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Abstract

The most critical attribute of human language is its unbounded combinatorial nature: smaller 

elements can be combined into larger structures based on a grammatical system, resulting in a 

hierarchy of linguistic units, e.g., words, phrases, and sentences. Mentally parsing and 

representing such structures, however, poses challenges for speech comprehension. In speech, 

hierarchical linguistic structures do not have boundaries clearly defined by acoustic cues and must 

therefore be internally and incrementally constructed during comprehension. Here we demonstrate 

that during listening to connected speech, cortical activity of different time scales concurrently 

tracks the time course of abstract linguistic structures at different hierarchical levels, e.g. words, 

phrases, and sentences. Critically, the neural tracking of hierarchical linguistic structures is 

dissociated from the encoding of acoustic cues as well as from the predictability of incoming 
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words. The results demonstrate that a hierarchy of neural processing timescales underlies 

grammar-based internal construction of hierarchical linguistic structure.

Introduction

To understand connected speech, listeners must construct a hierarchy of linguistic structures 

of different sizes, including syllables, words, phrases, and sentences
1–3

. It remains puzzling 

how the brain simultaneously handles the distinct time scales of the different linguistic 

structures, e.g., from a few hundred milliseconds for syllables to a few seconds for 

sentences
4–14

. Previous studies have suggested that cortical activity is synchronized to 

acoustic features of speech, approximately at the syllabic rate, providing an initial time scale 

for speech processing
15–19

. But how the brain utilizes such syllabic-level phonological 

representations closely aligned with the physical input to build multiple levels of abstract 

linguistic structure, and represent these concurrently, is not known. Here we hypothesize that 

cortical dynamics emerge at all time scales required for the processing of different linguistic 

levels, including the time scales corresponding to larger linguistic structures such as phrases 

and sentences, and that the neural representation of each linguistic level corresponds to time 

scales matching the time scales of the respective linguistic level.

Although linguistic structure building can clearly benefit from prosodic
20, 21

 or statistical 

cues
22

, it can also be achieved purely based on the listeners' grammatical knowledge. To 

isolate experimentally the neural representation of the internally constructed hierarchical 

linguistic structure, we developed novel speech materials wherein the linguistic constituent 

structure was dissociated from prosodic or statistical cues. We manipulated the levels of 

linguistic abstraction to demonstrate separable neural encoding of each different linguistic 

level.

Results

Cortical Tracking of Phrasal and Sentential Structures

In the first set of experiments, we sought to determine the neural representation of 

hierarchical linguistic structure in the absence of prosodic cues. We constructed hierarchical 

linguistic structures using an isochronous, 4 Hz sequence of syllables that were 

independently synthesized (Fig. 1ab, Supplementary Fig. 1, Supplementary Table 1). Due to 

the acoustic independence between syllables (i.e., no coarticulation), the linguistic 

constituent structure could only be extracted using lexical, syntactic, and semantic 

knowledge, but not prosodic cues. The materials were first developed in Mandarin Chinese, 

in which syllables are relatively uniform in duration and are also the basic morphological 

unit (always morphemes, and in most cases monosyllabic words). Cortical activity was 

recorded from native listeners of Mandarin Chinese using magnetoencephalography (MEG). 

Since different linguistic levels, i.e. the monosyllabic morphemes, phrases, and sentences, 

were presented at unique and constant rates, the hypothesized neural tracking of hierarchical 

linguistic structure was tagged at distinct frequencies.
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The MEG response was analyzed in the frequency domain, and we extracted response power 

in every frequency bin using an optimal spatial filter (see Methods). In line with our 

hypothesis, the response spectrum shows 3 peaks: at the syllabic rate (P = 1.4 × 10−5, paired 

one-sided t-test, FDR-corrected), phrasal rate (P = 1.6 × 10−4, paired one-sided t-test, FDR-

corrected), and sentential rate (P = 9.6 × 10−7, paired one-sided t-test, FDR-corrected), 

respectively, and the response is highly consistent across listeners (Fig. 1c). Since the 

phrasal- and sentential-rate rhythms are not conveyed by acoustic fluctuations at the 

corresponding frequencies (Fig. 1b), cortical responses at the phrasal and sentential rates 

must be a consequence of internal online structure building processes. Cortical activity at all 

the 3 peak frequencies is seen bilaterally (Fig. 1c, contour plot inserts). The response power 

averaged over sensors in each hemisphere is significantly stronger in the left hemisphere at 

the sentential rate (P = 0.014, paired two-sided t-test) but not at the phrasal (P = 0.20, paired 

two-sided t-test) or syllabic rates (P = 0.40, paired two-sided t-test).

Dependence on Syntactic Structures

Are the responses at the phrasal and sentential rates indeed separate neural indices of 

processing at distinct linguistic levels, or are they merely sub-harmonics of the syllabic rate 

response, generated by intrinsic cortical dynamical properties? We address this question by 

manipulating different levels of linguistic structure in the input. When the stimulus is a 

sequence of random syllables that preserves the acoustic properties of Chinese sentences 

(Fig. 1) but eliminates the phrasal/sentential structure, only syllabic (acoustic) level tracking 

occurs (Fig.2a, Supplementary Fig. 2, P = 1.1 × 10−4 at 4 Hz, paired one-sided t-test, FDR-

corrected). Furthermore, this manipulation preserves the position of each syllable within a 

sentence (see Methods) and therefore further demonstrates that the phrasal- and sentential-

rate responses are not due to possible acoustic differences between the syllables within a 

sentence. When two adjacent syllables/morphemes combine into verb phrases but there is no 

4-element sentential structure, phrasal-level tracking emerges at 1/2 of the syllabic rate (Fig. 

2b, P = 8.6 × 10−4 at 2 Hz and P = 2.7 × 10−4 at 4 Hz, paired one-sided t-test, FDR-

corrected). Similar responses are observed for noun phrases (Supplementary Fig. 3).

To test whether the phrase-level responses segregate from the sentence level, longer verb 

phrases were constructed which were unevenly divided into a monosyllabic verb followed 

by a 3-syllable noun phrase (Fig. 2c). We expect the neural responses to the long verb phrase 

to be tagged at 1 Hz while the neural responses to the monosyllabic verb and the 3-syllable 

noun phrase will present as harmonics of 1 Hz. In line with our hypothesis, cortical 

dynamics emerges at 1/4 of the syllabic rate while the response at 1/2 of the syllabic rate is 

no longer detectable (P = 1.9 × 10−4, 1.7 × 10−4, and 9.3 × 10−4 at 1, 3, and 4 Hz 

respectively, paired one-sided t-test, FDR-corrected).

Dependence on Language Comprehension

When listening to Chinese sentences (Fig. 1a), listeners who did not understand Chinese 

only showed responses to the syllabic (acoustic) rhythm (Fig. 2d, P = 3.0 × 10−5 at 4 Hz, 

paired one-sided t-test, FDR-corrected), further supporting the argument that cortical 

responses to larger, abstract linguistic structures is a direct consequence of language 

comprehension.
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If aligning cortical dynamics to the time course of linguistic constituent structure is a general 

mechanism required for comprehension, it must apply across languages. Indeed, when native 

English speakers were tested with English materials (Fig. 1a), their cortical activity also 

followed the time course of larger linguistic structures, i.e. phrases and sentences (Fig. 2ef, P 
= 3.9 × 10−3, 4.3 × 10−3, and 6.8 × 10−6 at the sentential, phrasal, and syllabic rates 

respectively in Fig. 2f and P = 4.1 × 10−5 at the syllabic rate in Fig. 2e, paired one-sided t-

test, FDR-corrected).

Neural Tracking of Linguistic Structures Rather than Probability Cues

It is demonstrated that concurrent neural tracking of multiple levels of linguistic structure is 

not confounded with the encoding of acoustic cues (Figs. 1 and 2). However, is it simply 

explained by the neural tracking of the predictability of smaller units? As a larger linguistic 

structure, e.g. a sentence, unfolds in time, its component units become more predictable. 

Therefore, cortical networks solely tracking transitional probabilities across smaller units 

could show temporal dynamics matching the time scale of larger structures. To test this 

alternative hypothesis, we crafted a constant transitional probability Markovian Sentence Set 

(MSS) wherein the transitional probability of lower-level units was dissociated from the 

higher-level structures (Fig. 3a, Supplementary Fig. 1ef). The constant transitional 

probability MSS is contrasted with a varying transitional probability MSS, in which the 

transitional probability is low across sentential boundaries and high within a sentence (Fig. 

3bc). If cortical activity only encodes the transitional probability between lower-level units 

(e.g. acoustic chunks in the MSS) independent of the underlying syntactic structure, it can 

show tracking of the sentential structure for the varying probability MSS but not for the 

constant probability MSS. In contrast to this prediction, indistinguishable neural responses 

to sentences are observed for both MSS (Fig. 3d), demonstrating that neural tracking of 

sentences is not confounded by transitional probability. Specifically, for the constant 

transitional probability MSS, the response is statistically significant at the sentential rate, 

two times the sentential rate, and the syllable rate (P = 1.8 × 10−4, 2.3 × 10−4, and 2.7 × 10−6 

respectively). For the varying transitional probability MSS, the response is statistically 

significant at the sentential rate, two times the sentential rate, and the syllable rate (P = 7.1 × 

10−4, 7.1 × 10−4, and 4.8 × 10−6 respectively).

Since the MSS involved real English sentences, listeners had prior knowledge of the 

transitional probabilities between acoustic chunks. To control for the effect of such prior 

knowledge, we additionally created a set of Artificial Markovian Sentences (AMS). In the 

AMS, the transitional probability between syllables was the same within and across 

sentences (Supplementary Fig. 4a). The AMS was composed of Chinese syllables, but no 

meaningful Chinese expressions were embedded in the AMS sequences. Since the AMS was 

not based on the grammar of Chinese, the listeners had to learn the AMS grammar in order 

to segment sentences. By comparing the neural responses to the AMS sequences before and 

after the grammar was learned, we could separate the effect of prior knowledge of 

transitional probability and the effect of grammar learning. Here, the grammar of the AMS 

indicates the set of rules that governs the sequencing of the AMS, i.e. the rule which 

syllables can follow which syllables.
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The neural responses to the AMS before and after grammar learning were analyzed 

separately (Supplementary Fig. 4). Before learning, when the listeners were instructed that 

the stimulus was just a sequence of random syllables, the response showed a statistically 

significant peak at the syllabic rate (P = 0.0003, bootstrap), but not at the sentential rate. 

After the AMS grammar was learned, however, a significant response peak emerged at the 

sentential rate (P = 0.0001, bootstrap). A response peak was also observed at two times the 

sentential rate, possibly reflecting the 2nd harmonic of the sentential response. This result 

further confirms that neural tracking of sentences is not confounded by neural tracking of 

transitional probability.

Neural Tracking of Sentences Varying in Duration and Structure

The above results are based on sequences of sentences that have uniform duration and 

syntactic structure. Next we address whether cortical tracking of larger linguistic structures 

generalizes to sentences that are variable in duration (4–8 syllables) and syntactic structures. 

These sentences were again built on isochronous Chinese syllables, intermixed and 

sequentially presented without any acoustic gap at the sentence boundaries. Examples 

translated into English include: “Don't be nervous,” “The book is hard to read,” “Over the 

street is a museum.”

Since these sentences have irregular durations that are not tagged by frequency, the MEG 

responses were analyzed in the time domain by averaging sentences of the same duration. To 

focus on sentential level processing, the response was low-pass filtered at 3.5 Hz. The MEG 

response (root-mean-square, RMS, over all sensors) rapidly increases after a sentence 

boundary and continuously changes throughout the duration of a sentence (Fig. 4a). To 

illustrate the detailed temporal dynamics, we averaged the RMS response over all sentences 

containing 6 or more syllables after aligning them to the sentence offset (Fig. 4b). During 

the last 4 syllables of a sentence, the RMS response continuously and significantly decreases 

for every syllable (shaded squares), demonstrating that the neural response continuously 

changes during the course of a sentence rather than being a transient response only occurring 

at the sentence boundary.

A single-trial decoding analysis was performed to confirm independently that cortical 

activity tracks the duration of sentences (Fig. 4c). The decoder applies template matching for 

the response time course (leave-one-out cross-validation, see Methods), and correctly 

determines the duration of 34.9 ± 0.6% sentences (mean ± SEM over subjects, significantly 

above chance, P = 1.3 × 10−7, one-sided t-test).

After demonstrating cortical tracking of sentences, we further tested if cortical activity also 

tracks the phrasal structure inside of a sentence. We constructed sentences that consist of a 

noun phrase followed by a verb phrase and manipulated the duration of the noun phrase (3-

syllable or 4-syllable). The cortical responses closely follow the duration of the noun phrase: 

The RMS response gradually decreases within the noun phrase, then shows a transient 

increase after the onset of the verb phrase (Fig. 4d).
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Neural Source Localization using Electrocorticography (ECoG)

Large-scale neural activity measured by MEG is shown to concurrently follow the 

hierarchical linguistic structure of speech, but which neural networks generate such activity? 

To address this question, we recorded the ECoG responses to English sentences (Fig. 2e) and 

an acoustic control (Fig. 2f). ECoG signals are mesoscopic neurophysiological signals 

recorded by intracranial electrodes implanted in epilepsy patients for clinical evaluation (see 

Supplementary Fig. 5 for the electrode coverage), and they possess better spatial resolution 

than MEG. We first analyzed the power of the ECoG signal in the high gamma band (70–

200 Hz) as it highly correlated with multiunit firing
23

. The electrodes exhibiting significant 

sentential, phrasal and syllabic rate fluctuations in high gamma power are shown separately 

(left panels of Fig. 5). The sentential rate response clusters over the posterior and middle 

superior temporal gyrus (pSTG), bilaterally, with a second cluster over the left inferior 

frontal gyrus (IFG). Phrasal rate responses are also observed over the pSTG bilaterally. 

Importantly, although the sentential and phrasal rate responses are observed in similar 

cortical areas, electrodes showing phrasal rate responses only partially overlap with 

electrodes showing sentential rate responses within the pSTG (Fig. 6). For electrodes 

showing a significant response at either the sentential rate or the phrasal rate, the strength of 

the sentential rate response is negatively correlated with the strength of the phrasal rate 

response (R = −0.32, P = 0.004, bootstrap). This phenomenon demonstrates spatially 

dissociable neural tracking of the sentential and phrasal structures.

Furthermore, some electrodes with a significant sentential or phrasal rate response show no 

significant syllabic rate response (Fig. 6). In other words, there are cortical circuits 

specifically encoding larger, abstract linguistic structures without responding to syllabic-

level acoustic features of speech. Additionally, although the syllabic responses are not 

significantly different for English sentences and the acoustic control in the MEG results, 

they are dissociable spatially in the ECoG results (Fig. 7). Electrodes showing significant 

syllabic responses to sentences but not the acoustic control are seen in bilateral pSTG, 

bilateral anterior STG (aSTG), and left IFG.

We then analyzed neural tracking of the sentential, phrasal, and syllabic rhythms in the low-

frequency ECoG waveform (right panels, Fig. 5), which is a close neural correlate of MEG 

activity. Here Fourier analysis is directly applied to the ECoG waveform and the Fourier 

coefficients at 1, 2, and 4 Hz are extracted. Low-frequency ECoG activity is usually viewed 

as the dendritic input to a cortical area
24

. The low-frequency responses are more distributed 

than high-gamma activity, possibly reflecting that the neural representations of different 

levels of linguistic structures serve as inputs to broad cortical areas. Sentential and phrasal 

rate responses are strong in STG, IFG, and TPJ. Compared with the acoustic control, the 

syllabic-rate response to sentences is stronger in broad cortical areas including the temporal 

and frontal lobes (Fig. 7). Similar to the high-gamma activity, the low-frequency responses 

to the sentential and phrasal structures are not reflected in the same set of electrodes (Fig. 6). 

For electrodes showing a significant response at either the sentential rate or the phrasal rate, 

the strength of the sentential rate response is also negatively correlated with the strength of 

the phrasal rate response (R = −0.21, significantly greater than 0, P = 0.023, bootstrap).
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Discussion

The data show that the multiple time scales that are required for the processing of linguistic 

structures of different sizes emerge in cortical networks during speech comprehension. The 

neural sources for sentential, phrasal, and syllabic rate responses are highly distributed and 

include cortical areas previously found to be critical for prosodic (e.g. right STG), syntactic 

and semantic (e.g. left pSTG and left IFG) processing
9, 25–28

. Neural integration on different 

time scales is likely to underlie the transformation from shorter-lived neural representations 

of smaller linguistic units to longer-lasting neural representations of larger linguistic 

structures
11–14

. These results underscore the undeniable existence of hierarchical structure 

building operations in language comprehension
1, 2, and can be applied to objectively assess 

language processing in children, difficult-to-test populations, as well as animal preparations 

to allow for cross-species comparisons.

Relation to Language Comprehension

Concurrent neural tracking of hierarchical linguistic structures provides a plausible 

functional mechanism for temporally integrating smaller linguistic units into larger 

structures. In this form of concurrent neural tracking, the neural representation of smaller 

linguistic units is embedded at different phases of the neural activity tracking a higher-level 

structure. Therefore, it provides a possible mechanism to transform the hierarchical 

embedding of linguistic structures into hierarchical embedding of neural dynamics, which 

may facilitate information integration in time
10, 11

. Low-frequency neural tracking of 

linguistic structures may further modulate higher-frequency neural oscillations
29–31

, 

proposed to provide additional roles for structure building
7
. Additionally, multiple resources 

and computations are needed for syntactic analysis, e.g. access to combinatorial syntactic 

subroutines, and such operations may correspond to neural computations on distinct 

frequency scales, which are coordinated by the low-frequency neural tracking of linguistic 

constituent structures. Furthermore, low-frequency neural activity and oscillations have been 

hypothesized as critical mechanisms to generate predictions about future events
32

. For 

language processing, it is likely that concurrent neural tracking of hierarchical linguistic 

structures provides mechanisms to generate predictions on multiple linguistic levels and 

allow interactions across linguistic levels
33

.

Neural Entrainment to Speech

Recent work has shown that cortex tracks the slow acoustic fluctuations of speech below 10 

Hz
15–18, 34, 35

, and this phenomenon is commonly described as `cortical entrainment' to the 

syllabic rhythm of speech. It has been controversial whether such syllabic-level cortical 

entrainment is related to low-level auditory encoding or language processing
6
. The current 

study demonstrates processing that goes well beyond stimulus-bound analysis: cortical 

activity is entrained to larger linguistic structures that are by necessity internally constructed, 

based on syntax. The emergence of slow cortical dynamics provides time scales suitable for 

the analysis of larger chunk sizes
13, 14

.

A long-lasting controversy concerns how the neural responses to sensory stimuli are related 

to intrinsic, ongoing neural oscillations. This question is heavily debated for the neural 
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response entrained to the syllabic rhythm of speech
36

 and can also be asked for neural 

activity entrained to the time courses of larger linguistic structures. The current experiment 

is not designed to answer this question; however, it clearly demonstrates that cortical speech 

processing networks have the capacity of generating activity on very long time scales 

corresponding to larger linguistic structures such as phrases and sentences. In other words, 

the time scales of larger linguistic structures fall in the time scales, or temporal receptive 

windows
12, 13

, that the relevant cortical networks are sensitive to. Whether the capacity of 

generating low-frequency activity during speech processing is the same as the mechanisms 

generating low-frequency spontaneous neural oscillations has to be addressed by future 

studies.

Nature of the Linguistic Representations

Language processing is not monolithic and involves partially segregated cortical networks 

for the processing of, e.g., phonological, syntactic, and semantic information
9
. The 

phonological, syntactic, and semantic representations are all hierarchically organized
37

 and 

may rely on the same core structure building operations
38

. In natural speech, linguistic 

structure building can be facilitated by prosodic
39

 and statistical cues
22

, and some 

underlying neural signatures have been demonstrated
6, 8, 20

. Such cues, however, are not 

always available, and even when available generally not sufficient. Therefore, robust 

structure building relies on a listeners' tacit syntactic knowledge, and the current study 

provides unique insights into the neural representation of abstract linguistic structures that 

are internally constructed based on syntax alone. Although the construction of abstract 

structures is driven by syntactic analysis, when such structures are built, different aspects of 

the structure, including semantic information, can be integrated in the neural representation. 

Indeed, the wide distribution of cortical tracking of hierarchical linguistic structures suggests 

that it is a general neurophysiological mechanism for combinatorial operations involved in 

hierarchical linguistic structure building in multiple linguistic processing networks (e.g., 

phonological, syntactic, and semantic). Furthermore, coherent synchronization to the 

correlated linguistic structures in different representational networks, e.g. syntactic, 

semantic, and phonological, provides a way to integrate multi-dimensional linguistic 

representations into a coherent language percept
38, 40

, just as temporal synchronization 

between cortical networks provides a possible solution to the binding problem in sensory 

processing
41

.

Relation to Event-related Responses

Whereas many previous neurophysiological studies on structure building have focused on 

syntactic/semantic violations
42–44

, fewer address normal structure building: On the lexical-

semantic level, the N400/N400m has been identified as a marker of the semantic 

predictability of words
43, 45

, and its amplitude continuously reduces within a sentence
46, 47

. 

For syntactic processing, when two words combine into a short phrase, increased activity is 

seen in the temporal and frontal lobes
4
. The current study builds on and extends these 

findings by demonstrating structure building at different levels of the linguistic hierarchy, 

during online comprehension of connected speech materials in which the structural 

boundaries are neither physically cued nor confounded by the semantic predictability of the 

individual words (Fig. 3). Note that although the two Markovian languages (compared in 
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Fig. 3) differ in their transitional probability between acoustic chunks, they both have fully 

predictable syntactic structures. The equivalence in syntactic predictability is likely to result 

in the very similar responses between the two conditions.

Lastly, the emergence of slow neural dynamics tracking superordinate stimulus structures is 

reminiscent of what has been observed during decision making
48

, action planning
49

, and 

music perception
50

, suggesting a plausible common neural computational framework to 

integrate information over distinct time scales
12

. These findings invite MEG/EEG research 

to extend from the classic event-related designs to investigating continuous neural encoding 

of internally constructed perceptual organization of an information stream.

Online Methods

Participants

Thirty-four native listeners of Mandarin Chinese (19–36 yrs old, mean 25 yrs old; 13 male) 

and 13 native listeners of American English (22–46 yrs old, mean 26 yrs old; 6 male) 

participated in the study. All Chinese listeners received high school education in China and 

26 of them also received college education in China. None of the English listeners 

understood Chinese. All participants were right-handed
31

. Five experiments were run for 

Chinese listeners and 2 experiments for English listeners. Each experiment included 8 

listeners (except that the AMS experiment involved 5 listeners) and each listener participated 

in at most 2 experiments. The number of listeners per experiment was chosen based on 

previous MEG experiments on neural tracking of continuous speech. The sample size for 

previous experiments was typically between three and twelve
6,18

, and the basic phenomenon 

reported here was replicated in all the 7 experiments of the study (N = 47 in total). The 

experimental procedures were approved by the New York University Institutional Review 

Board, and written informed consent was obtained from each participant prior to the 

experiment.

Stimuli I: Chinese Materials

All Chinese materials were constructed based on an isochronous sequence of syllables. Even 

when the syllables were hierarchically grouped into linguistic constituents, no acoustic gaps 

were inserted between constituents. All syllables were synthesized independently using the 

Neospeech synthesizer (http://www.neospeech.com, the male voice, Liang). The synthesized 

syllables were 75 ms to 354 ms in duration (mean duration 224 ms), and were adjusted to 

250 ms by truncation or padding silence at the end. The last 25 ms of each syllable were 

smoothed by a cosine window.

4-syllable sentences—Fifty 4-syllable sentences were constructed, in which the first two 

syllables formed a noun phrase and the last two syllables formed a verb phrase (Table S1). 

The noun phrase could be composed of either a single 2-syllable noun or a 1-syllable 

adjective followed by a 1-syllable noun. The verb phrase could be composed of either a 2-

syllable verb or a 1-syllable verb followed by a 1-syllable noun object. In a normal trial, 10 

sentences were sequentially played and no acoustic gaps were inserted between sentences 

(Extended Data Fig. 1A). Due to the lack of phrasal and sentential level prosodic cues, the 
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sound intensity of the stimulus, characterized by the sound envelope, only fluctuates at the 

syllabic rate but not at the phrasal or sentential rate (Extended Data Fig. 2). An outlier trial 

was the same as a normal trial except that the verb phrases in two sentences were exchanged, 

creating two nonsense sentences with incompatible subjects and predicates (an example in 

English would be “new plans rub skin”).

4-syllable verb phrases—Two types of 4-syllable verb phrases were created. Type I verb 

phrase contained a 1-syllable verb followed by a 3-syllable noun phrase, which could be a 

compound noun or an adjective + noun phrase (Extended Data Fig. 1B, Table S1). Type II 
verb phrase contained a 2-syllable verb followed by a 2-syllable noun (Extended Data Fig. 

1C, all phrases listed in Table S1). Fifty instances were created for each type of verb 

phrases. In a normal trial, 10 phrases of the same type were sequentially presented. An 

outlier trial was the same as a normal trial except that the verbs in two phrases were 

exchanged, creating two nonsense verb phrases with incompatible verbs and objects (an 

example in English would be “drink a long walk”).

2-syllable phrases—The verb phrases (or the noun phrases) in the 4-syllable sentences 

were presented in a sequence (Extended Data Fig. 1D). In a normal trial, 20 different phrases 

were played. In an outlier trial, one of the 20 phrases was replaced by two random syllables 

that did not constitute a sensible phrase.

Random syllabic sequences—The random syllabic sequences were generated based on 

the 4-syllable sentences. Each 4-syllable sentence was transformed into 4 random syllables 

using the following rule: The 1st syllable in the sentence was replaced by the 1st syllable of a 

randomly chosen sentence. The 2nd syllable was replaced by the 2nd syllable of another 

randomly chosen sentence and the same for the 3rd and the 4th syllables. This way, if there 

were any consistent acoustic differences between the syllables at different positions in a 

sentence, those acoustic differences were preserved in the random syllabic sequences. Each 

normal trial contained 40 syllables. In outlier trials, 4 consecutive syllables were replaced by 

a Chinese idiom.

Backward syllabic sequences—In normal trials, ten 4-syllable sentences were played 

but with all syllables being played backward in time. An outlier trial was the same as a 

normal trial except that 4 consecutive syllables at a random position were replaced by 4 

random syllables that were not reversed in time.

4-syllable idioms—Fifty common 4-syllable idioms were selected (Table S1), in which 

the first two syllables formed a noun phrase and the last two syllables formed a verb phrase. 

In a normal trial 10 sentences were played. An outlier trial was the same as a normal trial 

except that the noun phrases in two idioms were exchanged, creating two nonexistent and 

semantically nonsensical idioms.

Sentences with variable duration and syntactic structures—The sentence 

duration was varied between 4 and 8 syllables. Forty sentences were constructed for each 

duration, resulting in a total of 200 sentences (listed in Table S1). All 200 sentences were 

intermixed. In a normal trial, ten different sentences were sequentially played without 
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inserting any acoustic gap in between sentences. In an outlier trial, one of the 10 sentences 

was replaced by a syntactically correct but semantically anomalous sentence. Examples of 

nonsense sentences, translated into English, included “ancient history is drinking tea” and 

“take part in his portable hard drive”.

Sentences with variable NP durations—All sentences consisted of a noun phrase 

followed by a verb phrase (Table S1). The noun phrase had 3 syllables for half of the 

sentences (N = 45) and 4 syllables for the other half. A 3-syllable noun phrase was followed 

by either a 4-syllable verb phrase (N = 20) or a 5-syllable verb phrase (N = 25). A 4-syllable 

noun phrase was followed by a 3-syllable verb phrase (N=20) or a 4-syllable verb phrase (N 

= 25). Sentences with different noun phrase durations and verb phrase durations were 

intermixed. In a normal trial 10 different sentences were played sequentially, without 

inserting any acoustic gap between phrases or sentences. In an outlier trial one sentence was 

replaced by a sentence with the same syntactic structure but that was semantically 

anomalous.

Artifical Markovian sentences (AMS)—Five sets of artificial Markovian sentences 

(AMS) were created. Each sentence consisted of 3 components, C1, C2, and C3. Each 

component (C1, C2, or C3) was independently chosen from 3 candidate syllables with equal 

probability. The grammar of the AMS is illustrated in Extended Data Fig. 7A. In the 

experiments, sentences were played sequentially without any gap between sentences. Since 

all components were chosen independently and each component was chosen from 3 

syllables with equal probability, all components were equally predictable regardless of its 

position in a sequence. In other words, P(C1) = P(C2) = P(C3) = P(C2|C1) = P(C3|C2) = 

P(C1|C3) = 1/3.

All Chinese syllables were synthesized independently and adjusted to 300 ms by truncation 

or padding silence at the end. In each trial, 60 sentences were played and no additional gap 

was inserted between sentences. Therefore, the syllables were played at a constant rate of 

3.33 Hz and the sentences were played at a constant rate of 1.11 Hz. To make sure that 

neural encoding of the AMS was not confounded by acoustic properties of a particular set of 

syllables, five sets of AMS were created (Table S1). No meaningful Chinese expressions are 

embedded in the AMS sequences.

Stimuli II: English Materials

All English materials were synthesized using the MacinTalk Synthesizer (male voice Alex, 

in Mac OS X 10.7.5).

4-syllable English sentences—Sixty 4-syllable English sentences were constructed 

(Table S1), and each syllable was a monosyllabic word. All sentences had the same syntactic 

structure: adjective/pronoun + noun + verb + noun. Each syllable was synthesized 

independently, and all the synthesized syllables (250 – 347 ms in duration) were adjusted to 

320 ms by padding silence at the end or truncation. The offset of each syllable was 

smoothed by a 25 ms cosine window. In each trial, 12 sentences were presented without any 

acoustic gap between them. In an outlier trial, 3 consecutive words from a random position 
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were replaced by 3 random words so that the corresponding sentence(s) became 

ungrammatical.

Shuffled sequences—Shuffled sequences were constructed as an unintelligible sound 

sequence that preserved the acoustic properties of the sentence sequences. All syllables in 

the 4-syllable English sentences were segmented into five overlapping slices. Each slice was 

72 ms in duration and overlapped with neighboring slices for 10 ms. The first 10 ms and the 

last 10 ms of each slice was smoothed by a linear ramp, except for the onset of the first slice 

and the offset of the last slice.

A shuffled “sentence” was constructed by shuffling all slices at the same position across the 

4-syllable sentences. For example, the 1st slice of the 1st syllable in a given sentence was 

replaced by the 1st slice of the 1st syllable in a different randomly chosen sentence. For 

another example, the 3rd slice of the 4th syllable in one sentence was replaced by the 3rd slice 

of the 4th syllable in another randomly chosen sentence. In a normal trial, 12 different 

shuffled “sentences” were played sequentially, resulting in a trial that had the same duration 

as a trial of 4-syllable English sentences. In an outlier trial, 4 consecutive shuffled syllables 

were replaced by 4 randomly chosen English words that did not construct a sentence.

Markovian sentences—The pronunciation of an English syllable strongly depends on its 

neighbors. To simulate more natural English, we also synthesized English sentences based 

on an isochronous multi-syllabic “acoustic chunk”. Every sentence was divided into 3 

acoustic chunks that were roughly equal in duration. Each acoustic chunk consisted of 1–2 

monosyllabic or bisyllabic words and was synthesized as a whole, independently of 

neighboring acoustic chunks. All synthesized acoustic chunks (250 ms to 364 ms in 

duration) were adjusted to 350 ms by truncation or padding silence at the end. The offset of 

each chunk was smoothed by a 25 ms cosine window.

Two types of Markov chain sentences were generated based on isochronous sequences of 

acoustic chunks. In one type of Markovian sentences, called the constant predictability 
sentences, each acoustic chunk was equally predictable based on the preceding chunk, 

regardless of its position within a sentence. The constant predictability sentences were 

generated based on the grammar specified in Fig. 3A and Extended Data Fig. 1E. Listeners 

were familiarized with the grammar and were able to write down the full grammar table 

before participating in the experiment. In each trial, 10 sentences were separately generated 

based on the grammar and sequentially presented without any acoustic gap between them.

The other type of Markovian sentences, called the predictable sentences, consisted of a finite 

number of sentences (N = 25, Table S1) that were extensively repeated (11–12 times) in a ~7 

minute block. In these sentences, the 2nd and the 3rd acoustic chunks were uniquely 

determined by the 1st chunk. In each trial, 10 different sentences were played sequentially 

without any acoustic gap between them.

Acoustic Analysis

The intensity fluctuation of the sound stimulus is characterized by its temporal envelope. To 

extract the temporal envelope, the sound signal is first half-wave rectified and then 
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downsampled to 200 Hz. The Discrete Fourier Transform of the temporal envelope (without 

any windowing) is shown in Fig. 1 and Extended Data Fig. 2.

Experimental Procedures

Seven experiments were run. Experiment 1–4 involved Chinese listeners listening to Chinese 

materials, experiment 5 involved English listeners listening to Chinese materials, and 

experiment 6 involved English listeners listening to English materials. Experiment 7 

involved Chinese listeners listening to Artificial Markovian Sentences (AMS).

In all experiments except for experiment 5, listeners were instructed to detect outlier trials. 

At the end of each trial, listeners had to report whether it was a normal trial or an outlier trial 

via button press. Following the button press, the next trial was played after a delay 

randomized between 800 and 1400 ms. In experiment 5, listeners performed a syllable 

counting task described below. Behavioral results are reported in Supplementary Table 2.

Experiment 1—4-syllable Chinese sentences, 4-syllable idioms, random syllabic 

sequences, and backward syllabic sequences were presented in separate blocks. The order of 

the blocks was counter balanced across listeners. Listeners took breaks between blocks. In 

each block, 20 normal trials and 10 outlier trials were intermixed and presented in a random 

order.

Experiment 2—4-syllable sentences, type I 4-syllable verb phrases, type II 4-syllable verb 

phrases, 2-syllable noun phrases, and 2-syllable verb phrases were presented in separate 

blocks. The order of the blocks was counter balanced across listeners. Listeners took breaks 

between blocks. In each block, 20 normal trials and 5 outlier trials were intermixed and 

presented in a random order.

Experiment 3—Sentences with variable durations and syntactic structures, as described in 

the Chinese Materials section above, were played in an intermixed order. Listeners took a 

break every 25 trials. In total, 80 normal trials and 20 outlier trials were presented.

Experiment 4—Sentences with variable NP durations, as described in the Chinese 

Materials section above, were presented in a single block, counterbalanced with three other 

blocks that presented language materials not analyzed here. In that block, 27 normal trials 

and 7 outlier trials were presented. The other 3 blocks presented other language materials 

not analyzed here. The order of the blocks was counterbalanced across listeners.

Experiment 5—Trials consisting of 4-syllable sentences, 4-syllable idioms, random 

syllabic sequences, and backward syllabic sequences were intermixed and presented in a 

random order. Twenty normal trials for each type of materials were presented. In each trial, 

the last 1 or 2 syllable was removed, each with 50% probability. Listeners were instructed to 

count the number of syllables in each trial in a cyclic way: 1, 2, 3, 4, 1, 2, 3, 4, 1, 2… The 

final count could only be 2 or 3 and the listeners had to report whether it was 2 or 3 at the 

end of each trial via button press.
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Experiment 6—4-syllable English sentences, shuffled sequences, constant predictability 

Markovian sentences, and predictable Markovian sentences were presented in separate 

blocks. The order of the blocks was counterbalanced across listeners. Listeners took breaks 

between blocks. In each block, 22 normal trials and 8 outlier trials were intermixed and 

presented in a random order.

Experiment 7—The experiment involved the Artificial Markovian Sentences (AMS) and 

was divided into two sessions. In the first session, 10 trials were presented (2 trials from 

each AMS set; see the upper row in Extended Data Fig. 7B). In each trial, the last syllable 

was removed with 50% probability. The listeners were told that the stimulus was only a 

sequence of random syllables. They were asked to count the number of syllables in a cyclic 

way: 1, 2, 1, 2, 1, 2… and report whether the final count was 1 or 2 at the end of each trial 

via button press. Since each trial contained 179 or 180 rapidly presented syllables, the 

listeners were not able to count accurately (mean performance 52 ± 9.7 %, not significantly 

above chance, P > 0.8, t-test). However, the listeners were asked to follow the rhythm and 

keep counting even when they lost count. After the first session of the experiment was 

finished, the listeners were told about that the general structure of the AMS and examples 

were given based on real Chinese sentences. In the second session of the experiment, the 

listeners had to learn the 5 sets of AMS separately (lower row, Extended Data Fig. 7B). For 

each set of the AMS, during training, the listeners listened to 20 sentences from the AMS set 

in a sequence, with a 300-ms gap being inserted between sentences to facilitate learning. 

Then, the listeners listened to two trials of sentences from the same AMS set, which they 

also listened to in the first session (shown by symbol S in Extended Data Fig. 7B). They had 

to do the same cyclical counting task. However, they were told that the last count was 1 if 

the last sentence was incomplete and the last count was 2 if the last sentence was complete 

(mean performance 82 ± 8.0 %, significantly above chance P < 0.2, t-test). At the end of the 

two trials, the listeners had to report the grammar of the AMS, i.e. which 3 syllables could 

be the first syllable of a sentence, which 3 syllables could be the middle one, and which 3 

syllables could be the last one. The grammatical roles of 77 ± 7.6 % (mean ± standard error 

across subjects) syllables were reported correctly.

Neural Recordings

Cortical neuromagnetic activity was recorded using a 157-channel whole-head MEG system 

(KIT) in a magnetically shielded room. The MEG signals were sampled at 1 kHz, with a 

200-Hz low-pass filter and a 60 Hz notch filter applied online and a 0.5-Hz high-pass filter 

applied offline (time delay compensated). The environmental magnetic field was recorded 

using 3 reference sensors and regressed out from the MEG signals using time-shifted 

PCA
32

. Then, the MEG responses were further denoised using the blind source separation 

technique, Denoising Source Separation (DSS)
33

. The MEG responses were decomposed 

into DSS components using a set of linear spatial filters, and the first 6 DSS components 

were retained for analysis and transformed back to the sensor space. The DSS decomposes 

multi-channel MEG recordings to extract neural response components that are consistent 

over trials and has been demonstrated to be effective in denoising cortical responses to 

connected speech
18,34,35

. The DSS was applied to more accurately estimate the strength of 

neural activity phase-locked to the stimulus. Even when the DSS spatial filtering process 
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was omitted, for the RMS response over all MEG sensors, the sentential, phrasal, and 

syllabic responses in Fig. 1 were still statistically significant (P < 0.001, bootstrap).

Data Analysis

Only the MEG responses to normal trials were analyzed.

Frequency Domain Analysis—In experiments 1, 2, 5, and 6, the linguistic structures of 

different hierarchies were presented at unique and constant rates and neural tracking of those 

linguistic structures was analyzed in the frequency domain. For each trial, to avoid the 

transient response to the acoustic onset of each trial, the neural recordings were analyzed in 

a time window between the onset of the 2nd sentence (or the 5th syllable if the stimulus 

contained no sentential structure) and the end of the trial. The single-trial responses were 

transformed into the frequency domain using the discrete Fourier transform (DFT). For all 

Chinese materials and the artificial Markovian language materials, 9 sentences were 

analyzed in each trial, resulting in a frequency resolution of 1/9 of the sentential rate (~0.11 

Hz). For the English sentences and the shuffled sequences, the trials were longer and the 

duration equivalent to 44 English syllables was analyzed, resulting in a frequency resolution 

of 1/44 of the syllabic rate, i.e. 0.071 Hz.

The response topography (Fig. 1c) showed the power of the DFT coefficients at a given 

frequency, and hemispheric lateralization was calculated by averaging the response power 

over the sensors in each hemisphere (N = 54).

Since the properties of the neural responses to linguistic structures and background neural 

activity might vary in different frequency bands, to treat each frequency band equally, a 

separate spatial filter was designed for every frequency bin in the DFT output to optimally 

estimate the response strength. The linear spatial filter was the DSS filter
36

. The output of 

the DSS filter was a weighted summation over all MEG sensors, and the weights were 

optimized to extract neural activity consistent over trials. In brief, if the DFT of the MEG 

response averaged over trials is X(f) and the autocorrelation matrix of single-trial MEG 

recordings is R(f), the spatial filter is w = R−1(f)X(f) (see the appendix of reference 36). The 

spatial filter w is an 157 × 1 vector (for the 157 sensors), the same size as X(f), and R(f) is a 

157 × 157 matrix. The spatial filter could be viewed as a virtual sensor that was optimized to 

record phase-locked neural activity at each frequency. Power of the scalar output of the 

spatial filter, |XT(f)R−1(f)X(f)|2, was the power spectral density shown in the figures.

Time Domain Analysis—The response to each sentence was baseline corrected based on 

the 100 ms period preceding the sentence onset, for each sensor. To remove the neural 

response to the 4-Hz isochronous syllabic rhythm and focus on the neural tracking of 

sentential/phrasal structures, we low-pass filtered the neural response waveforms using a 

0.5-second duration linear phase FIR filter (cut-off 3.5 Hz). The filter delay was 

compensated by filtering the neural signals twice, once forward and once backward. When 

the response power at 4 Hz was extracted separately by a Fourier analysis, it does not 

significantly change as a function of sentence duration (P > 0.19, 1-way ANOVA). The root-

mean-square (RMS) of the MEG responses was calculated as the sum of response power 

(i.e., square of the MEG response) of all sensors, and the RMS response was further low-
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pass filtered by a 0.5-second duration linear phase FIR filter (cut-off 3.5 Hz, delay 

compensated).

A linear decoder was built to decode the duration of sentences. In the decoding analysis, the 

multi-channel MEG responses were compressed to a single channel, i.e. the first DSS 

component, and the decoder solely relied on the time course of the neural response. A 2.25-

second response epoch was extracted for each sentence, starting from the sentence onset. A 

leave-one-out cross-validation procedure was employed to evaluate the decoder's 

performance. Each time, the response to one sentence was used as the testing response, and 

the responses to all other sentences were treated as the training set. The training signals were 

averaged for sentences of the same duration, creating a template for the response time course 

for each sentence duration. The testing response was correlated with all the templates and 

the category of the most correlated templates was the decoder's output. For example, if the 

testing response was most correlated with the template for 5-syllable sentences, the 

decoder's output would be that the testing response was generated by a 5-syllable sentence.

Statistical Analysis and Significance Tests

For spectral peaks (Fig. 1–2), a one-tailed paired t-test was used to test if the neural response 

in a frequency bin was significantly stronger than the average of the neighboring 4 frequency 

bins (2 bins on each side). Such a test was applied to all frequency bins below 5 Hz, and a 

FDR correction for multiple comparisons was applied. Except for the analysis of the spectral 

peaks, two-tailed t-tests were applied. For all the t-tests applied in this study, data from the 

two conditions had comparable variance and showed no clear deviation from the normal 

distribution when checking the histograms. If the t-test was replaced by a bias-corrected and 

accelerated bootstrap, all results remained significant.

In Fig. 4, the standard error of the mean (SEM) over subjects was calculated using bias-

corrected and accelerated bootstrap
37

. In the bootstrap procedure, all the subjects were 

resampled with replacement 2000 times. The standard deviation of the resampled results was 

taken as the SEM. In Fig. 4d, the statistical difference between the two curves, i.e. the 3-

syllable NP condition and the 4-syllable NP condition, was also tested using bootstrap. For 

each subject, the difference between the responses in these two conditions was taken. At 

each time point, the response difference was resampled with replacement 2000 times across 

the 8 subjects, and percentage of the resampled differences being larger or smaller than 0 

(the smaller value) was taken as the significance level. A FDR correction was applied to the 

bootstrap results.

Code availability

The computer code used for the MEG analyses is available upon request.

Neural Source Localization Using ECoG

ECoG Participants—Electrocorticographic (ECoG) recordings were obtained from 5 

patients (3 female; average 33.6 years old, range 19 – 42 years old,) diagnosed with 

pharmaco-resistant epilepsy and undergoing clinically motivated subdural electrode 

recordings at the New York University Langone Medical Center. Patients provided informed 
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consent prior to participating in the study in accordance with the Institutional Review Board 

at the New York University Langone Medical Center. Three patients were right-handed, two 

were left-handed. All patients were native English speakers (one of them was a bilingual 

Spanish/English speaker), and all patients were left-hemisphere dominant for language.

ECoG Recordings—Participants were implanted with 96–179 platinum-iridium clinical 

subdural grid or strip electrodes (3 patients with a left-hemisphere implant and 2 patients 

with a right hemisphere implant, additional depth electrodes implanted for some patients but 

not analyzed). The electrode locations per patient are shown in Extended Data Fig. 4. 

Electrode localization followed previously described procedures 
38

. In brief, for each patient 

we obtained pre-op and post-op T1-weighted MRIs which were co-registered with each 

other and normalized to a MNI-152 template, allowing the extraction of the electrode 

location in MNI space.

The ECoG signals were recorded with a Nicolet clinical amplifier at a sampling rate of 512 

Hz. The ECoG recordings were re-referenced to the grand average over all electrodes (after 

removing artifact-laden or noisy channels). Electrodes from different subjects were pooled 

per hemisphere, resulting in 385/261 electrodes in the left/right hemispheres. High gamma 

activity was extracted by high-pass filtering the ECoG signal above 70 Hz (with additional 

notch filters at 120 Hz and 180 Hz). The energy envelope of high gamma activity was 

extracted by taking the square of high-gamma response waveform.

ECoG Procedures—Participants performed the same task as healthy subjects in the MEG 

(see Fig. 2ef for MEG results). In brief, they listened to a set of English sentences and 

control stimuli in the first and second block. The control stimulus, i.e. the shuffled 

sequences, preserves the syllabic-level acoustic rhythm of English sentences but contain no 

hierarchical linguistic structure. The procedure was the same as the MEG experiment, except 

for a familiarization session in which the subjects listened to individual sentences with 

visual feedback. Sixty trials of sentences and control stimuli were played. The ECoG data 

from each electrode was analyzed separately and converted to the frequency domain via 

DFT (frequency resolution 0.071 Hz).

A significant response at the syllabic, phrasal, or sentential rate was reported if the response 

power at the target frequency was stronger than the response power averaged over 

neighboring frequency bins (0.5 Hz range above and below the target frequency). The 

significance level for each electrode was first determined based on a bootstrap procedure 

that randomly sampled the 60 trials 1000 times and then underwent FDR correction for 

multiple comparisons across all electrodes within the same hemisphere.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Neural tracking of hierarchical linguistic structures. a, Sequences of Chinese or English 

monosyllabic words are presented isochronously, forming phrases and sentences. b, 

Spectrum of stimulus intensity fluctuation reveals syllabic rhythm but no phrasal or 

sentential modulation. The shaded area covers 2 SEM across stimuli. c, MEG-derived 

cortical response spectrum for Chinese listeners/materials (bold curve: grand average; thin 

curves: individual listeners, N = 16; 0.11 Hz frequency resolution).. Neural tracking of 

syllabic, phrasal, and sentential rhythms is reflected by spectral peaks at corresponding 

frequencies. Frequency bins with significantly stronger power than neighbors (0.5 Hz range) 

are marked (* P< 0.001, paired one-sided t-test, FDR corrected). The topographical maps of 

response power across sensors are shown for the peak frequencies.
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Fig. 2. 
Tracking of different linguistic structures. Each panel: syntactic structure repeating in the 

stimulus (left) and the cortical response spectrum (right; shaded area: 2SEM over listeners, 

N = 8). a, Chinese listeners, Chinese materials: syllables are syntactically independent, 

cortical activity encodes only acoustic/syllabic rhythm. b, c, Additional tracking emerges 

with larger linguistic structures. Spectral peaks marked by a star (black: P< 0.001; gray: P< 

0.005: paired one-sided t-test, FDR corrected). d, English listeners, Chinese materials from 

Fig. 1: acoustic tracking only, since no parsable structure e, f, English listeners, English 

materials: syllabic rate (4/1.28 Hz) and sentential/phrasal rate responses to parsable structure 

in stimulus.
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Fig. 3. 
Dissociating sentential structures and transitional probability. Grammar of an artificial 

Markovian stimulus set with constant (a) or variable (b) transitional probability. Each 

sentence consists of 3 acoustic chunks, each containing 1–2 English words. The listeners 

memorize the grammar before experiments. c, Schematic timecourse and spectrum of the 

transitional probability. d, Neural response spectrum, the shaded area covering 2 SEM over 

listeners (N = 8). Significant neural responses to sentences seen for both languages. Spectral 

peaks shown by a star (P< 0.001, paired one-sided t-test, FDR corrected, same color code as 

the spectrum). Responses are not significantly different between the two languages in any 

frequency bin (paired two-sided t-test, P> 0.09, uncorrected).
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Fig. 4. 
Neural tracking of sentences of varying structures. a, Neural activity tracks the sentence 

duration, even when the sentence boundaries (dotted lines) not separated by acoustic gaps. b, 

Averaged response near a sentential boundary (dotted line). The power continuously changes 

throughout the duration of a sentence. Shaded area covers 2 SEM over listeners (N = 8). 

Significance power differences between time bins (shaded squares) marked by stars, 

significance level P = 0.01 (one-sided t-test, FDR corrected). c, Confusion matrix for neural 

decoding of the sentence duration. d, Neural activity tracks noun phrase duration (shown in 

the bottom). Yellow areas: significant differences between curves, significance level P = 

0.005 (bootstrap, FDR corrected).

Ding et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Localizing cortical sources of the sentential and phrasal rate responses using ECoG (N = 5). 

The left panel is based on the power envelope of high-gamma activity, and the right panel is 

based on the waveform of low-frequency activity. Electrodes in the right hemisphere are 

projected to the left hemisphere and right-hemisphere (left-hemisphere) electrodes are 

shown by hollow (filled) circles. The figure only shows electrodes that show statistically 

significant neural responses to sentences in Fig. 2e and no significant response to the 

acoustic control shown in Fig. 2f. The significance tests in this figure are based on bootstrap 

(FDR-corrected) and the significance level is 0.05. The response strength, i.e. the response at 

the target frequency relative to the mean response averaged over a 1-Hz wide neighboring 

region, is color-coded. Electrodes with response strength less than 10 dB are shown by 

smaller symbols. The sentential and phrasal rate responses are seen in bilateral pSTG, TPJ, 

and left IFG.
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Fig. 6. 
Spatial dissociation between sentential-rate, phrasal-rate, and syllabic-rate responses (N = 

5). a, The power spectrum of the power envelope of high-gamma activity. b, The power 

spectrum of low-frequency ECoG waveform. The top panels (green curves) show the 

response averaged over all electrodes that show a significant sentential-rate response but not 

a significant phrasal-rate response. All significance tests in this figure are based on bootstrap 

(FDR-corrected) and the significance level is 0.05. The shaded area is 1 standard deviation 

over electrodes on each side. The middle panels (blue curves) show the response averaged 

over all electrodes that show a significant phrasal-rate response but not a significant 

sentential-rate response. The bottom panels (red curves) show a significant sentential-rate or 

a significant phrasal-rate response, but not a significant syllabic response. cd, The 

topographic distribution of the three groups of electrodes analyzed in panels a and b. As in 

Fig. 5, electrodes showing a response greater than 10 dB are shown by larger symbols than 

electrodes showing a response weaker than 10 dB.
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Fig. 7. 
Syllabic-rate ECoG responses to English sentences and the acoustic control (N = 5). The top 

panel shows electrodes showing statistically significant syllabic-rate ECoG responses to the 

acoustic control, i.e. shuffled sequences, which has the same acoustic/syllabic rhythm as the 

English sentences but contains no hierarchical linguistic structures (Fig. 2f). The 

significance tests in this figure are based on bootstrap (FDR-corrected) and the significance 

level is 0.05. The responses are most strongly seen in bilateral STG for both high-gamma 

and low-frequency activity and also in bilateral pre-motor areas for low-frequency activity. 

The bottom panel shows the syllabic-rate ECoG responses to English sentences. The figure 

shows electrodes that show statistically significant neural responses to sentences and no 

significant response to the acoustic control. The syllabic rate responses specific to sentences 

are strong along bilateral STG for high-gamma activity and are widely distributed in the 

frontal and temporal lobes for low-frequency activity.
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