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Abstract

This review describes the contemporary aspects of plasma application in dentistry. Previous 

studies on plasma applications were classified into two categories, surface treatment and direct 

applications, and were reviewed, respectively according to the approach. The current review 

discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of 

polymerization, surface coating and plasma cleaning under the topics of surface treatment. 

Microbicidal activities, decontamination, root canal disinfection and tooth bleaching were 

reviewed as direct applications with other miscellaneous ones. Non-thermal atmospheric pressure 

plasma was of particular focus since it is gaining considerable attention due to the possibility for 

its use in living tissues. Future perspectives have also been discussed briefly. Although it is still 

not popular among dentists, plasma has shown promises in several areas of dentistry and is now 

opening a new era of plasma dentistry.
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1. Introduction

Plasma, by far the most dominant state of matter in the universe, was identified by Sir 

Crooke in 1879 [1], and was first named “plasma” by Langmuir in 1929. After a long 

dormant phase since Simens used first plasma discharge in order to create ozone in the late 

1850s, plasma research has recently evolved at a rapid pace and extended into biomedical, 

environmental, aerospace, agriculture and military fields [2,3].

Although biomedical application of plasma technology has become very popular in various 

fields today, it is not clear when it was first used in the field of dentistry. It is partly because 

the plasma has been nearly everywhere and has been related to nearly everything in reality, 

thus we do not readily recognize it. Perhaps the first application of plasma in dentistry 

occurred in the manufacturing process of dental instruments or the disinfection of them. 

Nevertheless, Eva Stoffels is believed to introduce the first investigation with the view of a 

possible therapeutic and thus medical question for dentistry [4,5].
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As in medicine, the dental applications of physical plasma can be mainly subdivided into 

two principal approaches [6]: one is the use of plasma technology for the treatment of 

surfaces, materials or devices to realize specific qualities for subsequent special applications 

including disinfection, and the other is the direct plasma application on or in the human 

body for therapeutic purposes; however, clear-cut classifications are sometimes impossible 

because of overlaps. In addition, the use of plasma for medical purposes could be divided 

according to its temperature and the air pressure at which it is generated.

Indeed, plasma generation can be realized at low, atmospheric and high air pressure and 

their temperature could be different. While thermal plasmas are natural phenomena, non-

thermal plasmas are artificially made of, of which composition and temperature are 

adjustable. Today, non-thermal plasmas are utilized from in the appliances of daily life like 

energy-saving lamps, flat panel displays to for industrial purposes, such as polymer 

pretreatment, surface finishing, waste and air pollution management [6,7]. Non-thermal 

atmospheric pressure plasma (NTAPP), which is sometimes called cold atmospheric plasma 

(CAD) or low-temperature atmospheric pressure plasma, has the unique advantage of 

extending plasma treatment to living tissue. Therefore, all the studies regarding direct 

applications used this type of plasma even though the individual settings varied. In addition, 

some of the surface treatments also made use of NTAPP in the form of chairside 

applications. Various types of plasma devices, such as nanosecond pulsed plasma pencils 

[8], radio-frequency plasma needles [9], direct-current plasma brushes [10], and plasma jets 

[11] have been developed for non-thermal atmospheric pressure plasma generation. The 

common challenge for generating these plasmas is the inhibition of the glow to arc transition 

at one atmosphere. Different types of discharges have used different schemes to achieve this 

[12]. This opens up new horizons in the field of dentistry with the size of the device 

becoming small enough to hold by hand.

In this respect, the present review reports the current usage of plasma in dentistry basically 

according to the two approaches, i.e., surface treatment and direct application (Table 1). The 

NTAAP, which is gaining considerable attention, is discussed in great detail in each 

approach in this report.

2. Surface treatment

2.1. Modification of the implant surface to improve osseointegration

Restorative treatment using dental implants has become a standard procedure in 

contemporary dentistry [13]. Since the implant surface is the first part to interact with the 

host, it has been thoroughly investigated in an attempt to hasten the early host-to-implant 

response [14,15]. The rationale for its modification focuses upon implant interaction with 

biofluids, which positively alters the cascade of events leading to bone healing and intimate 

interaction with the surface [16]. Numerous possibilities have been suggested and evaluated 

for this purpose [17–19]; however, there is no consensus concerning which kinds of surface 

roughness and/or chemistry combination will result in optimum osseointegration [20–22].

Among these properties, implant surface hydrophilicity or wettability has recently received 

considerable attention [23]. Earlier studies of the effect of plasma on titanium surfaces 
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indicated that this treatment is capable of improving cell adhesion by changing surface 

roughness and wettability, which decreases after plasma exposure [24,25]. These studies 

used glow discharge treatment at low pressure during the manufacturing process. Recently, a 

chairside operating NTAPP immediately prior to implant placement was also reported 

[26,27], which stated that plasma treatment reduced the contact angle and supported the 

spread of osteoblastic cells. One of the advantages of plasma treatment is that it leaves no 

residues after treatment. Some changes in the physicochemical characteristics were reported, 

such as surface free energy, content of hydrocarbon and functional hydroxyl groups [28].

Several studies reported the plasma treatment of zirconia implants, which is increasing as an 

alternative to the conventional titanium implant due to its superior esthetic properties [29]. 

They also demostrated the increase in hydrophilicity and enhanced osseointegration in in 

vitro as well as in vivo experiments [28,30].

Santos et al. investigated the effect of the glow discharge treatment of titanium surfaces on 

plasma protein adsorption [31]. They found no difference between the untreated and glow 

discharge-treated titanium surface in total absorbed protein. The composition changed, but 

this was attributed to the protein–protein interactions and competitive/associative adsorption 

behavior.

2.2. Enhancing adhesive qualities

As a critical factor in improving the performance of dental composites, adhesive dentistry 

has greatly advanced since being first discovered by Buonocore [32]. For most dental joints, 

one set of adherends is usually composed of any dental substrates or previous restorations 

while the other set consists of restorative ones such as composite, amalgam, or ceramics 

[33]. Optimal adhesion could be achieved when the adhesive material is spread impulsively 

across the entire adherend surface. In other words, optimal wettability of the substrate is 

achieved with reference to that adhesive [34].

Conventional adhesive systems employed several methods to improve wettability, to elevate 

the surface energy and to increase the roughness through techniques involving etch-and-

rinse, acid primers, Hydroxyethylmethacrylate (HEMA) primers and laser irradiation [35–

38]. In the same respect, plasma treatment has been introduced as an alternative or 

additional procedure, especially in the bonding of ceramic restorations, which is more 

difficult to achieve.

Generally, the etching of feldspathic ceramic with hydrofluoric acid and coating with a 

silane coupling agent has been recommended as a reliable protocol [39,40]. However, 

because the procedure is complicated and requires toxic chemicals, other ceramic bonding 

techniques such as silica coating have been introduced [41,42]. As an alternative for 

adhesion enhancement in dental ceramic bonding, atmospheric pressure plasma treatment 

has been suggested [43]. It enhances adhesion by producing carboxyl groups on the ceramic 

surface and improves the surface hydrophilicity as a result [44].

The nonreactive surface of zirconia, sometimes described as “ceramic steel”, presents a 

consistent issue of poor adhesion strength to other substrates [45]. Silane treatment used for 
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silica-based substrates is not applicable [46]. In addition, zirconia itself is known to be 

hydrophobic and possesses very low surface concentrations of OH groups [47]. For this 

more complicated bonding, several other methods have been proposed [48,49]. Plasma 

treatment was also tested and the results showed that a significant increase in the 

microtensile bond strength to zirconia surfaces was observed when non-thermal plasma was 

applied alone or in combination with resin. According to the XPS results, an increase of 

elemental O and a decrease of elemental C was detected on the zirconia surface after non-

thermal plasma application [50]. Another attempt using plasma fluorination was reported, 

which is expected to increase hydroxylation at the surface, making it more reactive, thus 

allowing for covalent bonding between the zirconia surface and resin cement [51]. One 

report demonstrated that the high polarity was obtained on zirconia and titanium surface 

after NTAPP application [52].

For enamel, dentin and composite, Chen et. al. [33] reported that a super-hydrophilic surface 

could be easily obtained by plasma brush treatment without affecting the bulk properties 

regardless of the original hydrophilicity. Another study revealed that plasma treatment of the 

peripheral dentin surface resulted in an increase in the interfacial bonding strength, while 

over 100 s of prolonged treatment resulted in a decrease in the interfacial bonding strength 

[53]. However, no improvement in the bonding strength was observed for plasma-treated 

inner dentin, which probably due to the variation in dentin composition [54].

As for the post surface, Costa Dantas et al. [55] showed that plasma treatment favored the 

wettability of the post, however, real adhesion improvement was not observed after argon 

plasma. Interestingly, following ethylenediamine plasma treatment, there was a significant 

chemical modification as indicated by the high roughness. Studies have revealed that plasma 

surface treatment presents with an aging effect [56], Ye et al. observed the aging effect after 

post-surface treatment with non-thermal plasma and reported that the improvement in bond 

strength disappeared when the fiber posts were exposed to air for 1 h or longer after being 

treated with plasma [57].

2.3. Enhancing polymerization

Plasmas also induce polymerization [58]; polymers synthesized by plasma exposure 

demonstrated high cross-linking and high degrees of polymerization [59]. For composite 

resin, plasma arc curing units are popular because of their short curing time in comparison to 

conventional units [60,61]. However their polymerization characteristics are reported to be 

less than optimal [62]. Recently, the non-thermal plasma brush was reported to be effective 

in the polymerization of self-etch adhesives with no negative effects of water on the degree 

of conversion of plasmacured samples [63].

2.4. Surface coating

Variation in surface texture or nanoscale topography features can affect the cell response for 

a titanium implant [25]. Plasma spraying, which used to be one of most popular coating 

techniques for implants, can be considered as one type of plasma treatment, but it has been 

reported to have problems such as delamination [64]. Several other types of thin coating 

techniques using plasma to enhance osseointegration, have been introduced and have shown 

Cha and Park Page 4

Clin Plasma Med. Author manuscript; available in PMC 2016 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



some promise such as plasma nitriding [15,65], titanium nitride oxide coatings [66], plasma 

polymerized hexamethyldisiloxane [67], plasma polymerized allylamine [68], and plasma 

polymerized acrylic acid [69]. Films formed by plasma polymerization are generally free of 

pinholes, have a strong degree of adherence to a wide variety of materials, and have a 

greater degree of resistance to chemical and physical treatment because of their cross-linked 

structure [70].

The coating on the fiber post-surface was evaluated after chemical vapor deposition using 

glow discharge [71–73]. Yavirich et al. reported that the treatment appeared to increase the 

tensile-shear bond strength between the post and composite [74]. Several microcomposite 

and ceramic materials were coated with plasma-assisted thin film coatings and the potential 

for reduction of bacterial adhesion exhibited some promise [75].

2.5. Plasma cleaning

In contrast to the conventional methods of cleaning such as the use of solvents or aggressive 

chemicals, plasma cleaning leaves no residue, and, when optimized, typically generates only 

CO2, H2O, and N2 as gaseous waste. Gas plasma treatment has the potential advantages of 

lack of toxic residue effects, reduced turnover time, and applicability for sterilization of 

heat- and moisture-sensitive instruments [76,77]. Its effectiveness has led to its use as a 

decontamination method from chemical and biological warfare agents or from spores 

[78,79].

Dental treatment can frequently induce cross-contamination between dental patients and 

dentists through instruments and materials as well as between impression materials and 

dental technicians [80–82]. Contaminated endodontic files exposed for a short period to low-

pressure oxygen–argon plasma showed a reduction in the absolute amount of proteinaceous 

materials in a preliminary study, but the exact duration was not described unfortunately [83]. 

In one experiment using diamond burs and silicone impression materials, the colony-

forming unit was significantly reduced for both Escherichia coli and Bacillus subtilis after 

treatment with atmospheric pressure non-thermal air plasma [84]. The role of low 

temperature atmospheric pressure plasma and future prospects was well discussed in 

McCombs’ review [85].

2.6. Miscellaneous

In addition to the disinfective role of plasma cleaning on elastomeric impression materials, 

plasma treatment was reported to increase the surface wettability [86]. The wettability of 

impression materials is an important requirement for the accurate reproduction of intraoral 

structures, since it is directly related to the quality of die stone casts, and, therefore, the 

castability of prostheses [87]. The surface properties of several set elastomeric impression 

materials contaminated with saliva were inspected after plasma cleaning and exhibited a 

general increase in the critical surface tension and an improvement in the castability of all 

materials was also noted [88,89].

Denture stomatitis is brought about by the adhesion of Candida albicans to the denture 

surface [90]; plasma treatment was investigated based on its potential to reduce this 
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adhesion [91,92]. The results, however, were not in agreement due to the different 

parameters used in the plasma treatment.

As a polymerization technique of glass fiber to improve mechanics, plasma was investigated 

and showed some promise in increasing the flexural strength of the denture base resin [93]. 

In contrast, the adhesion between the cobalt–chromium alloy and self-curing acrylic resin 

was not improved by plasma treatment in removable partial denture cases [94]. Tungsten 

inert gas welding, one form of plasma arc, is reported to produce better results than brazing 

or laser welding [95].

3. Direct plasma application

3.1. Microbicidal activities

The antibacterial effects of cold plasma have been shown for a variety of micro-organisms 

in numerous studies [8,96–102]. However, some studies have shown that bacterial DNA is 

not completely destroyed by cold plasma [103,104]. Methods for the decontamination and 

conditioning of intraoral surfaces are of great interest in the field of dentistry. Cold plasmas 

are of particular interest, as heat damage to dental pulp must be prevented [105]. The 

removal of carious dentin has been suggested as an alternative to conventional drilling [4,5]. 

The in vitro disinfection of Streptococcus mutans grown on agar plates [106] has been 

demonstrated. The substantial reduction of oral microorganisms adherent to dentin slices 

was also reported with the use of plasma [105]. The sterilization effect was suggested to be 

due to reactive oxygen species [107].

In the real oral environment, micro-organisms exist in the form of a biofilm and not in a 

planktonic state. The established and matured oral biofilm is a three-dimensionally-

structured community of many microbial species [108] and is relevant to the development of 

caries and periodontal disease [109]. For example, dental plaque, a biofilm on the tooth 

surface, consists of complex communities of oral bacteria with hundreds of species present 

[110]. Furthermore, biofilms are also present on artificial surfaces in the oral cavity such as 

dentures or implants [111]. Therefore, there was a shift in research model from planktonic to 

biofilm, and the effects of non-thermal plasma were evaluated on biofilm models. Several 

studies exhibited imperfect, but highly promising results [112,113].

3.2. Decontamination

Research has succeeded in improving the biological acceptance and osseointegration of 

dental implants. However, its long-term success is still challenging because of peri-implant 

diseases caused by the formation of biofilms [114]. The decontamination of implant surfaces 

represents a basic procedure in the management of peri-implant diseases [115], but remains 

a challenge.

Several studies have been published dealing with the decontamination efficacy of 

mechanical, chemical, and physical methods [116–118]. All techniques have advantages and 

disadvantages, and no single technique produced a convincing solution to the problem [119]. 

Biofilms play a major role in the pathogenesis of various oral diseases, especially peri-

implant mucositis. In recent studies, the use of NTAPP has been suggested for the removal 
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of biofilms in general [120], and for the treatment of both peri-implant mucositis and peri-

implantitis in particular [121–123].

The mechanisms are not clearly elucidated but can be hypothesized generally as two: One is 

the generation of reactive species such as oxygen, nitrogen or nitrogen oxide radicals 

[124,125] and the other is the etching effect of the plasma on biofilms during the chemical 

process of oxidation [120]. Although physical degradation by burning was also suggested, it 

is not thought to be relevant because the NTAPP has the temperature below 401 C [126].

3.3. Root canal disinfection in endodontic treatment

Root canal disinfection can be considered as a special type of decontamination. However, it 

is separately mentioned as a single topic in this review because of its importance in the 

endodontic procedures for successful outcome and difficult nature of eradicating the root 

canal micro-organisms due to its biological and geometrical characteristics. The tooth root 

canal system has complicated structures, such as isthmuses, ramifications, deltas, 

irregularities, and in particular dentinal tubules [127]. It has been reported that bacteria can 

enter dentinal tubules as deep as 500–1000 μm [128].

A variety of methods have been performed such as mechanic cleaning, irrigation, laser 

irradiation, ultrasound and application of hypochlorite and other antibacterial compounds 

[129–133]. However, eliminating the residual micro-organisms especially within the biofilm 

is still a challenging task and clinical investigations showed that there are around 10% of 

treatment failures when conventional disinfections were performed [134,135].

Since persistent endodontic infections are frequently caused by Enterococcus faecalis 

[136,137], numerous in vitro experiments have been reported on this issue using this micro-

organism [138–143]. They have shown quite promising results after using NTAPP alone or 

with conventional approaches pointing out that the NTAPP as a gas phase has a capability of 

reaching deep into the complex canal. Therefore, there is a unique advantage of direct 

contact with bacteria when using NTAPP, which is compulsory but impossible with 

conventional methods. The effective inactivation of E. faecalis has been attributed to several 

mechanisms, such as excited species, charged particles, and ultraviolet radiations. Among 

these, several studies suggested that the reactive oxygen species plays the most crucial roles 

in both bacterial inactivation [144,145] and biological effects in intercelluar matrices [146].

3.4. Tooth bleaching

Tooth bleaching has become a popular esthetic service in dentistry. Hydrogen peroxide 

(H2O2) is a widely used bleaching material that is effective and safe [147]. In-office 

bleaching systems usually use a 30–44% H2O2 bleaching gel and a high-intensity light 

source [148,149]. The light source may enhance bleaching by heating the H2O2 and 

consequently accelerating bleaching, but this mechanism has yet to be confirmed. The 

application of light may [150] or may not [151] significantly improve the efficacy of the 

bleaching system. Plasma treatment was suggested to be complementary to the conventional 

method because it provides effective bleaching without thermal damage [152,153].
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3.5. Miscellaneous

Koban et al. reported an interesting direct application of NTAPP, which reduced the contact 

angle of untreated dentin surface and caused a superior spreading of osteoblasts on the 

dentin. These results may be utilized to optimize periodontal regeneration in the future 

[154]. According to Miletic et al. [155], the interaction of NTAPP with the human 

periodontal ligament mesenchymal stem cells demonstrated that NTAPP inhibited the 

migration of the cells and induced some detatchment, without affecting their viability. In 

addition, the plasma significantly attenuated the cells’ proliferation, but promoted their 

osteogenic differentiation. The issue as to how deep the plasma penetrate can into a biofilm 

was addressed by several researchersv [156,157]. Among them, Pei et al. [157] showed that 

25.5 um thick E. faecalis biofilm layer was penetrated by NTAPP, which is the deepest up to 

now. The simultaneous use of plasma and disinfecting agents showed an increased treatment 

efficacy on dental biofilms in vitro [158].

4. Discussion and conclusions

The study of plasma integrates various fields of science, such as physics, chemistry, biology, 

and engineering, and has recently involved medicine and dentistry in its research efforts. 

However, dentists do not realize well even though they use plasma in daily practice, such as 

electrosurgical applications for tissue removal, cauterization, and plasma spraying of 

titanium implants.

Numerous research papers have been published providing evidences of efficacy when using 

plasma technology in the field of dentistry. The application of plasma in dentistry showed 

several unique advantages over conventional approaches, and the introduction of NTAPP is 

attracting a lot of attention [159]. Because of its low temperature under atmospheric 

condition, it can be used directly onto or in the human tissues. Many of oral diseases such as 

dental caries and periodontitis are infectious ones, and the bactericidal effect of plasma 

could replace conventional surgical removal or usage of antibiotics. It does not induce 

resistance problems, nor has toxic residues. In addition, it can overcome some anatomic 

complexity in endodontic treatment. Aside from these, several biological applications are 

now of interest, such as enhancing hydrphilicity of the surface, effects on human cells and 

tooth bleaching. Even, plasma drug delivery in the dental tissue was envisaged as a new 

possibility in the future [160].

Currently, clear conclusions are not yet drawn and the effects of NTAPP have on human and 

nonhuman cells require further exploration [McComb]. Moreover, the studies have applied 

non-standardized protocols which were different in nearly all cases; thus, it is hard to 

compare and interpret the results. There may be this confusion because it is now the 

beginning era of the novel field of plasma dentistry. Nonetheless, the advancement of 

technologies that parallel plasma dentistry will surely overcome this confusion in the near 

future. At the same time, there is a strong need for more in vivo studies and eventually the 

clinical studies in order for the plasma treatment to be used and accepted widely. The user-

friendly interface and compact size of equipment would gain more popularity although 

manufacturers recently provide hand-held devices proper for the clinic not laboratory. 

Cha and Park Page 8

Clin Plasma Med. Author manuscript; available in PMC 2016 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Further understanding of the cellular and molecular mechanisms involved could also give 

researchers and clinicians insight into future applications.
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Table 1

Classification of plasma used in dentistrya.

Surface treatments Direct applications

Modification of the implant surface Microbicidal activities

Enhancing adhesive qualities Decontamination

Surface coating Root canal disinfection

Plasma cleaning Tooth bleaching

Miscellaneous Miscellaneous

a
Some usages are hard to separate into other classification due to overlaps.
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