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Summary

Transmitochondrial cybrids and multiple OMICs approaches were used to understand 

mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple negative 

breast cancer (TNBC). Analysis of cybrids and established breast cancer (BC) cell lines showed 

that metastatic TNBC maintains high levels of ATP through fatty acid β-oxidation (FAO) and 

activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including 

the knocking down of carnitine palmitoyltransferase-1 (CPT1) and 2 (CPT2), the rate-limiting 

proteins of FAO, and analysis of patient-derived xenograft models, confirmed the role of 

mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC 
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clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation 

and their significance in BC metastasis.

Introduction

While the Warburg effect has been validated by numerous studies, there has also been 

tremendous advancements towards the understanding of many aspects of cancer metabolism, 

including the roles of glycolysis, glutaminolysis, fatty acid (FA) synthesis, and most 

recently, fatty acid β oxidation (FAO) (Carracedo et al., 2013; Ward and Thompson, 2012). 

Multiple reports have suggested that despite enhanced glycolysis, cancer cells can produce a 

significant fraction of their ATP via mitochondrial respiration (Caino et al., 2015; LeBleu et 

al., 2014; Lu et al., 2015; Maiuri and Kroemer, 2015; Tan et al., 2015; Viale et al., 2015; 

Ward and Thompson, 2012; Xu et al., 2015). In a growing tumor, adaptive metabolic 

reprogramming, precipitated in part by oncogenic transformation, gives cancer cells the 

advantage of active proliferation, functional motility, and metastasis (Basak and Banerjee, 

2015; Caino et al., 2015; LeBleu et al., 2014). A recent study by Tan et al. has described that 

when mitochondrial DNA (mtDNA)-depleted tumor cells (ρ0 cells) were injected into mice, 

they enhanced their tumor growth property by acquisition of mtDNA from the host mouse 

cells and reassembling a mitochondrial electron transport chain complex (ETC) and 

respiratory function (Tan et al., 2015). These observations suggest that, at least in selected 

subgroups of cancers, mitochondrial biogenesis is important for their oncogenesis and tumor 

progression.

Based on the differential metabolic preferences of a tumor cell compared to a normal cell, 

targeting tumor cell-specific metabolic characteristics is increasingly becoming a more 

attractive potential therapeutic strategy (Caino et al., 2015; Ghosh et al., 2015; Ward and 

Thompson, 2012). To better evaluate therapeutic potentials, it is important to elucidate how 

these metabolic programs couple with or converge into oncogenic signals such as those 

leading to unbridled growth, reduced apoptosis, and metastatic potential. The extensive 

crosstalk between the mitochondria and the nucleus known as mitochondrial retrograde 

regulation (MRR) is triggered by mitochondrial dysfunction/reprogramming and is not a 

simple on-off switch, but rather responds in a continuous manner to the changing metabolic 

needs of the cell (Erol, 2005).

Triple negative breast cancer (TNBC) are negative for estrogen receptor (ER), progesterone 

receptor (PR), and human epidermal growth factor receptor 2 (HER-2) amplification. TNBC 

suffers a poor prognosis compared to other cancer subtypes, caused by significant 

heterogeneity and limited understanding of the driver signaling pathways. Thus, for TNBC, 

clinical benefit from currently available targeted therapies is limited, and new therapeutic 

strategies are urgently needed. Most of the conventional chemotherapeutic agents, the 

current clinical standard for TNBC treatment, generally kill cells by activating 

mitochondrial apoptosis (Costantini et al., 2000; Hail, 2005). Thus, understanding MRR and 

the mitochondria-mediated oncogenic signature is critical to improve understanding of the 

currently limited known etiology and treatment resistance of TNBC.
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Mitochondrial studies using whole cell approaches make it difficult to distinguish 

mitochondria-specific effects from those contributed by the nucleus. We overcome this gap 

by using transmitochondrial cybrid (cybrid) models for mitochondria function and pathway 

discovery (Ishikawa et al., 2008; Kaipparettu et al., 2013; Kaipparettu et al., 2010; King and 

Attardi, 1989; Vithayathil et al., 2012). The cybrid system is an excellent tool to compare 

different mitochondria on a common defined nuclear background to understand 

mitochondria-specific effects on cellular properties. We have used the cybrid approach to 

discover mitochondria-regulated energy and cancer pathways in TNBC. These initial 

findings were then further validated in established breast cancer (BC) cell lines, patient-

derived xenograft (PDX) models, and BC patient data.

c-Src is a proto-oncogene involved in signaling that culminates in the control of multiple 

biological functions. Like most protein kinases, Src family members require 

phosphorylation within a segment of the kinase domain termed the activation loop for full 

catalytic activity. The chief phosphorylation sites of human Src include an activating 

autophosphorylation of Y419 in the kinase domain and an inhibitory phosphorylation of 

Y530 in the regulatory tail. While phosphorylation of Y530 inactivates Src through the 

folding of Src into a closed, inaccessible bundle, the full activation of the Src signature 

depends on autophosphorylation at Y419 that allows access of the substrate (Aleshin and 

Finn, 2010; Roskoski, 2015; Zhang and Yu, 2012). Src Y530 phosphorylation results from 

the action of other protein-tyrosine kinases including Csk and Chk. Importantly, the doubly 

phosphorylated enzyme is active, indicating that Y419 autophosphorylation overrides 

inhibition produced by Y530 phosphorylation (Roskoski, 2015; Zhang and Yu, 2012). 

Aberrant Src activation plays prominent roles in cancer formation and progression (Aleshin 

and Finn, 2010; Finn, 2008; Mayer and Krop, 2010). The Src pathway is one of the most 

commonly upregulated pathways in TNBC (Anbalagan et al., 2012; Tryfonopoulos et al., 

2011). While Src inhibitors hold promise in treating metastatic TNBC (Pal and Mortimer, 

2009; Tryfonopoulos et al., 2011), initial clinical studies using Src inhibitor monotherapy in 

unselected patients with advanced BC showed only minor response (Finn et al., 2011; 

Gucalp et al., 2011; Herold et al., 2011; Mayer and Krop, 2010). Since the discovery of Src 

approximately 40 years ago, much effort has been invested in understanding the role of Src 

in cell regulation and Src signaling pathways in cancer. While structural biology, molecular 

and cell biology, and genetic studies have provided crucial information, the complete picture 

of molecular mechanisms and tumor biology of Src signaling remain elusive (Oneyama and 

Okada, 2015; Roskoski, 2015; Sirvent et al., 2015; Zhang and Yu, 2012). Therefore, 

elucidating how aberrant Src activation occurs in the cancer cells and which mechanisms 

fuel this process would be of utmost interest in the cancer field.

Here we use cybrid technology, BC cell line, PDX models, and BC patient data to 

understand the role of energy reprogramming in metastatic TNBC and its significance in the 

regulation of tumor properties via the activation of Src cancer pathway. This study reports 

the significance of mitochondrial energy reprogramming in the regulation of a major cancer 

pathway by posttranslational modification.
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Results

Characteristics of Mitochondrial Origin Determine Oncogenic Properties of the Cybrids

In order to understand the mitochondria-regulated energy and cancer pathways in TNBC, we 

have generated cybrid models with the moderately metastatic TNBC cell line SUM159 as 

the nuclear background and mitochondria from TN benign breast cells MCF-10A and A1N4, 

moderately metastatic SUM159, and highly metastatic MDA-MB-231 (MDA231) TNBC 

cells (Figure 1A). mtDNAs from original cell lines used for the generation of cybrids were 

sequenced (Table S1). Cybrids were confirmed by analyzing their nuclear DNA and mtDNA 

variations. mtDNA copy numbers were quantified from each cybrid clone and only clones 

with comparable copy numbers were used for further analysis.

These cybrids showed in vitro and in vivo tumor-like properties according to their 

mitochondrial origin. Mitochondria derived from benign cells almost completely abolished 

the in vitro and in vivo tumor properties of SUM159 cells (Figures 1A, 1B, 1C, and 1D) 

resulting in significantly lower number of colonies on soft agar (Figure 1B), like their 

mitochondrial donor cells (Figure S1), and abolished cell migration potential in wound 

healing assays (Figure. 1C). However, mitochondria from metastatic cells significantly 

induced tumor properties. In vivo tumor formation assay after mammary gland 

transplantation suggested that introduction of benign mitochondria resulted in complete 

inhibition of the in vivo tumor formation potential of SUM159 cells (Figures 1D and S1).

Src Autophosphorylation Depending on Mitochondrial ETC

We performed microarray analysis in the cybrid models to identify pathways that are altered 

according to the mitochondrial regulation. One of the major pathways altered was the Src 

oncogenic pathway (Figure 1E). Analysis of multiple BC cell lines suggested that pSrc 

(Y419) is increased in TNBC cell lines compared to benign or ER+ BC cell lines (Figure 

1F). The Cancer Genome Atlas (TCGA) data analysis confirmed that Src (Y419) 

phosphorylation is significantly increased in the basal subtype of BC compared to hormone 

positive luminal A and B subtypes of BC (Figure 1G). Reverse phase protein array (RPPA) 

data was analysed from PDX models with and without distant metastatic potential. These 

PDX models are derived directly from BC patients without intervening culture in vitro, and 

are maintained by serial transplantation from one animal to another, so that they have never 

been exposed to in vitro culture conditions. As a result, these xenografts maintain 

histological and molecular features of the tumor of origin, including their characteristic 

expression levels (Zhang et al., 2013). Multiple PDX lines were included from some of the 

patients (Figures S1C and S1D). Analysis suggested significantly increased pSrc (Y419) 

levels in TNBC PDXs with distant metastasis (Figures 1H and S1C), while, no significant 

difference was observed with pSrc (Y530) (Figures S1D and S1E).

Extensive evaluation of cybrid models and parental cells confirmed that Src (Y419) is 

activated by metastatic TNBC mitochondria without any major effect at Y530 (Figures 2A 

and 2B). Cellular fractionation (Figure 2C) confirmed the localization of Src and pSrc 

(Y419) in TNBC mitochondria. Src (Y419) autophosphorylation (Figure 2D and S2A) of 

cybrids and cancer potential (Figures S2) of cybrids and parental cells were decreased by 
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treatment with the Src inhibitors PP2 and dasatinib, suggesting that their tumorigenic 

properties depend on the Src pathway.

Inhibition of glycolysis by 3-bromopyruvate (3-BP) or dichloroacetate (DCA) did not 

decrease the increased pSrc (Y419) in TNBC cells (Figures 2E and 2F). Inhibiting the 

glutamine pathway using aminooxyacetic acid (AOA) (Figure 2G) or scavenging basal 

reactive oxygen species (ROS) using N-acetylcysteine (NAC) (Figures 2H and 2I) also did 

not inhibit the induced Src (Y419) autophosphorylation in TNBC cell lines or cybrids. We 

then analyzed the role of mitochondrial ETC complexes that are responsible for ATP 

generation inside mitochondria in the regulation of Src autophosphorylation. Interestingly 

treatment with agents that target ETC including the complex-1 inhibitor rotenone (Figures 

3A and 3B), the complex III inhibitor antimycin-A (Figures 3C and 3D), and the ATP 

synthase inhibitor oligomycin (Figures 3E and 3F) dose-dependently reduced Src (Y419) 

autophosphorylation both in parental TNBC cells and in cybrids. However, ETC inhibition 

did not show any major effect on the phosphorylation of Src (Y530) (Figures 3B, 3D, and 

3F). In vitro phosphorylation experiments suggested that Src (Y419) autophosphorylation 

but not pSrc (Y530) is directly dependent on the ATP concentration (Figures 3G and 3H). 

Though other known mitochondria-localizing Src family kinases (SFKs) (Acin-Perez et al., 

2014; Salvi et al., 2002; Vahedi et al., 2015) are also present in the TNBC cells we used 

(Figure S3A), as observed with pSrc (Y530) their phosphorylation status did not show major 

alterations according to the mitochondrial character of the cybrid (Figure S3B and S3C)

Metastatic TNBC Cells Demonstrate Energy Dependency on Mitochondrial FAO

Proteomic analysis suggested that several proteins related to mitochondrial FAO are 

upregulated in cybrids with mitochondria derived from metastatic TNBC (Figures 4A, S4A, 

and S4B). Mass spectrometry analysis of carnitines in parental cells showed increased levels 

of several carnitines in metastatic TNBC cells (Figure 4B). Oxygen consumption rate (OCR) 

analysis suggested a sharp decrease in OCR after treatment with etomoxir (ETX), which 

suppresses mitochondrial FAO rate-limiting enzyme, carnitine palmitoyltransferase-1 

(CPT1)(Figures 4C and S4C). While ETX treatment decreased the OCR, it also 

simultaneously increased the glycolysis, as seen by the high extracellular acidification rate 

(ECAR) (Figure S4D and S4E). Medium containing palmitate conjugated with bovine serum 

albumin (BSA) significantly increased OCR and basal respiration of TNBC cells and 

cybrids with mitochondria from TNBC compared to benign cells and cybrids containing 

mitochondria from benign cells respectively (Figure 4D). Neutral lipid staining suggested 

increased lipid formation after ETX treatment in TNBC metastatic cells and cybrids with 

TNBC mitochondria but not in ER+ BC cells (Figures 4E and S4F). A CO2 trap assay 

using 14C radiolabelled FA oleate-BSA further confirmed increased FAO in metastatic 

TNBC cells and cybrids (Figure 4F). Moreover, CPT1 activity is upregulated in metastatic 

TNBC cells and cybrids with TNBC mitochondria (Figure 4G).

Mitochondrial FAO Inhibitors or Knockdown of CPT1 and 2 Genes Abolish Src 
Autophosphorylation

Inhibition of FAO by ETX (Figures 5A–5C) or perhexiline (PHX) (Figure 5D) dose-

dependently abolished Src activation in parental cells and cybrids. In reverse experiments, 
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we activated FAO by treatment with FA conjugated with BSA (Figure 5E) or L-carnitine 

(Figure 5F) as substrates of CPT1 to understand the induction of pSrc (Y419) in cybrids 

with benign mitochondria. As expected, activation of FAO by FA and L-carnitine induced 

pSrc (Y419) in cybrids with benign mitochondria (Figures 5E and 5F). ROS induction is 

known to decrease CPT1 functional activity (Setoyama et al., 2013). Antimycin-A, which 

inhibits Src autophosphorylation (Figures 3C and 3D), also significantly induces 

mitochondrial ROS (Figures S5A). To further understand the role of ROS in Src (Y419) 

autophosphorylation, cells were treated with H2O2, antimycin-A, and/or ROS scavenger 

NAC (Figures S5). As expected, treatment with H2O2 and antimycin-A inhibited pSrc 

(Y419) in the parental cell line (Figure 5G) and the cybrid (Figure S5C). The H2O2-

mediated inhibition was reversed by the addition of NAC in H2O2-treated cells but not in 

antimycin-A-treated cells (Figure 5G). This suggests that the ETC activity is important in 

the activation of pSrc (Y419). Another important question is what happens to Src (Y419) 

autophosphorylation in conditions where tumor cells are under hypoxia, where ETC 

function is diminished? Parental cells were analysed under normoxic and hypoxic 

conditions. As expected, Src (Y419) phosphorylation was abolished under hypoxia, 

confirming its dependence on ATP generation from mitochondrial oxidative 

phosphorylation (Figure 5H).

Gene expression data from MDA231 cells confirm that inhibition of FAO by ETX or CPT 

shRNA reverse the published Src-regulated gene pattern (Creighton, 2008) (Figure 6A). The 

known Src up-regulated genes are down-regulated and Src down-regulated genes are up-

regulated in FAO-inhibited cells. Knockdown of CPT1 (Figure 6B) or CPT2 (Figure 6C) 

also inhibited Src (Y419) autophosphorylation as observed with ETX (Figure 5). However, 

FAO inhibition did not show major variation in the expression of Src-related proteins 

(Figure S6A) or phosphorylation of other analyzed SFKs (Figures S6A–S6D).

FAO Inhibition Abolishes Tumor and Metastatic Properties

In vitro analysis of tumor properties showed the critical role of FAO in TNBC cancer 

progression (Figures 6D–6I). Colony formation assays of TNBC cell lines using agar 

medium with ETX suggested dose-dependent decrease of colony formation (Figure 6D). 

Pretreatment of cells with ETX also significantly decreased the colony formation potential 

of TNBC cell lines (Figure 6E). Similarly, ETX treatment significantly decreased the 

migration potential of cybrids and parental cells (Figures 6F and 6G). Knockdown of CPT1 

or CPT2 by shRNA also significantly inhibited the transwell migration potential of 

MDA231 cells (Figure 6G). ETX treatment (Figure 6H) or knockdown of CPT genes 

(Figure 6I) also significantly inhibited the wound healing potential. However, ETX-

mediated inhibition was significantly lower in CPT knockdown cells compared to control 

cells (Figure S6E).

RPPA and gene expression data from TCGA patient tumor analysis suggested a significant 

positive correlation between CPT1A mRNA expression and Src (Y419) phosphorylation 

status in basal BC subtypes (Figure 7A). However, no such correlation was observed in 

other BC subgroups (Figure S7A). In addition, no significant correlation was observed with 

Src (Y530) phosphorylation status (Figure S7B). CPT1 and CPT2 shRNA also significantly 
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decreased the tumor growth of MDA231 cells compared to scrambled shRNA transfected 

control cells (Figure 7B). Cell line data validated using PDX models (Zhang et al., 2013). 

One week after PDX transplantation to the mammary gland, the mice were treated with ETX 

for two weeks. Short-term ETX treatment significantly delayed the palpable tumor 

appearance (Figure 7C) and tumor growth of the PDX (BCM-2147, Figure S7C). In mice 

transplanted with another PDX model (BCM-4013), ETX was administered after the tumor 

size reached around 150 mm3. As observed above, ETX treatment significantly decreased 

the tumor growth (Figure 7D). For distant metastasis analysis, MDA231 cells were 

pretreated for two days with ETX before tail vein injection. The ETX treatment continued 

for one more week in mice. After three weeks, bioluminescence imaging showed 

considerably lower metastatic signals in ETX-treated mice (Figure 7E). Also significantly 

low number of metastatic nodules observed in ETX-treated mice, confirming the role of 

FAO in distant metastatic potential (Figures 7F and 7G). Similar results were observed even 

without ETX pre-treatment (Figures. S7D and S7E). Finally, an independent unselected BC 

patient data set (n=1302) with long-term clinical follow-up data suggested that high CPT1A 

mRNA expression in the tumor promotes distant metastasis (Kessler et al., 2012) (Figure 

7H).

Discussion

Cancer cells essentially undergo a metabolic rewiring program to meet the demands of a 

cancer phenotype (Cantor and Sabatini, 2012). This concept of metabolic reshuffling 

emanates from Warburg’s hypothesis stating that cancer cell mitochondria are defective and 

hence switch to energy inefficient pathways (glycolysis). Our data suggest that 

mitochondrial energy reprogramming to FAO is critical in the activation of Src signaling in 

TNBC. Several recent reports questioned the conventional concept that in cancer cells the 

energy is produced only through glycolysis without major contribution from mitochondrial 

respiration (Biswas et al., 2012; Caino et al., 2015; Carracedo et al., 2013; LeBleu et al., 

2014; Liu et al., 2015; Maiuri and Kroemer, 2015; Tan et al., 2015; Villanueva, 2015; Ward 

and Thompson, 2012; Xu et al., 2015). However, the vast majority of the research into 

cancer metabolism has been limited to a handful of metabolic pathways, while other 

pathways have remained in the dark (Carracedo et al., 2013). In the past decade, researchers 

have revisited the Warburg theory and reached a better understanding of the ‘metabolic 

switch’ in cancer cells, including the intimate and causal relationship between cancer genes 

and metabolic alterations, and their potential to be targeted for cancer treatment (Biswas et 

al., 2012; Carracedo et al., 2013; Ward and Thompson, 2012). Recently alternative energy 

pathways like FAO have been getting increasing attention in cancer research (Balaban et al., 

2015; Harjes et al., 2015). Association of FAO with apoptotic machinery has been reported 

in cancer (Balaban et al., 2015; Samudio et al., 2010), suggesting that FA metabolism 

provides a survival advantage to the cancer cells and closely communicates with the cancer 

signaling pathways.

The alterations in malignant mitochondria or the metabolic pathways governing 

mitochondrial function vary by cancer type and level of disease progression (Constance and 

Lim, 2012). Drugs that target mitochondria and exert anti-cancer activity have become a 

focus of recent research due to their great clinical potential (Neuzil et al., 2013). Thus, 
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mitochondrial energy reprogramming from regulated oxidative phosphorylation and 

glycolysis to alternative pathways like mitochondrial FAO will have a major influence on 

tumor response to currently available anticancer drugs. Sensitizing mitochondria (Ni 

Chonghaile et al., 2011) may be an ideal way to overcome currently non-targetable tumors 

like TNBC. Mitochondria are known to harbor variations in mtDNA that have been linked to 

BC development (Ishikawa et al., 2008; Ohsawa et al., 2012). However, here mtDNA 

sequencing did not show any common variation that could contribute to the energy 

reprogramming in the analyzed cell models. Thus, the study focused on overall functional 

characteristics of the mitochondria rather than individual mtDNA variations.

Src is one of the most commonly upregulated pathways in TNBC (Tryfonopoulos et al., 

2011). However, even with promising preclinical studies on the significance of the Src 

pathway in TNBC, single-agent like dasatinib studies in patients with metastatic TNBC did 

not show a major clinical advantage in unselected populations (Finn et al., 2011; Mayer and 

Krop, 2010; Tryfonopoulos et al., 2011). From the current results, it should be noted that 

these patients with advanced tumors might have larger tumors in which several tumor areas 

are hypoxic and cannot depend on mitochondrial respiration for their survival. Our data 

shows that those tumors without active mitochondrial oxidative phosphorylation, as in a 

hypoxic situation, may not maintain Src activity via its autophosphorylation (Figure 5H). 

Thus, those tumors or tumor areas may be depending on alternative cancer pathways and 

require combination therapies with other mitochondrial targets or chemotherapeutic agents. 

Identifying which patients should be selected for Src-directed therapies will be important to 

the clinical success of these agents.

Mitochondrial protein phosphorylation is an important mechanism for the modulation of 

mitochondrial function (Acin-Perez et al., 2009; O’Rourke et al., 2011). Previous reports 

including immunoelectron microscopy studies have shown that Src is located inside 

mitochondria, and Src activity is also important for the regulation of mitochondrial functions 

and cell viability (Hebert-Chatelain, 2013; Miyazaki et al., 2003; Salvi et al., 2002; Tibaldi 

et al., 2008). Src can phosphorylate several proteins involved in the mitochondrial ETC. 

Cells with high Src activity are also known to maintain high ETC activity, as several 

mitochondrial proteins were shown to be substrates of Src kinases (Hebert-Chatelain, 2013). 

For example, Y193 at NADH dehydrogenase [ubiquinone] flavoprotein 2 of respiratory 

complex I, which is indispensable for NADH dehydrogenase (complex I) activity and ATP 

production, Y215 at succinate dehydrogenase A of complex II, as well as direct 

phosphorylation of cytochrome c oxidase subunit-II of complex-IV are some of the 

mitochondrial phosphorylation targets for Src (Miyazaki et al., 2003; Ogura et al., 2012). 

Together with these findings, our data propose that increased FAO in TNBC cells activates 

Src autophosphorylation, and activated Src phosphorylates mitochondrial ETC proteins to 

maintain its activated status.

Studies have also shown that Src regulates ROS production in localized subcellular districts 

including mitochondria. Mitochondrial Src can phosphorylate flotillin-1 at Y56 and Y149, 

which are critical for its interaction with Complex-II and the prevention of ROS production 

(Ogura et al., 2014). Increased ROS can inhibit CPT1 enzymatic activity (Setoyama et al., 

2013). Moreover, L-carnitine is considered as a potential anti-oxidant (Mescka et al., 2011; 
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Ribas et al., 2014) and L-carnitine can protect the H2O2-induced cytotoxity by enhancing 

CPT1 activity (Li et al., 2012). All these confirm the role of ROS in the down-regulation of 

FAO via inhibition of CPT1. Our results also support these findings in TNBC. Treatment 

with H2O2 or antimycin-A (which increases mitochondrial ROS) abolishes Src 

autophosphorylation (Fig 5G). Interestingly, while ROS scavengers rescued the H2O2-

mediated pSrc (Y419) inhibition, it could not reverse antimycin-A-mediated pSrc (Y419) 

inhibition. However, in addition to increasing ROS, antimycin-A is a strong inhibitor of 

complex-III function and ETC activity. This further confirms the importance of ETC activity 

in the autophosphorylation of Src.

Large prospective studies have shown that dietary fat intake is associated with the risk of 

postmenopausal invasive BC. The Women’s Intervention Nutrition Study (WINS) trial 

reported that low-fat diet and corresponding weight loss has a favorable effect on BC 

recurrence, especially in postmenopausal women with ER-negative cancer (Hoy et al., 

2009). The recent WINS report highlighted that deaths of women with TNBC were reduced 

by up to 54% when they followed a program to reduce their dietary fat intake (Chlebowski 

and Blackburn, 2015). This highlights the significance of fat in TNBC progression. 

Considering our important finding on the role of fat metabolism in the activation of the Src 

signature in TNBC, it is also possible that due to a high fat environment, mitochondria will 

reprogram to a FA dependent energy pathway in obese TNBC patients. Obese women also 

have a greater risk for TNBC than non-obese women, where menopause status may be a 

mitigating factor (Pierobon and Frankenfeld, 2013). In pre-menopausal women, a significant 

association between obesity and TNBC was observed in both case–case and case–control 

studies. Clinical data reported significantly shorter overall survival and disease-free survival 

in obese patients with TNBC (Turkoz et al., 2013). Meta analysis on obesity and TNBC 

reported that compared to over-weight and normal-weight individuals, pre-menopausal 

women with BMI equal to or greater than 30 have up to a 42% increased risk of developing 

TNBC (Pierobon and Frankenfeld, 2013). Post-menopausal women often present with less 

aggressive phenotypes and with estrogen-dependent lesions most likely driven by the 

production of steroidal hormones from the adipocytes (Lorincz and Sukumar, 2006; Roberts 

et al., 2010). Since TNBC lacks expression of hormone receptors, distinct molecular 

mechanisms must link obesity to the TNBC subtype compared to ER+ tumors. Given the 

worldwide epidemic of overweight and obesity, as well as the aggressiveness associated 

with TNBC, it is critical to understand the impact of obesity and fat metabolism in FAO-

regulated Src-driven TNBC. This will help in identifying and targeting a higher risk group 

of patients with this aggressive form of BC.

Altogether, these show the role of mitochondrial energy reprogramming to FAO in TNBC 

and its significance in regulating the driving protein of a major cancer pathway via its post-

translational modification. Further studies are in progress to understand the role of obesity in 

the activation of Src in TNBC, and to seek suitable combination therapies with 

mitochondrial targets to manage the currently non-targetable TNBC.
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Experimental Procedures

Cells, Cybrids and PDX

Cybrids were generated according to the previously published protocol (Vithayathil et al., 

2012). Parental cells and cybrids were used and maintained in culture as described in the 

Supplemental Information. TNBC PDX models (Zhang et al., 2013) were serially 

transplanted in SCID/Beige female mice (Harlan Laboratories).

In vivo Tumor Studies

For mammary transplantation assay, 2 ×105 cells and cybrids with Firefly luciferase or small 

tumor pieces from PDXs were transplanted into the fourth mammary fat pads of 4–5 week 

old SCID/Beige female mice (Zhang et al., 2013). For tail vein injection, 1.5 × 105 MDA231 

cells were injected into the tail veins of 4–5 week old NOD SCID Gamma mice. Details are 

described in the Supplemental Information.

Src Gene Signature Analysis

The mRNA expression profile was performed using U133plus 2.0 array, and the Src 

transcriptional signature was analyzed as previously described (Creighton, 2008). Details are 

described in the Supplemental Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) SUM159 TNBC cybrid model with mitochondria from benign (MCF10A and A1N4), 

moderately metastatic (SUM159), and highly metastatic (MDA231) TN cells under a 

defined nuclear background of SUM159 mitochondrial DNA depleted ρ0 cells. The cybrids 

are named as C-MCF10A, C-A1N4, C-SUM159, and C-MDA231 respectively. Images of 

soft agar colony formation assay of mitochondrial donor cells and cybrids are shown with 

the cartoon. Colonies are red marked using GelCount™ software. (B) Quantification of soft 

agar colonies of cybrids. (C) Analysis of wound healing assays performed in an IncuCyte 

ZOOM® kinetic imaging system with live-cell imaging every three hours. While cybrids 

with mitochondria from cancer cells completely healed (100% relative wound density) 

within 24 hours, cybrids with mitochondria from benign cells could not heal the wound even 

after 36 hours. (D) Bioluminescence imaging of tumor growth in cybrids. Mice injected in 

the mammary fat pads with cybrids C-A1N4 [right (R); cartooned with green mitochondria] 

and C-SUM159 [left (L); cartooned with pink mitochondria]. Benign mitochondria (A1N4) 

abolished the in vivo tumorigenicity of SUM159 cells. Pellets show the luminescence 

property of both cybrids. (E) Microarray analysis of cybrids suggest that Src transcriptional 

signature (Creighton, 2008) is abolished in C-A1N4 with benign mitochondria. c-Src 

upregulated genes are down and c-Src downregulated genes are up in C-A1N4 compared to 

C-SUM159. Yellow shows higher and blue shows lower expression. (F) pSrc (Y419) 

analysis in benign, ER positive, and TNBC cell lines showing increased Src Y419 

phosphorylation in TNBC cells compared to benign or ER+ cells. (G) The RPPA data from 

TCGA BC patient tumors suggest an increased pSrc (Y419) expression in basal subtype 
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compared to hormone positive subtypes. The * represents significant increase in the relative 

pSrc (Y419) expression in basal subtype compared to luminal-A and B subtypes. (H) 

Comparison of RPPA data from TNBC PDX models with distant metastatic (DM) and non-

distant metastatic (No DM) potential, suggesting pSrc (Y419) level is significantly 

upregulated in PDXs with DM potential.

See also Figure S1.
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Figure 2. 
(A) Western Blot showing decreased Src (Y419) phosphorylation in cybrids with 

mitochondria from benign cells compared to TNBC mitochondria. However, there was no 

major difference in the total Src levels or Src (Y530) phosphorylation status. Complex-IV 

subunit II and β-actin were used as mitochondrial and nuclear loading controls. (B) 

Depletion of mitochondria (ρ0 cells) abolished pSrc (Y419) in parental cells but reappeared 

in cybrids with TNBC mitochondria with no major effect on total Src, pSrc (Y530), and 

CSK. (C) Cell fractional analysis suggests localization of pSrc in mitochondrial fraction 

(M=mitochondria, C= Cytoplasmic, and N= Nuclear fraction). (D) pSrc (Y419) and its 

target pFAK in cybrids are abolished after treatment with a selective inhibitor for Src-family 
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kinases, PP2. (E and F) TNBC cells treated with glycolysis inhibitors 3-BP (E) and DCA 

(F), showing no considerable decrease in Src phosphorylation status. (G) Treatment with 

glutamine pathway inhibitor AOA did not show major reduction in Src (Y419). (H and I) 

Treatment with ROS scavenger NAC in cybrids (H) and parental cell SUM159 (I) did not 

abolished the increased Src (Y419) phosphorylation in TNBC.

See also Figure S2 and S3.
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Figure 3. 
Src (Y419) phosphorylation depends on ATP from ETC. (A–F) Cells were treated with the 

mitochondrial ETC complex I inhibitor Rotenone (A and B), the complex III inhibitor 

Antimycin-A (C and D), or the complex V inhibitor Oligomycin (E and F). Inhibitors dose-

dependently inhibit Src (Y419) autophosphorylation in parental cells (A, C, and E) and 

cybrids (B, D, and F) respectively, suggesting a critical role of ATP from mitochondrial 

ETC in Src Y419 autophosphorylation. (G) Western blot of in vitro phosphorylation assay 

of purified Src protein using varying concentrations of ATP. Src (Y419) 

autophosphorylation is increased with the ATP concentration. However, no ATP dose 

dependency is observed in pSrc (Y530). (H) Quantification of the average pSrc/Src ratio 

from three independent in vitro phosphorylation experiments. The error bars represent 

S.E.M.
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Figure 4. 
Metastatic TNBC shows energy dependence on mitochondrial FAO. (A) Shotgun Jet Stream 

Proteomics analysis of cybrids on a UHPLC/AJS-iFunnel Q-TOF suggested increased 

(yellow) expression of mitochondrial FAO proteins in cybrids with cancer mitochondria. (B) 

Mass spectrometric analysis of carnitines in benign and metastatic TNBC cells showing 

increased carnitine levels in TNBC cells (MDA231 and SUM159) compared to benign cells 

(A1N4). (C) Seahorse XF analysis suggesting that addition of FAO inhibitor almost 

completely inhibited the increased respiration of lung metastatic TNBC cells (MDA231-

LM). (D) Seahorse XF analysis using medium containing palmitate-BSA. Metastatic cells 

and cybrids with mitochondria from metastatic cells showed increased basal respiration 

compared to benign cells and cybrids with mitochondria from benign cells respectively. (E) 

Flowcytometry analysis using the allophycocyanin (APC) channel after lipidTOX neutral 

lipid staining. Treatment with the ETX enhanced the APC florescence in a TNBC cell line 

(MDA231) and C-MDA231 cybrids. (F) CO2 trap assays using 14C-labeled oleate in 

parental cells (left) and cybrids (right) confirm significantly higher FAO in metastatic 

TNBC cells and its cybrids compared to benign cells and its cybrids. (G) CPT1 activity 

assay in whole cell lysate from TNBC cell MDA231-LM and ER+ cell MCF7 showing 

increased CPT1 activity in metastatic TNBC cells (left). Isolated mitochondria from cybrids 

with mitochondria from cancer cells (C-SUM159) and from benign cells (C-A1N4) show 

increased CPT1 activity in C-SUM159 cybrid (right).

See also Figure S4.
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Figure 5. 
Inhibition of FAO abolishes Src (Y419) phosphorylation. (A) Treatment with ETX dose-

dependently decreased Src (Y419) autophosphorylation in MDA231-LM cells (left) and 

SUM159 cells (right). (B) Time dependency for ETX-mediated Src dephosphorylation in 

MDA231 cells. (C) Treatment with ETX depletes pSrc (Y419) phosphorylation in cybrids 

with mitochondria from cancer cells but not in cybrids with benign mitochondria. (D) 

Treatment with another CPT1 inhibitor PHX also dose-dependently depleted pSrc (Y419) in 

MDA231 (left) and SUM159 (right) cells. (E) Stimulation of FAO by treatment with BSA-

conjugated FA increased pSrc (Y419) levels in cybrids with benign mitochondria. (F) 

Addition of known FAO enhancer L-carnitine also increased pSrc (Y419) in cybrids with 

benign mitochondria. (G) Stimulation of ROS with H2O2 and antimycin-A inhibits pSrc 

(Y419) in SUM159 cells. Addition of NAC reverses H2O2-mediated but not antimycin-A-

mediated inhibition of pSrc (Y419). (H) pSrc (Y419) phosphorylation is depleted in parental 

cells (upper panel) and cybrids (lower panel) cultured under hypoxic condition with 1% O2.

See also Figure S5.
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Figure 6. 
Mitochondrial FAO inhibition represses in vitro tumor properties. (A) Src gene signature 

from microarray analysis in MDA231 cells. Inhibition of FAO by ETX or CPT shRNA 

broadly reversed the Src-regulated gene signature compared to scrambled shRNA-

transfected cells. (B and C) Knockdown of CPT1 (B) and CPT2 (C) by shRNA down-

regulated Src (Y419) phosphorylation. (D) ETX inhibited colony formation in MDA231-LM 

cells. (E) Two days pretreatment with ETX significantly reduced the soft agar colony 

formation potential of MDA231 and SUM159 cells. ETX was not added in the soft agar 

medium. (F and G) Transwell migration assay. ETX treatment significantly decreased the 

migration potential of cybrids (F) and parental cells (G). (H and I) Images of wound healing 

assay in SUM159 cells (36 hours) and MDA231 cells (15 hours). Mean percentage of 

wound confluence analyzed from live-cell imaging every three hours shows significantly 

reduced wound healing potential after ETX treatment (H) or knockdown of CPT genes by 

shRNA (I).

See also Figure S6.

Park et al. Page 22

Cell Rep. Author manuscript; available in PMC 2016 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Mitochondrial FAO regulates in vivo tumor properties. (A) RPPA and gene expression data 

from the TCGA patient database (n=105) show significant positive correlation between Src 

(Y419) status and relative CPT1 mRNA expression (r=0.34, p<0.0005, Pearson’s 

correlation). (B) Bioluminescence images of mice showing that knockdown of CPT1 or 

CPT2 in MDA231 cells inhibits in vivo tumor growth potential. (C and D) ETX treatment in 

PDX. PDX BCM-2147 and BCM-4013 were transplanted to the 4th mammary glands of 

mice. BCM-2147-transplanted mice were treated one week after the transplantation. 

BCM-4013-transplanted mice were treated after the tumors reached around 150 mm3 
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(treatment period illustrated with the yellow lines). ETX treatment significantly delayed the 

palpable tumor formation of BCM-2147 (C) and decreased the tumor growth of BCM-4013 

(D) (* represent p<0.05 in one-tailed t-test). (E–G) Significance of FAO in distant 

metastasis. Control and ETX-pretreated (2 days) MDA231 cells (1.5 × 105) were injected in 

the tail vein of NOD SCID Gamma mice. ETX treatment was continued in the mice for one 

more week. Bioluminescence imaging after three weeks showed decreased metastasis in 

ETX treated mice (E). Lung and liver images (nodules indicated with white arrows) (F) and 

nodule count (G) confirm significantly decreased metastasis in ETX-treated mice compared 

to control-treated mice. (H) Gene expression data from independent BC data sets (n=1302) 

show significantly increased risk of distant metastasis with high CPT1 mRNA expression. P-

value by log-rank statistic. See also Figure S7.
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