Table 2.
Subgroup1 (N=59) | Subgroup2 (N=57) | Subgroup3 (N=48) | Subgroup4 (N=130) | Subgroup5 (N=86) | |
---|---|---|---|---|---|
Subgroup 1 | 0.961 | 0.005 | 0.001 | 0.001 | 0.000 |
Subgroup 2 | 0.021 | 0.954 | 0.021 | 0.009 | 0.000 |
Subgroup 3 | 0.015 | 0.029 | 0.935 | 0.031 | 0.044 |
Subgroup 4 | 0.001 | 0.010 | 0.023 | 0.929 | 0.049 |
Subgroup 5 | 0.002 | 0.002 | 0.020 | 0.029 | 0.907 |
For each participant, the GMM calculates his/her posterior probabilities of belonging to different latent subgroups. Then, the GMM classifies the participant into the subgroup with the largest posterior probability. The columns here represent the latent subgroup that the participants were classified into. Within each column, the rows represents the mean posterior probabilities of belonging to different subgroups.