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Summary

Dysregulated metabolism is a hallmark of cancer, manifested through alterations in metabolites. 

We performed metabolomic profiling on 138 matched clear cell renal cell carcinoma (ccRCC)/

normal tissue pairs and found that ccRCC is characterized by broad shifts in central carbon 

metabolism, one-carbon metabolism and anti-oxidant response. Tumor progression and metastasis 

were associated with metabolite increases in glutathione and cysteine/methionine metabolism 

pathways. We develop an analytic pipeline and visualization tool (“metabolograms”) to bridge the 
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gap between TCGA transcriptomic profiling and our metabolomic data, which enables us to 

assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between 

transcriptome and metabolome. Lastly, expression profiling was performed on a high-glutathione 

cluster, which correspond to a poor-survival subgroup in the ccRCC TCGA cohort.

Graphical Abstract

Introduction

Dysregulated metabolism is a cancer hallmark and presents opportunities for cancer 

diagnostics, prognostics, and therapeutics (DeBerardinis et al., 2008; Hanahan and 

Weinberg, 2011; Hsu and Sabatini, 2008; Vander Heiden et al., 2009). Tumors reorganize 

their metabolism to produce sufficient energy and biosynthetic building blocks, such as 

nucleotides, lipids, and amino acids, for malignant cellular proliferation. Moreover, recent 

studies have demonstrated that a pathological accumulation of metabolic intermediates, such 

as fumarate and 2-hydroxyglutarate, can contribute to tumorigenesis (Kaelin and McKnight, 

2013; Raimundo et al., 2011).

Clear cell renal cell carcinoma (ccRCC) is the most common (~75%), lethal subtype of 

kidney cancer (Funakoshi et al., 2014; Hakimi et al., 2013b; Wei and Hsieh, 2015). 

Morphologically, ccRCC cells are lipid- and glycogen- laden (Gebhard et al., 1987), 

implicating altered fatty acid and glucose metabolism in the development of ccRCC. 

Genetically, ccRCC is characterized by a biallelic loss of the Von Hippel-Lindau (VHL) 

tumor suppressor gene which encodes an E3 ubiquitin ligase that degrades hypoxia 

inducible factors (HIF) 1α and HIF2 α (Kaelin, 2004). Loss of VHL leads to aberrant 

accumulation of HIFα despite an adequately oxygenated tissue microenvironment, which in 

turn results in uncontrolled activation of HIFα-target genes that regulate angiogenesis, 

glycolysis, and apoptosis (Majmundar et al., 2010; Semenza, 2013). Interestingly, the 

landmark TCGA analysis of ccRCC highlighted a key role for metabolic alteration in 

ccRCC progression (The Cancer Genome Atlas Research et al., 2013). In that study and 

subsequent analysis, worse patient survival was shown to correlate with upregulation of 

pentose phosphate pathway and fatty acid synthesis pathway genes, and downregulation of 

TCA cycle genes (Hakimi et al., 2013a; The Cancer Genome Atlas Research et al., 2013). 
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Separately, a cross-cancer study of metabolic gene expression profiles further characterized 

ccRCC with concerted down-regulation of most metabolic genes in comparison with other 

malignancies (Anders et al., 2013; Gatto et al., 2014).

The fundamental unit in studying metabolism is the activity (“flux”) of a metabolic reaction. 

However, the vast majority of large cancer profiling studies, including the TCGA, have 

studied cancer metabolism using transcriptomics data (Gatto et al., 2014; Hu et al., 2013; 

The Cancer Genome Atlas Research et al., 2013). While it is well established that gene 

expression changes of particular metabolic pathways correlate with clinical aggressiveness 

in ccRCC, limited large-scale metabolomics data exists to support prior findings connecting 

metabolism to kidney cancer pathogenesis and/or progression (Gatto et al., 2014; The 

Cancer Genome Atlas Research et al., 2013).

Results

Metabolic Profiling on 138 Human ccRCC Tumor-Normal Pairs

To enable comprehensive metabolomic profiling of ccRCC, we assembled a human ccRCC 

sample set containing sufficient quantities of fresh frozen high-quality matched tumor/

adjacent normal tissue materials. This cohort included 138 ccRCC tumor-normal (T/N) pairs 

encompassing tumors of different Fuhrman nuclear grades and American Joint Committee 

on Cancer (AJCC) clinical stages (Figure 1A and Table S1). Mass spectrometry detected 

877 (577 named and 300 unnamed) metabolites in these samples (Table S2). Principal 

component analysis showed clear separation between tumor and normal samples (Figure 

S1A). FDR-corrected Mann Whitney U tests identified 319 metabolites (170 higher and 149 

lower) that display differential abundance between tumor and normal tissue samples (FDR-

corrected p value ≤0.001) (Figure 1B). Interestingly, carbohydrates were overrepresented 

and highly abundant in tumors, e.g. maltotriose, maltose, maltotetraose, fructose-1-

phosphate, and glucose-6-phosphate (Figure 1B). These results correlated with a prior 

metabolomics analysis of 20 ccRCC tumor/normal pairs (Figure S1B) (Li et al., 2014).

Metabolic Landscape of ccRCC

To systematically investigate the metabolic alterations associated with ccRCC pathogenesis, 

we performed KEGG pathway-based analysis utilizing metabolites that were present at 

differential abundance between tumor and normal kidney tissues. Differential abundance 

scores were calculated, which captured the tendency for metabolites in a pathway to be 

increased/decreased relative to normal samples. Among the 48 metabolic pathways for 

which at least five metabolites were captured in our profiling, 6 were up (>0.5 differential 

abundance score, red) and 9 were down (<−0.5, blue) (Figure 2A). Interestingly, most of the 

pathways elevated in tumor tissues were involved in carbohydrate metabolism (*), whereas 

most of the decreased pathways were involved in amino acid metabolism (#) (Figure 2A). 

Of note, all amino acids except cysteine, glutamate, and glutamine were significantly 

decreased in tumor samples (FDR-corrected p value < 0.05) (Table S3).
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Metabolic Alterations of Glycolysis and the TCA Cycle in ccRCC

The fundamental tumor-initiating event during ccRCC pathogenesis is the loss of VHL, 

which results in the accumulation of HIF1α and the ensuing persistent activation of HIF1 

transcriptional programs. HIF1 normally functions as a master transcriptional regulator that 

organizes cellular adaptation to low oxygen microenvironment, e.g. ischemic tissues and 

growing solid tumors (Kaelin, 2008; Semenza, 2013). Hence, the two main transcriptional 

endpoints of HIF1 are (1) to reduce oxygen demand by increasing glycolytic flux and 

reducing oxidative phosphorylation, and (2) to increase oxygen supply through activating 

new blood vessel formation. One of the key HIF1 targets in glycolysis is pyruvate 

dehydrogenase kinase (PDK) that phosphorylates and inhibits pyruvate dehydrogenase 

(PDH), thereby impeding fueling of pyruvate-derived carbons to the TCA cycle (Gordan et 

al., 2007; Kaelin, 2008; Semenza, 2013). We anticipated that ccRCC would exhibit elevated 

levels of metabolites in glycolysis and decreased levels of metabolites involved in oxidative 

phosphorylation, which was partially supported by the metabolic pathway analysis based on 

RNA sequencing (The Cancer Genome Atlas Research et al., 2013). To this end, we 

constructed a metabolic map detailing the shift in abundance of central carbon metabolites 

from normal kidney to ccRCC (Figure 2B). Consistent with increased glucose uptake, we 

observed that metabolites in upper glycolysis, including glucose, glucose-6-phosphate 

(G6P), and fructose-6-phosphate (F6P), showed > 2-fold increases in abundance (Figure 

2B). Notably, increased levels of G6P and F6P correlated with increases in 6-

phosphogluconate (6PG: p<1e-6, F6P: p<1e-6, Figure S2), an intermediate of the pentose-

phosphate pathway (PPP), suggesting increased shunting into the pentose phosphate 

pathway to produce ribose-5-phosphate (R5P) and NADPH. On the contrary, we observed 

that the majority (3 of 4) of quantified metabolites in lower glycolysis, i.e. downstream of 

F6P, were reduced in abundance. The upper part of glycolysis diverts hexose-phosphates to 

the pentose phosphate pathway, and the lower part diverts triose-phosphates to either the 

TCA cycle or one carbon metabolism. The distinct behavior of metabolites in the upper and 

lower parts of glycolysis is intriguing, and suggests that flux through glycolysis may be 

differentially partitioned (e.g. overflow into serine biosynthesis vs. PPP).

We next investigated the TCA cycle, which plays central roles in both ATP production 

through oxidation of acetyl-CoA to CO2, as well as the production of biosynthetic 

precursors (Owen et al., 2002). Five TCA cycle metabolites were measured, which revealed 

a dichotomous pattern of changes. In comparison to normal kidney tissues, citrate, cis-

aconitate and succinate levels were markedly elevated (> 2 fold) whereas fumarate and 

malate were markedly reduced (>2 fold) in ccRCC (Figure 2B). The conversion of succinate 

to fumarate is catalyzed by succinate dehydrogenase (SDH), which also acts as an electron 

carrier in the inner membrane of the mitochondrial electron transport chain (Gottlieb and 

Tomlinson, 2005). The reduced levels of malate and fumarate, in tandem with an increase in 

succinate levels, suggest that the rate of oxidative phosphorylation may be reduced in 

tumors, which is consistent with the negative effect of HIF1 on oxidative phosphorylation in 

ccRCC. Notably, citrate can produce cytosolic acetyl-CoA through the action of ATP citrate 

lyase (ACL) for the synthesis of fatty acids in support of lipid membrane formation, and 

ccRCC tumors are exceptionally lipid-laden, giving rise to the clear cell morphology 

(Gebhard et al., 1987). Cell-based assays demonstrated that reductive carboxylation of 
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glutamine generates citrate needed for the growth of mitochondrion-defective tumor cells 

(Metallo et al., 2012; Mullen et al., 2012), and reductive carboxylation of α-ketoglutarate to 

citrate for cell growth can be promoted by hypoxia and HIF1 (Wise et al., 2011). The 

splitting discordance in levels of TCA cycle metabolites with increased glutamine 

abundance in tumors implicates reductive carboxylation in ccRCC.

Metabolic Changes upon ccRCC Cancer Progression

The large number of samples in our stage-distributed ccRCC cohort allowed us to 

investigate the association between metabolic shifts and ccRCC progression using AJCC 

clinical stage. There were 208 identifiable metabolites exhibiting statistically significant 

differential abundance between early- (I, II) and late-stage (III, IV) tumors (Mann-Whitney 

U-test FDR corrected p value < 0.05) (Table S4). Of these, 73 metabolites showed a greater 

than 2-fold increase in late-stage tumors, while one metabolite, citrate, showed a greater 

than 2-fold decrease in late-stage tumors (Figure 3A, Mann-Whitney U test FDR-corrected p 

value < 0.05, absolute log2 fold change > 1). Of note, with >2-year clinical followup of our 

cohort, 17 (24%) of the 70 patients who presented with stage III cancer eventually 

developed disease recurrence (Figure 3A, dark gray bars).

Among these 74 metabolites, we identified several distinct groups of metabolites displaying 

synchronous patterns of variation with respect to clinical stages. Late-stage ccRCC is 

characterized by significant increases in galactose and mannose (Figure 3A). Notably, the 

decrease in citrate and smaller-magnitude decreases in cis-aconitate, and medium chain fatty 

acids in late-stage tumors (Figure 3B and Table S4) are consistent with the known 

observation that high-grade ccRCC is associated with decreased lipid content (Gebhard et 

al., 1987). We also noted increases in a large number of dipeptides (Figure 3A) that may be 

produced through protein degradation/reutilization processes, such as lysosomal 

degradation, phagocytosis, endocytosis, pinocytosis, and autophagy (Commisso et al., 2013; 

Kimmelman, 2015; Mizushima and Komatsu, 2011; Rubinsztein et al., 2012; Settembre and 

Ballabio, 2014; Son et al., 2013).

Elevated One Carbon Metabolic Network in Aggressive ccRCC: Folate/Methionine, Urea/
Polyamine, and Glutathione Pathways

Of note, there were a number of metabolites, concentrated in interconnected metabolic 

pathways, exhibiting statistically significant but smaller-magnitude shifts that correlate with 

AJCC stages (Table S4). Accordingly, we assembled a metabolic map depicting the 

distribution of these changes in three interconnected pathways: the folate/methionine cycle, 

glutathione metabolism, and polyamine/urea metabolism (Figure 3C). The increases with 

respect to low stage tumors in serine, homocysteine, methionine, S-adenosyl methionine 

(SAM), and S-adenosyl homocysteine (SAH) supports a metabolic scenario in which serine 

feeds a methyl group (one carbon) into the tetrahydrofolate cycle for nucleotide synthesis 

and methionine replenishment which in turn supports protein/DNA/RNA methylation and 

polyamine synthesis (Figure 3C). The synthesis of polyamines requires decarboxylated 

SAM (dcSAM), a derivative of SAM, as a cofactor, and releases MTA 

(methylthioadenosine) which was significantly increased with stage progression (Figure 3C 

and Table S4). Of note, polyamines, including spermine (SPMN) and spermidine (SPDN), 
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are essential for cell proliferation (Casero and Marton, 2007). We also observed an increase 

in late-stage tumors of a large number of metabolites related to the biosynthesis of 

glutathione, including cysteine, γ-glutamyl cysteine (GLU-CYS), and glutathione (GSH) 

(Figure 3C). Glutathione is the primary cellular antioxidant that buffers reactive oxygen 

species. Interestingly, the observed increases of methionine metabolism in late-stage tumors 

may be connected to increases in glutathione metabolism, via conversion of homocysteine 

(resulting from degradation of SAH) to cysteine through cystathionine for glutathione 

biogenesis (Lu, 1999). The association of increased buffering capacity for oxidative stress 

and aggressiveness is not unique to ccRCC, and has been observed in several cancers (Fan et 

al., 2014).

Unsupervised Clustering Reveals Four Metabolic Clusters (mClusters) with Prognostic 
Value

To evaluate whether ccRCC tumors could be partitioned into clusters with distinct metabolic 

phenotypes, we performed unsupervised Non-negative Matrix Factorization (NMF) 

consensus clustering (Lee and Seung, 1999). This approach yielded 4 distinct clusters 

(Figure 4A). Mann-Whitney U-tests were then used to calculate which metabolites were 

significantly increased or decreased in each cluster relative to all other tumors (Benjamini-

Hochberg corrected p value < 0.05). To explore the metabolic underpinnings of each cluster, 

metabolic pathway-based analysis was performed to identify representative metabolites that 

distinguish each cluster against the remainder of the cohort. For each pair of metabolite 

cluster (mCluster) and pathway, we plotted the proportion of metabolites that changed 

significantly in that cluster, relative to all other tumors (X-axis), versus the average log-fold 

changes of these metabolites (Y-axis) (Figure 4B and Table S5). The clinical stages of each 

cluster at presentation were summarized in Figure 4C. Interestingly, mCluster 1 has the 

highest percentage (56%) of early stage (I & II) tumors and is characterized by the low 

abundances of dipeptides; mCluster 2 has the highest percentage (93%) of late stage (III & 

IV) tumors and displays exceptionally high levels of glutathione-related metabolites; 

mCluster 3, characterized by the highest abundance of dipeptides, has 79% late stage 

tumors; and mCluster 4 has of 71% of late stage tumors (Figure 4B and 4C). We stratified 

our mClusters into low-risk (mCluster 1) or high-risk (mClusters 2/3/4) groups, based on a 

50% threshold of stage III/IV tumors, since ~80% of Stage I and Stage II ccRCC patients at 

presentation are cured by surgery alone and 30-50% of Stage III patients are expected to 

recur after surgery. We then examined relapse free survival on non-metastatic patients 

(Stage I, II, and III at presentation), which reveals a separation between low- and high-risk 

groups (Figure S3A), which does not reach statistical significance likely due to the relatively 

small number of events during follow-up (log-rank p value 0.12).

High Glutathione Pathway and Dipeptide Metabolites Associate with Stage IV ccRCC

With >2-year clinical follow-up of our cohort, 17 of the 70 patients who presented with 

stage III cancer eventually developed disease recurrence either locally or distantly, whereas 

only 2 of the 48 original early-stage (Stage I, II) patients developed recurrence (Figure 3A). 

With this dataset, we were particularly interested in identifying metabolites that correlate 

with the potential of disease recurrence among Stage III patients. Interestingly, only one 

metabolite, α-hydroxybutyrate (AHB), significantly distinguished patients who eventually 
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recurred from those did not at preparation of this manuscript (FDR-corrected p value 0.05), 

Figure S3B). This is noteworthy because high AHB level is a surrogate of high α-

ketobutyrate (AKB) which is produced when cystathionine is hydrolyzed to cysteine–a 

critical precursor for glutathione synthesis (Gall et al., 2010). We next compared tumor 

metabolic profiles patients either presenting with metastasis or later recurring (eventual 

Stage IV disease, n=39) versus others (n=99) patients (Figures 1C and 4E). There were 16 

identifiable metabolites that increased significantly with stage IV disease (right upper 

quadrant, Figure 4D), of which 5, including AHB, involve glutathione metabolism and 4 are 

dipeptides (Table S6). These data again support a association between two distinct classes of 

metabolites, i.e. glutathione-related and dipeptides, and stage IV kidney cancers.

Relationship between Metabolic Genes and Metabolites in ccRCC

To this point, we have focused on analyzing ccRCC metabolism using our own metabolomic 

profiling. However, the proliferation of transcriptomic analysis of cancers, including 

ccRCC, gives us an orthogonal perspective (the expression of metabolic genes) from which 

to investigate ccRCC metabolism (Gatto et al., 2014; Hu et al., 2013). In this regard, it is 

interesting to note that a prior analysis of metabolic gene expression across many cancer 

types identified ccRCC as an outlier (Gatto et al., 2014). In that study, metabolic genes in 

ccRCC displayed reduced expression across nearly all metabolic pathways compared to 

adjacent normal kidney tissues, a pattern that was not apparent in other tumor types. To 

explore the degree to which transcriptomic and metabolomic changes were consistent with 

each other in ccRCC, we analyzed RNA-Seq data from the KIRC TCGA project consisting 

of 480 ccRCC tumors and 71 adjacent normal kidney tissues. Differential expressions of all 

genes was calculated using the limma voom R package (Law et al., 2014), and genes were 

mapped to KEGG metabolic pathways. Differential abundance scores indicating the 

tendency for genes in a pathway to go up/down in tumors relative to normal tissues were 

obtained and subsequently compared to metabolite scores (Figure 2A) for the same pathway. 

The results enabled a comparison of changes in gene expression to changes in metabolite 

abundance between tumors and adjacent normal tissues (Figure 5A). Interestingly, such 

analysis revealed a lack of linear correlation between transcriptomics (KIRC TCGA) and 

metabolomics (MSK) (Figure 5) (Spearman rho - 0.02, p value 0.89). It was intriguing to 

find that a large number of metabolic pathways exhibited reduced levels of gene expression, 

but increased levels of metabolites (Figure 5A, right lower quadrant). To address the 

possibility that this heterogeneity arose from population differences between the TCGA 

gene expression cohort and the MSK metabolomics cohort, we repeated this analysis using 

RNA-Seq data from 10 MSK metabolomics samples from rCluster 2. Because normal 

kidney tissue was not available for RNA-sequencing, we compared these 10 samples to all 

normal kidney tissue from the TCGA. We again found no correlation between differential 

abundance scores for metabolites and genes (Spearman rho 0.06, p value 0.7) (Figure S4A).

Lack of Correlation between Enzymes Expression Level and Metabolites Abundance in 
ccRCC

We reasoned that this heterogeneity might be partially explained by examining metabolic 

genes at a detailed network level. To do so, we incorporated enzyme transcript levels into 

our corresponding central carbon metabolic network pathway map (Figure 5B). The result 
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highlighted the inherent difficulty of inferring metabolic pathway activity from 

measurements of RNA: the highly interconnected nature of central carbon metabolism made 

it difficult to identify regions displaying consistent changes in gene and metabolite levels 

(Figure 5B). An example of the magnitude of heterogeneity between our metabolomics data 

and existing expression data was in the genes and metabolites constituting KEGG TCA 

cycle pathway. There, we observed that nearly all (28/30) genes were downregulated in 

tumor vs. normal tissue, while changes in metabolite levels were evenly split between 

increases and decreases in abundance (Figure 5B). Furthermore, using the Recon2 human 

metabolic reconstruction, we examined the heterogeneity between metabolomic and 

transcriptomic data at individual reaction level. We extracted pairs of genes/metabolites 

reported to interact in irreversible metabolic reactions, and separated these pairs into two 

sets based on whether the metabolite was used as a substrate, or produced as a product of the 

reaction. We again observed no correlation between gene expression data and metabolomics 

data in either comparison (substrate: Spearman p value 0.64; product: Spearman p value 

0.69) (Figure S4B).

While the heterogeneity between transcriptomic and metabolomics data can be striking (e.g. 

in the TCA cycle), it is critical to remember that transcriptomic data is not a reliable 

surrogate for metabolic flux. A metabolic reaction can be catalyzed by any one of potentially 

many distinct isoforms of an enzyme, and such isoenzymes are characterized by distinct 

kinetic parameters, and are subject to different regulatory mechanisms, e.g. allosteric 

cofactors and protein modifications. Furthermore, the relationship between transcript level 

and protein abundance is not always linear. Nevertheless, our findings here suggest that 

changes in metabolite levels and enzyme transcript levels are often not synchronous in 

ccRCC, pointing to a complex paradigm for metabolic regulation.

Metabologram: A Web-based Application Integrates Large-scale Transcriptomics and 
Metabolomics

The difficulty in examining detailed metabolic networks when simultaneously layered with 

metabolomic and transcriptomic data motivated us to develop an integrative approach to 

study metabolism at pathway level. We developed a tool, called “Metabologram,” to 

integrate the MSK metabolomics and the KIRC TCGA transcriptomics data. Metabolograms 

enable concurrent visualization of metabolic pathway-level data on gene expression (plotted 

on the left) and metabolomics (plotted on the right) (Figure 6A). The ability to visualize data 

at a pathway level enables a quick, systematic comparison of (1) the average changes of 

genes and metabolites in a pathway (plotted in the center) and (2) the change of each 

individual component of the pathway (plotted as slices at the periphery) (Figure 6A and 

Figure S5). Metabolograms can be used as a rapid assessment of cancer metabolism when 

comparing changes between tumor and normal tissues (Figure 6A), as well as between late- 

and early-stage tumors (Figure 6B). The Metabologram tool is one part of a public, 

interactive data portal (http://kidneymetab.chenghsiehlab.org). The portal also enables users 

to interactively explore associations between metabolite abundances and 24 clinical 

parameters such as age, gender and tumor grade.

Hakimi et al. Page 8

Cancer Cell. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://kidneymetab.chenghsiehlab.org


Using metabolograms, we first interrogated pathway-level metabolic shifts between tumor 

and normal tissues for eight critical metabolic pathways that contained large number of 

metabolites recurrently arising as significant in our analyses to this point (Figure 6A). The 

patterns evident in the metabolograms in Figure 6A highlighted two distinct types of 

heterogeneity. First, it was rare to find a pathway where all metabolites showed a 

synchronous, large change in metabolite levels. For example, in the peripheral slices of 

glycolysis in Figure 6A, we observed again that approximately half of the metabolites 

showed exceptionally strong increases in tumors (e.g. F6P, G6P), while others (e.g. PEP) 

showed exceptionally strong decreases. These discordant patterns likely reflect the fact that 

metabolic flux patterns do not follow the canonical flow delineated by curated metabolic 

pathways, but rather branch, link, and shunt flux into neighboring pathways. A second 

heterogeneity was the evident contrast between the left half of each circle (gene expression) 

and the right half (metabolomics). The effect was particularly striking for glutathione 

metabolism. From the perspective of gene transcription, the majority of genes involved in 

glutathione metabolism showed decreases in expression in tumor relative to normal tissues 

(13 increased, 23 decreased), whereas from the perspective of metabolites, the majority of 

metabolites significantly increased in tumors relative to normal tissues, e.g. GSH, GSSG, 

cysteinylglycine, and putrescine (all > 4-fold) (Figure 6A).

Metabolic Shifts During Kidney Cancer Progression Assessed with Metabolograms

We next evaluated metabolic changes upon kidney cancer progression of these same 

metabolic pathways (Figure 6B). From the perspective of gene expression changes (left half 

centers), these pathways showed weak to no significant changes with cancer progression. On 

the other hand, there were significant consensus changes in a number of pathways from the 

perspective of metabolomics data (right half centers) (Figure 6B). The heterogeneous 

patterns when comparing changes between (1) tumor/normal samples, and (2) late-stage/

early-stage tumors (i.e. comparing Figure 6B with 6A) was informative. For example, there 

were increases in metabolite levels in fatty acid biosynthesis and decreases in oxidative 

phosphorylation at pathogenesis (Figure 6A) and a reversal of these patterns during 

progression (Figure 6B). Among the most striking observations was the contrast between the 

initial decreases in amino acid metabolite levels at tumor initiation (Figure 6A) and the 

subsequent increases at progression (Figure 6B, serine and leucine inset in Figure 6C). 

Captured in the KEGG pathway “Amino-acyl tRNA biosynthesis”, 17 of 20 amino acids 

were decreased at tumor initiation (Figure 6A) whereas 13 of 20 amino acids were increased 

at progression (Figure 6B).

Mapping the MSK High Glutathione mCluster to the KIRC TCGA Dataset

Our supervised and unsupervised ccRCC metabolomics analyses identified two groups of 

high-risk patients whose tumors were characterized by either high glutathione metabolism 

(mCluster 2) or dipeptides (mCluster3) (Figure 4). Given the highest overall incidence 

(50%) of stage IV disease in the high-glutathione cluster, and the potential predictive value 

of high AHB with the later development of metastasis in Stage III patients, mCluster 2 was 

further investigated. Like most metabolic pathways, there is no clear correlation between 

transcriptomic and metabolomic signatures in the glutathione metabolism pathway (Figure 

6). However, given the highly interconnected nature of the metabolic network, we 

Hakimi et al. Page 9

Cancer Cell. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



envisioned that a metabolic gene expression signature might exist for the mCluster 2 tumors, 

which could offer molecular insights overlooked by our univariate analyses. To this end, we 

leveraged data from the KIRC TCGA dataset. Our goal was to identify a set of patients in 

the TCGA with similar expression profiles to our high-glutathione tumors, and then 

interrogate the genomic data in the TCGA to uncover possible genetic causes underlying 

elevated glutathione levels.

To enable a potential link of these two datasets, we performed RNA-Seq expression 

profiling on all available materials (n=10) of our mCluster 2 tumor samples. Reads from our 

high-glutathione cohort and the KIRC TCGA project were jointly aligned using a common 

pipeline. To identify a transcriptomic metabolic signature, we reasoned that we should 

restrict ourselves to comparison of 1,506 metabolic genes from the Recon2 human metabolic 

network (Thiele et al., 2013). Consensus hierarchical clustering was performed on the RNA-

Seq counts from the joint TCGA/high-glutathione dataset, and yielded four robust and stable 

metabolic RNA clusters (rClusters) (Figure 7A), which showed association with the four 

reported TCGA RNA clusters (The Cancer Genome Atlas Research et al., 2013) (Chi-

squared p value < 2e-16, Table S6). Remarkably, 9 of our 10 mCluster 2 tumors mapped to 

rCluster A (Figure 7A). To learn what metabolic gene patterns distinguished rCluster A 

from the other rClusters, pathway analysis was performed based on functionally related 

groups of genes that were significantly over- or under-expressed in rCluster A, relative to 

other rClusters. Notably, we found that mitochondrial genes were significantly under-

expressed in rCluster A (Figure 7B and Table S7).

Given that mCluster2 patients had worst clinical outcomes among four mClusters, we 

assessed the survival of patients in rCluster A patients, and found that they exhibited the 

worst clinical outcome among the four rClusters (log-rank test, p value <0.0001) (Figure 

7C). We next interrogated if any specific mutations distinguished rCluster A from the other 

rClusters (Figure 7A) by analyzing all significantly mutated genes (SMG) reported by the 

KIRC TCGA project. ccRCC has high frequency mutations in chromatin modulators 

including PBRM1, BAP1, SETD2 and KDM5C, however, no specific mutations of these 

genes distinguish rCluster A from B, C or D (Figure 7A). Interestingly, rCluster A did show 

enrichment for NFE2L2 hotspot mutations (p value 0.008 chi-square) and KEAP1 mutations 

and copy number loss (p value 0.02 chi-square), two genes involved in the transcriptional 

control of glutathione metabolism genes. NFE2L2 encodes the transcription factor NRF2 

whose function is negatively regulated by KEAP1 (Wakabayashi et al., 2003). Mutations in 

the KEAP1/NRF2 axis have been shown to promote tumor invasiveness and resistance to 

oxidative stress in pancreatic cancers (DeNicola et al., 2011). Consistently, the majority of 

KIRC TCGA patients whose tumors harbored NFE2L2 hotspot mutations or KEAP1 loss 

showed a propensity for metastasis (Figure S6). Altogether, our analyses identify a poor 

prognostic cluster in the KIRC TCGA cohort that is enriched for mutations in NFE2L2 or 

KEAP1, supporting the feasibility in integrating global metabolomics with published multi-

omics datasets.
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Discussion

Cancer metabolism has recently attracted renewed interest, in part due to the identification 

of tumorigenic mutations in the metabolic genes IDH1, IDH2, FH, and SDHB (Kaelin and 

McKnight, 2013; Linehan et al., 2010). Furthermore, it is now established that key 

oncogenes such as MYC and KRAS can reorganize cellular metabolism to support tumor 

fitness (Commisso et al., 2013; Dang, 2012). This interest in cancer metabolism has run 

parallel to the proliferation of genomic, transcriptomic, proteomic, and epigenomic profiling 

of tumors, and has fueled enthusiasm to study cancer metabolism from an integrative “multi-

omics” perspective. However, due to technical challenges in identifying, measuring and 

tracing individual metabolites, metabolic flux profiling studies have largely focused on 

individual metabolic pathways and mainly employed in vitro cell-based assays.

In addition to targeted approaches, global metabolomic profiling has been performed on a 

comparatively smaller number cancer types, including prostate, breast, brain, liver and 

kidney cancers, at modest scale (n ≤ 65) (Budhu et al., 2013; Huang et al., 2013; Jaramillo 

and Zhang, 2013; Prabhu et al., 2014; Sreekumar et al., 2009). Based on such studies, 

metabolites such as sarcosine, 2-hydroxyglutarate, cysteine, lipids, and fatty acids have been 

implicated in the disease processes of prostate, breast, brain, liver and pancreas cancer, 

respectively. However, due to the lack of a common analytical pipeline to interrogate 

metabolomics data at a large, genome-wide scale, and the rarity of large sample sets (n ≥ 

100 tumors), the feasibility and the value of routine inclusion of metabolomics in cancer 

research remained to be determined.

To address these translational issues concerning cancer metabolism as a whole and provide 

metabolic insights into kidney cancer, we performed global metabolic profiling on 138 

kidney cancer/adjacent normal tissue pairs. Our study interrogated metabolic shifts changes 

during kidney cancer pathogenesis and highlighted a network of metabolic shifts associated 

with the genesis and progression of ccRCC tumors. In addition to analyzing metabolomic 

data in isolation, we proposed a pathway-based pipeline for studying metabolomics data in 

tandem with transcriptomic measurements of enzyme abundances. The results highlighted 

heterogeneity between gene expression changes and metabolomics changes in the same 

pathway and underscored the importance of both data types in generating a complete atlas of 

ccRCC metabolism. This heterogeneity was apparent both at the level of gross pathways and 

individual reactions, and has been reported in other systems (Chubukov et al., 2013). 

Nevertheless, it will be important to determine in future studies if such heterogeneity may 

arise from other confounding factors, e.g. incomplete coverage of the metabolome or 

ambiguity of metabolite abundances due to compartmentalization, or whether it is a bona 

fide feature of eukaryotic metabolic systems. Importantly, these analyses, and the 

visualization tools we have created are made publically available.

The large sample size and a relatively long clinical follow-up time of our study presented an 

opportunity to understand metabolic changes underlying kidney cancer aggressiveness. 

Interestingly, both supervised and unsupervised analyses identified both high glutathione 

and high dipeptide levels as aggressive metabolic signatures and as key features of 

distinctive metabolic clusters (mClusters) 2 and 3, respectively. Within our ccRCC cohort, 
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the high-glutathione mCluster 2 was most aggressive (> 50% of stage IV patients) and AHB, 

a byproduct of metabolic flux from methionine metabolism to glutathione biosynthesis, was 

correlated with the disease recurrence in stage III patients. The role of glutathione 

metabolism in ccRCC was recently reported (Li et al., 2014). RNA-Seq profiling of the 

high-glutathione mCluster 2 led to the identification of an analogous cluster of tumors 

profiled in the KIRC TCGA project. This transcriptomic cluster (rCluster A) was not only 

associated with poor clinical outcome but also enriched in somatic alterations of central 

redox regulators KEAP1 and NRF2 (Jaramillo and Zhang, 2013), supporting the proposed 

roles of reactive oxygen species (ROS) and altered redox state in certain cancers 

(Trachootham et al., 2009). These data suggest that targeting ROS-buffering capacity could 

be exploited as a therapeutic strategy in an aggressive subset of kidney cancer (Nogueira and 

Hay, 2013).

Overall, our study demonstrated the value of large-scale tumor metabolomics. By 

establishing analytical pipelines for integrating metabolomics data with the large amount of 

transcriptomic profiling now available through projects such as the TCGA, we hope to 

provide an example for future studies embarking on metabolomic profiling of human tissue. 

Furthermore, our data here has provided pathologic insights that could have future 

prognostic and/or therapeutic value, and offer evidence for the incorporation of tumor 

metabolomics into the future study of human cancer biology.

Experimental Procedures

Tumor Samples and Patient Characteristics

After acquiring written informed consent and Memorial Sloan-Kettering Cancer Center 

institutional review board approval, 138 matched/pairs of RCC tumor and adjacent normal 

kidney tissue from partial or radical nephrectomies performed at Memorial Sloan Kettering 

Cancer Center (New York, NY, USA) were obtained by and stored at the MSK 

Translational Kidney Research Program (TKCRP). Samples were fresh frozen and stored at 

−80°C prior to metabolomic characterization. Disease and patient associated metadata 

including tumor pathologic and clinical stage, nuclear grade, metastatic status, and patient 

characteristics were also obtained. (See Figure 1 and Table S1). All samples were reviewed 

by two expert genitourinary pathologists.

The median age of the cohort was 63 (range 36-82). The median tumor size was 4.5 cm 

(range 2-13.5). Median follow up was 60 months. 28% of patients had metastatic disease at 

last follow up with 14% of patients presenting with metastatic disease at the time of 

nephrectomy and 14% of patients developing recurrence by October, 2014.

Sample Preparation and Metabolic Profiling

Metabolomic profiling was performed in collaboration with Metabolon Inc. Details were 

included in the Supplemental Methods.
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Differential Abundance Score

The differential abundance (DA) score captures the tendency for a pathway to have 

increased levels of metabolites, relative to a control group. The score is calculating by first 

applying a non-parametric differential abundance test (in this study, Benjamini-Hochberg 

corrected Mann-Whitney U-tests) to all metabolites in a pathway. Then, after determining 

which metabolites are significantly increased/decreased in abundance, the differential 

abundance score is defined as:

Thus, the DA score varies from −1 to 1. A score of −1 indicates that all metabolites in a 

pathway decreased in abundance, while a score of 1 indicates that all metabolites increased.

Metabolic Clustering

Variance of metabolites across samples was calculated and the top 20% of metabolites (176 

metabolites) were retained. This data was then clustered using NMF(Gaujoux and Seoighe, 

2010). Primary clustering of the tumors was run in NMF for 200 iterations of ranks 2-5, with 

default settings of method brunet and seed random. Rank estimation was calculated using 50 

iterations of ranks 2-8. All above analyses were performed in R. Four clusters were chosen 

as the stable breakdown based on the major inflection point of the cophentic estimate and 

the second largest peak (after rank 2) of the dispersion estimate. A consensus labeling was 

then determined based on cluster inclusion in ranks 2-4.

Differential Expression Analysis and Metabolic Gene Expression Clustering

For all RNA-Seq analysis except that in Figure 7, TCGA RSEM unnormalized counts were 

downloaded from the Broad Firehose. The limma voom package was used to calculate fold 

changes and statistical significance between tumor/normal and high/low stage samples. 

Details of metabolic gene expression clustering were included in the supplementary 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Changes in cellular metabolism contribute to the development and progression of tumors, 

and can render tumors vulnerable to interventions. However, studies of human cancer 

metabolism remain limited due to technical challenges of detecting and quantifying small 

molecules, the highly interconnected nature of metabolic pathways, and the lack of 

designated tools to analyze and integrate metabolomics with other –omics data. Our 

study generates a comprehensive metabolomics dataset on a single cancer type and 

enables integration of metabolomics with sequencing data. Our results highlight the 

massive re-organization of cellular metabolism as tumors progress and acquire more 

aggressive features. The results of our work are made available through an interactive 

public data portal for cancer research community.
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Figure 1. Clinical and metabolic features of the MSK ccRCC Metabolomics Cohort
(A) Clinical characteristics of the patient cohort at presentation. Among the 118 patients 

who presented with Stage I-III diseases, 19 (16.1%) developed a new recurrence by the end 

of 2014. (B) A volcano plot of the 577 named metabolites profiled. 319 exhibited significant 

differential abundance (p value <0.001, absolute fold change > 2) when comparing ccRCC 

tumors to adjacent normal kidney tissues. Mann-Whitney U tests were used to calculate 

statistical significance, and p values were corrected using the Benjamini-Hochberg 

procedure. Differentially abundant metabolites of different categories were individually 

color-coded. See also Table S1 and S2, Figure S1.
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Figure 2. Pathway-based analysis of ccRCC metabolomics
(A) A pathway-based analysis of metabolic changes upon comparing primary ccRCC to 

adjacent normal kidney tissues. The differential abundance score captures the average, gross 

changes for all metabolites in a pathway. A score of 1 indicates all measured metabolites in 

the pathway increase, and −1 indicates all measured metabolites in a pathway decrease. # the 

amino acid pathways. * glucose metabolism. (B) Metabolic changes of central carbon 

metabolism in ccRCC. Metabolites are labeled as color-coded ovals. Color corresponds to 

the log2 fold changes between tumor and normal tissues. Red, increase; Blue, decrease; 

Green, isomers; Gray, not measured. Enzymes for individual chemical reactions were 

denoted next to arrows connecting two metabolites. See also Table S3, and Figure S2.
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Figure 3. Metabolites associated with ccRCC progression
(A) Mann-Whitney U tests were used to identify metabolites significantly higher or lower in 

Stage III/IV tumors, compared to Stage I/II tumors (Benjamini-Hochberg corrected p value 

< 0.05, absolute log2 fold change > 2). Metabolites were grouped, labeled on the left and 

detailed on the right. Clinical stages at presentation were color-labeled. Recurrences (n = 19) 

in the original Stage I to III patients (n = 118) were marked as darker gray bars. (B) 

Metabolic shifts in the TCA cycle and fatty acids during the progression. (C) Depicted are 

metabolic shifts of several interconnected metabolic programs upon ccRCC progression, 

including folate/methionine cycle, glutathione metabolism, and polyamine/urea metabolism. 

(B, C) Color corresponds to the log2 fold change between high stage (III/IV) and low stage 

(I/II) disease. Red, increase; Blue, decrease; Gray, not measured. Metabolites are labeled as 

color-coded ovals. Enzymes for individual chemical reactions were denoted next to arrows 

connecting two metabolites. See also Table S4.
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Figure 4. Unsupervised clustering of ccRCC based on metabolite signatures
(A) Nonnegative matrix factorization (NMF) clustering of metabolomics data. Note that 

consensus results show consistency for k=4. (B) Mann-Whitney U-tests were used to 

calculate which metabolites were significantly increased or decreased in each cluster, 

relative to all other tumors (Benjamini-Hochberg corrected p value < 0.05). X-axis indicates, 

for a given cluster of patient samples, the proportion of metabolites in a pathway that are 

significantly changed (both increased and decreased) in a cluster. Y-axis plots the average 

log2 fold change of these metabolites. mCluser 2 & mCluser 4 are enriched in either increase 

or decrease of metabolites concerning glutathione metabolism, respectively. mCluster 1 & 3 

show large differences in dipeptide levels, relative to other tumor samples. (C) The clinical 

stages at sample collection and the eventual metastasis of each individual metabolic cluster 

are presented. mCluster 1 is particularly enriched with Stage 1 tumors (p<0.0001 Chi-

Square). (D) Comparison of metabolite abundances in tumors developing metastases versus 
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those not developing metastases at preparation of this report. Red, the metabolites in the 

glutathione biosynthetic pathway that are increased in tumors that developed metastases. 

Blue dots correspond to dipeptides. See also Table S5 and S6 and Figure S3.
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Figure 5. Correlation between the KIRC TCGA transcriptomics and the MSK ccRCC global 
metabolomics
(A) For each KEGG pathway, the average fold changes of all genes were calculated. A 

differential abundance score was subsequently calculated for each pathway, which equals to 

the proportion of genes significantly increased in abundance in the pathway (FDR p value < 

0.05) minus the proportion of genes significantly decreased in the pathway. The process was 

repeated for all metabolites in each pathway, and the two scores were plotted against each 

other. Size of dots indicates number of quantified metabolites in the pathway. (B) Detailed 

network map of central carbon highlights discordant behavior of metabolite and gene 

expression levels in ccRCC tumors. Coloring corresponds to the log2 fold change between 

tumor and normal tissue. Ovals represent metabolites (TKCRP ccRCC Metabolomics 

Cohort) and rectangles represent mRNA levels (KIRC TCGA RNA-Seq). Red, increase; 

Blue, decrease; Green, isomers; Gray, not measured. See also Figure S4.
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Figure 6. Metabolic pathway-based integration of transcriptomics and metabolomics with a 
novel web-based analytic tool, “Metabologram”
(A, B) Each circular metabologram corresponds to a metabolic pathway. The left half circle 

corresponds to transcriptomics and the right half circle corresponds to metabolomics. The 

inner round center corresponds to the average fold change among all constituents of the 

pathway. The outer circle displays the fold change for each individual gene (left) and 

metabolite (right). 66 metabolograms from KEGG metabolic pathways are accessible 

through the web data portal, where interactive features enable detailed exploration by users. 

Metabolograms illustrate the metabolic differences between kidney tumors and adjacent 
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normal tissue (A) and between late- and early-stage tumors (B). (C) Metabolites indicated 

by asterisk in (A, B) are displayed in violin plots as a function of normal kidney tissues and 

tumors at different stages. See also Figure S5.
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Figure 7. Mapping the MSK high glutathione ccRCC cluster with the KIRC-TCGA mutli-
platform omics dataset
(A) Consensus clustering was performed on 1,506 metabolic genes from the Recon2 human 

metabolic network reconstruction using RNA-Seq data from the KIRC TCGA (n = 398, gray 

bars), and the MSK TKCRP ccRCC Metabolomics high-glutathione tumors (n = 10, black 

bars). Mutations of indicated genes were marked by color bars. Depicted are the top 1000 

most variable metabolic genes across the cohort, using log-normalized counts from limma 

voom. (B) Volcano plots of differentially expressed metabolic genes among four rClusters. 

HMGCS2, GLYAT, GATM, and ACAT1 are nuclear DNA-encoded mitochondrial genes. (C) 
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Kaplan-Meier curves of cancer specific survival of individual rClusters (p value <0.0001, 

log-rank test). See also Table S7 and S8 and Figure S6.
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