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Abstract

The decreasing cost of genotyping and genome sequencing has ushered in an era of genomic 

personalized medicine. More than 100,000 individuals have been genotyped by direct-to-

consumer genetic testing services, which offer a glimpse into the interpretation and exploration of 

a personal genome. However, these interpretations, which require extensive manual curation, are 

subject to the preferences of the company and are not customizable by the individual. Academic 

institutions teaching personalized medicine, as well as genetic hobbyists, may prefer to customize 

their analysis and have full control over the content and method of interpretation. We present the 

Interpretome, a system for private genome interpretation, which contains all genotype information 

in client-side interpretation scripts, supported by server-side databases. We provide state-of-the-art 

analyses for teaching clinical implications of personal genomics, including disease risk assessment 

and pharmacogenomics. Additionally, we have implemented client-side algorithms for ancestry 

inference, demonstrating the power of these methods without excessive computation. Finally, the 

modular nature of the system allows for plugin capabilities for custom analyses. This system will 

allow for personal genome exploration without compromising privacy, facilitating hands-on 

courses in genomics and personalized medicine.

1. Background and Significance

The rapid decrease in the price of genotyping and sequencing technologies, with the race to 

the $1,000 genome, has brought forth an age of genomic personalized medicine. The market 

of direct-to-consumer (DTC) genotyping, with the emergence of companies such as 

23andMe, Navigenics, and Lumigenix, has put personal genotype information in the hands 

of patients and health care providers, based around the central idea that individuals are the 
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owners of their genotype data. However, the problem has now shifted from the generation of 

accurate genotype data to tackling the problem of the “$1,000,000 interpretation.” Without 

the proper tools, both patients and physicians will find it difficult to interpret and analyze the 

extraordinary amount of data, effectively rendering it useless.

DTC genetic testing companies normally provide some data analysis, but such an approach 

has a number of drawbacks. First, DTC genetic testing companies may sometimes use 

proprietary algorithms that remain undisclosed, or use genetic data that are private and not 

available to the public. Hence, their analysis is not always transparent and the user may not 

understand how the analysis was done or be able to independently replicate the results. 

Second, the analysis can only be modified, expanded, or tweaked by the genotyping service 

itself, disallowing the application of other analysis by a third party. Finally, and perhaps 

most importantly, the consumer’s information is necessarily stored in a company’s server, to 

which people other than the user may have access.

In addition, the age of genomic personalized medicine has brought the use of genetic data 

into the clinical setting. However, the pace of medical education has not kept up with this 

demand and patients are beginning to enter clinics seeking guidance in interpreting their 

personal genomes. Stanford University has introduced a pioneering course in Personalized 

Medicine and Genomics, aimed at medical and graduate students interested in interpreting 

personal genomes. While interpretation is offered by these DTC genetic testing companies, 

medical schools and universities avoiding conflicts of interest may prefer to be independent 

and retain the ability to customize and expand their interpretations.

Various tools that have been developed for genomic analysis can be extended to interpret 

personal genotype information. For instance, genome-wide association studies (GWAS) 

have discovered the genetic factors related to various diseases and traits, which can be 

applied in reverse to personal genotypes to predict traits based on genetics. Additionally, 

approaches from population genetics that distinguish populations can be used to infer an 

individual’s ancestry. Many such techniques already exist and more are being developed 

every day and a systematic evaluation of these methods is crucial to present a compact and 

informative report to the end users. Equally important is the way to present this report, with 

the necessary background to understand each analysis, including its accurate interpretation 

and limitations. Additionally, more knowledgeable users, such as physicians or 

bioinformaticians, may wish to fine-tune the parameters of these analyses to fully exploit the 

given data.

We have developed a web-based genome interpretation engine that addresses these needs by 

providing comprehensive, secure, and highly customizable framework to analyze personal 

genotype information. Leveraging modern browser technology, including HTML5, CSS3, 

and the document canvas, we have built a system to analyze whole-genome genotype data 

within the user’s browser. The key feature of this approach is that the server is never sent 

any genotype data except when the user expressly requests to do so.
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2. Methods

To accomplish these goals, we have built a client-side genome interpretation system, have 

implemented and developed advanced analyses for personal genomes, and built a framework 

for customization of annotations.

2.1. Client-side system

We leveraged several application and user interface (UI) frameworks for use on the client-

side. We chose Backbone as an application framework, which separates client-resident code 

(Figure 1) into models (managing and manipulating data), views (responsible for the user 

interface of any particular section), and controllers (which route requests and manage 

application-level logic, e.g. session and history). In this terminology, the models correspond 

to a user, the views correspond to each analysis module, and we have a single application-

level controller.

As the ultimate goal of this application is to communicate genetic information in a clear and 

concise manner, making informed decisions about the user interface and representation of 

data was critically important. We conducted a survey of health-related websites in order to 

gauge the ‘state of the art’ in this domain. All attempt to balance accessibility and 

information content - many erring on the side of data overload. We decided to maintain a 

sparser interface, employing widgets from the jQueryUI, Google charts, and Highcharts 

libraries.

Since the entire application is loaded dynamically, our Backbone views utilize jQuery and 

jQueryUI to update the interface in response to user interaction. The clear separation of 

interface and logic afforded by our design choices enabled us to preserve application state 

across different modules. As users navigate to new modules, the Javascript logic and HTML 

content corresponding to those modules are loaded dynamically.

2.1.1. The user model—Determining how to load user genomes and how to represent a 

user was one of the first challenges in building Interpretome. Even a year ago, it would not 

have been possible to load a file into the Javascript machine without using obscure 

developer versions of a web browser. Since then, the newest releases of Chrome and Firefox 

have added support for the FileReader API, a new standard developed to support reading of 

text and other files in Javascript. Notably, this API does not have access to the filesystem, 

only to files the user has selected explicitly.

The user supplies a tab-delimited file (with RSID, chromosome, position, genotype), a 

format utilized by many DTC companies; additionally, we provide conversion scripts on 

request for all major DTC vendors, as well as other formats, including VCF files for full 

genomes. We parse these files line-by-line and store each SNP as an object in a hash table 

associated with a newly created user instance, and a progress bar provides a visual cue of the 

process. Even with larger files (several million SNPs) and older computers, this takes no 

more than thirty seconds.
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2.1.2. Analysis views—When a user runs an analysis, a function is dispatched that runs 

the main computation. In many cases, the result of the first function is a block of data 

received from the server, which defines parameters of the exercise (e.g., a set of SNPs). 

Specifically, when genotype-specific information is requested, data for all possible 

genotypes are typically retrieved, preventing the deduction of the individual’s genotype by 

intercepting this query. After receiving the relevant data, the client queries the model for a 

user’s genotype at these SNPs (which may be measured directly in the user’s genotype or 

imputed using public data, as described below). Once the client receives the necessary data, 

the algorithm is run, without sending any genotype information to the server. Finally, the 

view updates the interface with the results and generates associated plots and figures.

2.1.3. Scalability—Delegating most of the computation into the browser has major 

advantages for scalability. Since our backend server is largely responsible for sending (as 

opposed to receiving) content, and database access is mostly limited to large cacheable 

chunks, scaling the application is relatively simple. We are able to increase site availability 

by simply adding more database servers and can ignore issues of synchronization across 

database replicates, which are huge challenges for other dynamic web applications.

2.2. Analyses

We have implemented a set of standard genome analysis modules for the Interpretome. 

These analyses utilize our client-side imputation method, which demonstrates the power and 

features of the private analysis system. Additionally, we have implemented clinical and 

ancestry analysis methods, as well as a number of exploratory tools, which are easily 

expandable.

2.2.1. Imputation—To expand the number of SNPs available for analysis, we first 

implemented a client-side imputation by proxy method. In this scheme, all the computation 

required for the task is performed on the client-side, with public information downloaded as 

required from the server (Figure 2). The user requests a number of SNPs not in the personal 

genotype file and a request is sent with RSID identifiers and a target population. The server 

responds by providing all SNPs in linkage disequilibrium with the requested SNP in the 

selected population (from Hapmap data). On the client side, the system determines which of 

these SNPs are contained in the personal genotype file, and thus, will be suitable for 

imputation. The client requests phase information for these SNPs from Hapmap genotype 

data from the server. These data are returned and the resulting SNPs are “imputed” from the 

returned phases in the browser.

2.2.2. Clinical analysis—We have implemented a number of analyses that demonstrate 

the methods available for clinical interpretation of a personal genome. First, we have 

implemented a disease risk calculation, as in the first clinical assessment of a personal 

genome [Ashley et al., 2010]. We have employed the risk calculation method of likelihood 

ratios and demonstrate how each variant affects an individual’s risk of Type 2 Diabetes 

(Figure 3). Prior to the computation, the likelihood ratio for each genotype is downloaded 

from the server (with no genotype data sent to the server). The user inputs a population and 

sex, which define a prior probability for the disease. Then, the likelihood ratios are chained 
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together (using the actual genotypes for the individual) as in [Morgan et al., 2010] to 

determine a posterior probability.

Additionally, we demonstrate the applications of a personal genome in pharmacogenomics, 

or the study of genetic variation related to drug response. For instance, warfarin, an anti-

coagulant prescribed to millions of patients every year, has a high therapeutic range and 

genetic variants in genes such as VKORC1 and CYP2C9 have been implicated in this 

variation. These variants, along with clinical factors such as age and weight, can be used to 

predict an optimal predicted starting dose of warfarin [Consortium, 2009]. We have 

implemented this warfarin dose calculator, which predicts an optimal starting dose given a 

personal genotype and clinical parameters. In addition, we extend the pharmacogenomic 

application of personal genomes to other drugs, using a set of annotations from PharmGKB 

(www.pharmgkb.org; Michelle Carillo; personal communication).

Finally, we include a section for further exploration of rare pharmacogenomics variants 

(Table 1). This analysis searches for rare, non-synonymous variants in putative 

pharmacogenes (genes with drug-gene interaction data from DrugBank; www.drugbank.ca). 

The functional impact of these variants is predicted by PolyPhen2 [Adzhubei et al., 2010], 

which are pre-computed for all variants in dbSNP.

2.2.3. Ancestry analysis—As methods for population genetics can be applied to infer 

ancestry from personal genomes, we have implemented client-side methods for global 

ancestry similarity, individual similarity, and chromosome painting. First, we have enabled 

individuals to compare their personal genomes to a reference panel, using principal 

component analysis (PCA). Typically, to run such an analysis, an individual genotype would 

be added to a reference panel, such as the HGDP [Cann et al., 2002] or POPRES [Novembre 

et al., 2008] datasets, and principal components would be calculated for the combined 

dataset, which can take from 10 minutes to an hour for each dataset. In this method, we have 

instead pre-computed the eigenvectors and loadings for each SNP, as well as projections of 

the individuals in the reference panels. When the analysis is run, the client downloads these 

data and then projects the user’s genotype onto the same dataset to compute the principal 

component coordinates, and the resulting projections are plotted using the Highcharts library 

(Figure 4). One limitation to this approach is that the user requires the same SNPs as those 

used to pre-compute the PCA results. We avoid this problem by providing multiple options 

for performing the projections, based on common platforms (Illumina Hap550+ and 

Illumina OmniExpress+) and this problem will be solved when full genomes are supported.

Additionally, we implemented a heuristic algorithm for chromosome painting. The state-of-

the-art algorithms were not suitable for this task, as they require phased data and employ 

computationally expensive hidden Markov models (HMMs) to determine the most likely 

ancestry for each allele. Therefore, we designed a Monte Carlo simulation method to 

generate an approximation. First, we pre-computed the most informative population-

differentiating SNPs and the client requests the allele frequencies for these SNPs in the 

selected reference panel. Then, for each “block” of the genome, we sample an allele from 

each genotype randomly (since we cannot determine phase) and use the allele frequency for 

that SNP to update a Bayesian model, which represents the likelihood of the block 
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originating from each population given the data. For each iteration, the most likely 

population is chosen for each block, and this simulation is run multiple times to generate a 

number of votes for each block. These votes are then aggregated and ancestry is assigned: if 

the proportion of votes crosses a “heterozygosity threshold,” both blocks are painted with 

the highest voted ancestry; otherwise, the highest and 2nd highest ancestries are chosen. The 

results are then smoothed and the results are plotted in Canvas (Figure 5).

2.2.4. Exploratory analysis—Finally, we also implement a number of exploratory 

analyses and modules that were integrated with lectures of the Stanford course in 

Personalized Medicine and Genomics (Figure 6, left). For instance, we aggregated the SNPs 

associated with height from the GWAS catalog [Hindorff et al., 2009] and combined their 

effect sizes to create an approximate height prediction algorithm. Additionally, we created a 

widget to count the number of Neandertal-derived alleles [Green et al., 2010] in a personal 

genotype (Figure 6, right). Other exercises were developed to explore “SNPs of interest” 

that would integrate with a lecture, where students could optionally submit their allele 

information for real-time aggregation of allele frequencies.

Through the development of these exercises, we observed that one major use case involved 

the counting of “risk” alleles (or alleles of some effect or significance), possible weighted by 

some “effect size” measure, such as odds ratios for traits, or centimeters for height. 

Therefore, we developed a customization framework for users to perform their own 

analyses.

2.3. User Customization

Although we wanted to provide curated datasets for standard analysis of a user’s personal 

genome, we also wanted to allow the possibility of custom analyses. We therefore added 

functionality that allows the user to load custom annotated SNP lists. The user can then 

compare personal genotype information to this SNP list, as with the default exercises. For 

instance, a user may be interested in how many rare variants in a specific gene are found in a 

personal genotype and compare their results with those of colleagues or other personal 

genotypes.

The custom SNPs are loaded as a tab-delimited file, containing a header line (that 

correspond to the header of the output table) and the first column must indicate the SNP 

rsid(s) in question. An example custom annotation file snippet can be viewed by clicking on 

the ‘Example Annotation File’ link. As with the default exercises in the Explore tab, a table 

showing the user’s genotype of his SNPs that were contained in the custom file, as well as 

its respective annotations, is presented to the user upon clicking the ‘Lookup custom 

exercise’ button.

In the course of development, we have noticed that one major use case involves reporting 

the allele count of the user’s genotype against particular annotated columns. Therefore, we 

also allow the user to specify which columns should be used for allele counting by 

surrounding the column header with the count( . ) syntax. It is worth noting that further 

functionality can be easily added to the custom exercise lookup; such as ethnicity specific 

SNP filtering or further aggregation, perhaps even SQL-like, functions. This could 
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eventually allow researchers and developers to distribute custom annotation files and queries 

to expand the interpretive power of this system.

While a main focus of Interpretome is to maintain privacy of the user’s genotype data, we 

are aware that users may want to share their results with others or even submit their 

genotype information to contribute to the enhancement of Interpretome. We have thus 

included both the option to share the exploration exercises results through a social network 

site and to submit their raw genotype information in an anonymous fashion. These two 

options give the user the possibility to explore a spectrum of privacy restrictions: from the 

default, most restrictive setting in which the user does not choose to share any of his 

information, to the other extreme of sharing both the results from the analysis and even 

genotype information. Sharing is an opt-in choice left to the user, and we have included a 

detailed description of the possible consequences of sharing in the Start page, as well as 

pop-up dialogs that ask the user to confirm all submissions of results or genotype 

information.

3. Results

We present the Interpretome at www.interpretome.com, a system for exploratory personal 

genome analysis, including guided explanations for clinical and ancestry analysis. The 

system is fast and easy-to-use and has been demonstrated in the Stanford course in 

Personalized Medicine and Genomics.

This system can load 1 million SNPs from a personal genotype into modern browsers 

(including Chrome and Firefox) in ~5-10 seconds. Further analyses require a server query, 

which range from ~1 KB to ~15 MB. These downloads typically take a few seconds to less 

than a minute for relatively local users (Northern California users with at least a cable 

modem connection). Once downloaded, the computational load on the client-side is very 

light for most applications (running in <5 seconds). A notable exception is the chromosome 

painting algorithm, which utilizes a Monte Carlo simulation to infer ancestry for specific 

chromosomal regions. However, even this analysis runs in ~15-20 seconds on a new laptop 

using the default parameters.

We have demonstrated the use of this system in the pioneering course on Personalized 

Medicine and Genomics at Stanford University. In this course, medical and graduate 

students learned about genomic personalized medicine through a hands-on analysis of their 

personal genotypes, for which we required an easy-to-use system that could accomplish 

sophisticated genotype interpretation tasks. The system was deployed for the Spring 2011 

course and accomplished these goals. Overall, course students gave positive feedback on the 

system, expressing that its interactivity and ease of use enabled non-experts to extract 

meaning out of their genomic information. Particularly, they found the ability to instantly 

see their personal alleles for specific traits accompanied by relevant descriptions and 

annotations useful to interpret the results. Furthermore, advanced users liked having the 

option of tweaking the parameters for each module, as they found it useful to see how the 

methods performed with different values. These comments emphasize that a system of 
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genomic interpretation must have both experts and non-experts in mind to both gain 

acceptability by the general public and convince experts of its usability.

The speed of the system and submission logic also allowed for further integration with 

lectures. Throughout the course, instructors were able to discuss SNPs for which there was 

an interesting association and students would have an option of submitting their genotypes 

for each SNP anonymously. The submitted genetic information was then aggregated and real 

allele frequencies were displayed to the instructor and the class, allowing for interactive 

participation in course material.

4. Discussion

In this work, we present the Interpretome, a system for private personal genotype 

interpretation and education. We believe that this approach will overcome a major hurdle to 

wider adoption of personal genotyping: the question of privacy and ownership. Users of 

Interpretome are assured privacy, as their data remains on their computer and in their 

browser. There exists no mechanism to track a user across uses of the website or to correlate 

data requests with client profile information (sex, population, etc.). However, genotyping 

services, such as direct-to-consumer companies, currently store the consumer’s genomic 

information in their own servers. It may be preferable for service providers to provide users 

with an option for whether their genotype data should be stored at the company. Indeed, it 

would be ideal if the notion of privacy persisted through each step of the genotype pipeline, 

ensuring that only the consumer has exclusive access to their data.

The customizable nature of the Interpretome provides a platform for researchers to make 

their genomic annotations available to the general public. While we already enable the user 

to use their own SNP annotations, it would be straightforward to implement a web 

development framework, perhaps based on Javascript, for external modules that could be 

loaded at runtime. Such functionality would allow researchers to publish their methods as 

“Interpretome modules” for experts and non-experts to evaluate.

At present, we have included options for sharing of analysis results. While including these 

options may be considered controversial, it is our belief that enabling people to make 

informed choices about sharing their own genetic information will lead to an optimal trade-

off between privacy and actionability of personal genomic data. The debate over privacy 

issues on genotype data is far from over. Thus, we believe that providing a genotype 

interpretation system that accommodates both extremes is essential to solving such conflicts.
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Figure 1. 
Interpretome is designed along the Model-View-Controller pattern, separating the 

application into distinct components corresponding to data, analysis, and navigation.
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Figure 2. 
Imputation of a user’s genotype is done directly in the browser. Allele data from public 

databases needed to impute a user’s genotype can be obtained by just requesting the 

necessary SNPs through their rsids or genomic coordinates. No genotype information from 

the user is ever sent through the network.
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Figure 3. 
Diabetes risk calculator. Using likelihood ratios calculated from published association 

studies, the diabetes risk exercise computes a user’s risk of developing Type 2 Diabetes. The 

estimate is based on a population and sex-specific prior for each user, adjusted by the user’s 

genotypes.
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Figure 4. 
Ancestry analysis by PCA. Loadings for numerous population data sources are 

precomputed, allowing a user to project their data onto any one of those datasets. Here, an 

Eastern European individual is plotted in the upper-left quadrant among the POPRES 

European reference panel.
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Figure 5. 
Chromosome Painting. The first two chromosomes from a half-European, half-Asian 

individual are shown. CEU, YRI, CHB, and JPT refer to European, African, Chinese, and 

Japanese Hapmap populations, respectively.
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Figure 6. 
Exploratory analysis. (Left): Numerous exercises are predefined, some with content from 

lectures of the Stanford Personalized Medicine course. Each of these is implemented 

independently, but all share a common data table format. (Right): One such analysis; 

Neandertal alleles in a personal genotype.
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Table 1

Rare Pharmacogenomic Variants. Non-synonymous, rare variants (MAF < 5%) in genes predicted to interact 

with drugs from DrugBank are shown for a personal genome. The PolyPhen Class and Score predict whether a 

variant may be damaging to the function of the protein, which may affect an individual’s drug response.

dbSNP Genotype MAF Gene Name Drug Name PolyPhen
Class

PolyPhen
Score

rs16985442 CG 0.041 SLC12A5 Bumetanide benign 0

rs10075302 AC 0.049 SLC25A2 L-Ornithine benign 0.064

rs11548670 AG 0.022 NDUFS1 NADH probably
damaging

0.999

rs933135 CT 0.022 Plcd1 Acetate Ion possibly
damaging

0.822

rs9332608 AG 0.049 F5 Phenylmercury benign 0.021

rs4252128 CT 0 PLG Bicine possibly
damaging

0.418

rs363504 AG 0.022 GRIK1 Topiramate benign 0

rs1801690 CG 0.046 APOH Alpha-D-
Mannose

probably
damaging

0.938

rs1805321 AG 0 PMS2 Adenosine-5′-
Diphosphate

benign 0.002
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