28 478040 478618.8 1.97 477226 477612.7 1.75
Pla33810 66048945 70299195 72420147 9.65 67868250 68038833.1 3.01 67754877 67848535.1 2.72

Average 2.43 0.53 0.49

and set the Markov chain length in each temperature to
the number of cities. As in MSA-IBS algorithm, a suitable
population size is selected for each instance such that the CPU
time of LBSA is less than that of ASA-GS. The end condition
of LBSA and MSA-IBS is either when it finds the optimal
solution or when the iteration times of outer loop reach 1000.
The algorithm is executed 25 trials on each instance, and the
results are listed in Table 5.

As can be seen in Table 5, the average PEav of LBSA for all
instances is 0.75, which is better than 1.87 of ASA-GS, and the

average CPU time of LBSA for all instances is 282.49, which is
far less than 650.31 of ASA-GS. LBSA is a little bit better than
MSA-IBS in terms of average PEav.

5. Conclusion

This paper presents a list-based SA algorithm for TSP
problems. The LBSA algorithm uses novel list-based cooling
schedule to control the decrease of temperature parameter.
The list-based cooling schedule can be viewed as a special
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TaBLE 5: Compare LBSA with ASA-GS and MSA-IBS on 40 benchmark instances from TSPLIB.
Number Instance OPT ASA-GS MSA-IBS LBSA
Mean PEav Time Mean PEav Time Mean PEav Time

1 Ch150 6528 6539.8 0.16 10.91 6529 0.02 0.86 6529.8 0.03 1.29
2 Kroal50 26524 26538.6 0.05 10.9 26524 0 0.82 26524 0 0.98
3 Krob150 26130 26178.1 0.18 10.9 26135 0.02 1.51 26137 0.03 1.65
4 Pr152 73682 73694.7 0.01 10.85 73682 0 0.84 73682 0 0.87
5 U159 42080 42398.9 0.75 11.49 42080 0 0.79 42080 0 0.91
6 Rat195 2323 2348.05 1.07 14.37 2330.2 0.31 1.86 2328 0.22 1.93
7 D198 15780 15845.4 0.41 14.6 15780 0 1.39 15780 0 1.53
8 Kroa200 29368 29438.4 0.23 14.26 29378 0.03 1.74 29373.8 0.02 1.67
9 Krob200 29437 29513.1 0.25 14.24 29439.8 0.01 1.95 29442.2 0.02 21
10 Ts225 126643 126646 0.00 16.05 126643 0 1.3 126643 0 1.54
11 Pr226 80369 80687.4 0.39 16.7 80369 0 1.93 80369.8 0.00 2.16
12 Gil262 2378 2398.61 0.86 19.43 2378.8 0.03 2.39 2379.2 0.05 2.72
13 Pr264 49135 49138.9 0.00 19.09 49135 0 1.43 49135 0 1.49
14 Pr299 48191 48326.4 0.28 21.94 48226.4 0.07 2.67 48221.2 0.06 2.93
15 Lin318 42029 42383.7 0.84 23.35 42184.4 0.37 2.4 42195.6 0.40 2.58
16 Rd400 15281 15429.8 0.97 30.4 153472 0.43 3.2 15350.4 0.45 3.46
17 Fl417 11861 12043.8 1.54 32.02 11875.6 0.12 3.72 11867.8 0.06 4.01
18 Pr439 107217 110226 2.80 34.92 107407.2 0.18 3.6 107465.2 0.23 3.95
19 Pcb442 50778 51269.2 0.96 35.75 50970 0.38 3.68 50877 0.19 4.31
20 U574 36905 37369.8 1.25 48.47 37155.8 0.68 5.21 37164.6 0.70 6.13
21 Rat575 6773 6904.82 1.94 52.1 6839.8 0.99 5.27 6837.4 0.95 5.99
22 U724 41910 42470.4 1.33 66.83 42212.2 0.72 8.11 42252 0.82 8.34
23 Rat783 8806 8982.19 2.00 78.9 8893.4 0.99 8.99 8888.2 0.93 8.9
24 Pr1002 259045 264274 2.01 164.42 261481.8 0.94 12.71 261805.2 1.07 12.96
25 Pcb1173 56892 57820.5 1.63 193.08 57561.6 118 8.9 57431.8 0.95 9.61
26 Di1291 50801 52252.3 2.85 214.64 51343.8 1.07 10.59 51198.8 0.78 11.77
27 RI11323 270199 273444 1.20 210.16 271818.4 0.6 11.53 271714.4 0.56 12.64
28 F11400 20127 20782.2 3.25 232.02 20374.8 1.23 17.72 20249.4 0.61 15.43
29 D1655 62128 64155.9 3.26 281.88 62893 1.23 16.18 63001.4 1.41 16.45
30 Vm1748 336556 343911 2.18 276.98 339617.8 0.91 19.7 339710.8 0.94 19.05
31 U2319 234256 236744 1.06 410.97 235236 0.42 17.02 235975 0.73 18.94
32 Pcb3038 137694 141242 2.57 554.28 139706.2 1.46 27.64 139635.2 1.41 29.05
33 Fnl4461 182566 187409 2.65 830.9 185535.4 1.63 30.43 185509.4 1.61 29.67
34 R15934 556045 575437 3.48 1043.95 566166.8 1.82 50.76 566053 1.80 52.5
35 Pla7397 23260728 24166453 3.89 1245.22 2.38E+07 2.48 100.69 2.38E+07 2.24 89.61
36 Usal3509 19982859 20811106 4.14 2016.05 2.04E+07 2.06 365.12 2.04E+07 1.89 326.76
37 Brd14051 469385 486197 3.58 2080.5 478609.6 1.97 375.28 478010 1.84 369.86
38 D18512 645238 669445 3.75 2593.97 658149.2 2.00 654.85 6574572 1.89 629.14
39 Pla33810 66048945 69533166 5.27 4199.88 68075607 3.07 1959.68  68029226.4 3.00 1998.19
40 Pla85900 142382641 156083025 9.63 8855.13  146495515.6 2.89 7596.18  145526542.6 2.21 7586.6

Average 1.87 650.31 0.81 283.52 0.75 282.49

geometric cooling schedule with variable cooling coefficient.
The variance of cooling coefficient is adaptive according to
the topology of solution space, which may be more robust
to problems at hand. Simulated results show that this novel
cooling schedule is insensitive to the parameter values and
the proposed LBSA algorithm is very effective, simple, and
easy to implement. The advantage of insensitive parameter
is very attractive, allowing LBSA algorithm to be applied in

diverse problems without much effort on tuning parameters
to produce promising results.
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