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Abstract

The human connectome refers to a comprehensive description of the brain’s structural and 

functional connections in terms of brain networks. As the field of brain connectomics has 

developed, data acquisition, subsequent processing and modeling, and ultimately the 

representation of the connectome have become better defined and integrated with network science 

approaches. In this way, the human connectome has provided a way to elucidate key features of 

not only the healthy brain but also diseased brains. The field has quickly evolved, offering insights 

into network disruptions that are characteristic for specific neurodegenerative disorders. In this 

paper, we provide a brief review of the field of brain connectomics, as well as a more in-depth 

survey of recent studies that have provided new insights into brain network pathologies, including 

those found in Alzheimer’s disease (AD), patients with mild cognitive impairment (MCI), and 

finally in people classified as being “at risk”. Until the emergence of brain connectomics, most 

previous studies had assessed neurodegenerative diseases mainly by focusing on specific and 

dispersed locales in the brain. Connectomics-based approaches allow us to model the brain as a 

network, which allows for inferences about how dynamic changes in brain function would be 

affected in relation to structural changes. In fact, looking at diseases using network theory gives 

rise to new hypotheses on mechanisms of pathophysiology and clinical symptoms. Finally, we 

discuss the future of this field and how understanding both the functional and structural 
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connectome can aid in gaining sharper insight into changes in biological brain networks associated 

with cognitive impairment and dementia.
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Introduction

The average life expectancy has steadily increased with respect to each previous generation. 

As the mean age rises, experimental evidence indicates a greater decline of sensory, motor, 

and cognitive functions in the elderly population [1]. Given that abnormal aging can result 

from a variety of factors (such as genes or environment or lifestyle), cognitive impairment 

associated with aging is considered a systemic problem. Therefore, effective prediction of 

successful aging versus cognitive decline becomes difficult. Aiming to face this complexity, 

interest in early markers of cognitive impairment has grown, since it is widely regarded as 

an early marker of dementia. Recently, hope has been placed in identifying biomarkers that 

predict risk for developing cognitive impairment. Given advances in non-invasive 

neuroimaging techniques and in network analysis, the emerging field of brain connectomics 

is increasingly well situated to link cognitive impairment with structural and/or functional 

network changes. These changes may be reflected in a number of topological features that 

cover global and local aspects of the brain organization and communicability.

For the reader’s convenience, a glossary is presented for terms related to network science. 

Throughout this review words in italics will refer to items present in Table 1 which includes 

a glossary of network indices.

The Human Connectome

The concept of the human brain as a large-scale complex network termed “connectome” was 

originally introduced in 2005 [2]. The key proposal was to model the brain as a network, 

with the different gray matter regions acting as nodes, and their structural connectivity (SC) 

through white matter fiber bundles as edges. As the first drafts of the human connectome 

became available [3] an increasing interest in applying graph theory to human neuroimaging 

data (specifically to diffusion weighted imaging (DWI)) emerged. This helped to uncover 

topological features of the structural connectome such as small world-ness, highly 

connected hubs, and modularity. It also allowed modeling and visualization of the most 

prominent white fiber tracts constructed from bundles of streamlines connecting different 

brain regions, an important first step in identifying the basic layout of the brain’s SC and its 

relation to functional connectivity (FC) [4]. Interestingly, the basic idea of the brain as a 

structural network of connected neurons with functional implications was proposed years, if 

not decades, before the idea of the connectome. The foundational writings of Santiago 

Ramon y Cajal were a first antecedent of the neuronal networks we now know [5]. His work 

and intricate circuit diagrams unveiled individual neurons and their synapses. In comparison, 

the field of brain connectomics works at a much coarser grain scale and aims to model and 

assess the complex interactions between neural populations (as divided by regions) to 
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understand the behavior of the system overall. In turn, brain connectomics uses network 

science to handle the complex methodologies needed to understand the dynamic interactions 

of different brain regions both functionally and structurally and how these interactions might 

influence cognition.

The Structural and Functional Connectomes

Using DWI to assess SC by modeling white matter fiber tracts, SC information can be 

represented as a binary network where nodes represent brain regions and edges represent the 

presence or absence of fibers connecting those regions. To further elaborate this network 

representation, it is possible to gather fiber descriptors such as number of streamlines, fiber 

integrity as measured by fractional anisotropy (FA), the spatial trajectory of fibers, the 

estimated length of these fibers (in millimeters, fiber length), and composites such as fiber 

density [3, 6] between pairs of brain regions. This collection of fiber descriptors allows 

weighted representations of SC (see Fig. 1a, b), which more fully defines the physiological 

effects and capacity for plasticity changes within the structural connectome. In contrast to 

structural connections, functional connections refer to statistical dependencies among time 

series of neuronal activity or blood oxygen level dependent (BOLD) signals, often expressed 

simply as linear Pearson correlations. Functional connections are time-dependent and can 

fluctuate on time scales as fast as seconds (fMRI) or even hundreds of milliseconds (EEG, 

MEG). Recent work has shown that functional connections exhibit dynamic changes during 

rest as well as reconfiguration in the context of different stimuli and tasks [7].

Systematic assessment of resting-state FC has led to the concept of the “functional 

connectome.” In a landmark study employing resting-state functional MRI (RS-fMRI), 

Biswal and colleagues found that looking at BOLD signal fluctuations that occur at a lower 

frequency (<0.1 Hz) revealed patterns of coherent spontaneous fluctuations among spatially 

remote and distinct brain regions [8]. This seminal work spurred further studies to confirm 

the existence of synchronous spontaneous fluctuations between different areas in the brain, 

revealing coherent components that were highly consistent among individuals [8–12]. Low 

frequency, spontaneous (BOLD) fluctuations that occur at rest are referred to as intrinsic 

brain activity and its correlated components represent so-called resting-state networks 

(RSNs) [11, 13]. Note that RSNs refer to components or sub-networks within the cortex; 

hence, the broad term “network” denotes here a set of regions or even voxels showing high 

functional coherence within the sub-network and low functional coherence with the rest of 

the system. There has recently been significant work demonstrating the validity and 

biological underpinnings of using temporal correlations found in RSNs to infer FC [14–18]. 

By studying the relationships between spontaneous BOLD signals in different/distinct brain 

regions, multiple RSNs have been identified (see Fig. 1d–f). RSN analysis allows for a 

functional based assessment of network differences between subjects or clinical groups, 

while greatly reducing the dimensionality of the approach, from thousands of voxels to a 

few prominent sub-networks. For instance, differential connectivity between subjects with 

impaired cognition and normal cognition in the default mode network (DMN, one of the 

earlier [19] and most well-studied networks) suggests that FC is sensitive to pathology and 

its assessment may improve diagnostic methods.
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The Human Connectome and Normal Aging

Research on structural and functional brain networks has jointly given rise to the field of 

brain connectomics. Network science and graph theory have furthered this advancement by 

providing a suitable framework to quantify and give objective meaning to SC/FC or brain 

connectomics changes. For instance, using these tools, Betzel and colleagues examined how 

the connectome changes with aging and found that indeed both SC and FC evolve or “re-

organize” during aging [20]. According to the study, several RSNs FC decreased with 

healthy aging, while other RSNs experienced an increase in FC. Changes were also 

observed in SC, including an overall decrease in the density of anatomical connections 

between brain regions and an overall loss of white matter fiber tracts as age progressed. This 

paper added evidence that FC and SC are closely related and encourage further exploration 

of how age-related changes in SC and FC correlate with changes in behavior and cognition.

Further research on the aging connectome found that the topology of important “hubs” or 

highly connected regions in the structural connectome of older adults tended to remain 

similar to the young adult population, with only subtle gender differences in terms of fiber 

length [21]. The preserved hub regions included subcortical structures such as the thalamus, 

striatum, and the amygdala, as well as cortical regions such as the anterior cingulate, insula, 

and precentral gyrus, which were consistent with other adult structural network studies [22, 

23]. This indicates that there is some topological network stability across normal aging, 

which has strong implications for healthy large-scale network communication and might 

support the preservation of memory and executive functions in normal aging.

Using Connectomics to Study Alzheimer’s Disease

As dementia continues to become more prevalent, the field of brain connectomics is quickly 

evolving to not only study human connectome disruptions that occur as a function of normal 

aging but disruptions in neurodegenerative disorders as well [24, 25]. Many brain 

connectome studies have already begun generating exciting results regarding the 

dysfunction occurring in neurodegenerative disorders. Relative to studies focalized in a 

particular region of interest or in a relatively small targeted neural circuit, brain 

connectomics provides amore systemic view by modeling whole brain networks. In this 

way, brain connectomics can assess whole brain organizational changes or disruptions. AD 

is often thought of as a disconnection disorder in that a lesion or plaque in one region of the 

brain can disrupt healthy communication between other brain regions resulting in an 

eventual overall reduction of connections required for healthy cognitive functioning [26]. As 

a result, changes in brain networks have begun to be looked at extensively in AD [27–33]. 

Analyses of SC and FC in AD have given rise to new hypotheses of the underlying 

pathophysiology of AD. Further, they can also be used to understand new correlations with 

clinical and cognitive symptoms that cannot be explained from a single region or connection 

[33]. Table 2 summarizes a list of recent studies focused on using SC and/or FC in those at 

risk for and with AD.
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The Connectome in AD and MCI

Analyzing the structural connectome of AD patients has shown disruptions in connectivity 

in the cingulum bundle tract, the corpus callosum, and the superior longitudinal fasciculus 

([34–37]; for additional information, see [38]). Patients with mild cognitive impairment 

(MCI), which is considered a prodromal stage of AD, have also been shown to exhibit many 

of these same disruptions, although not as severely as seen in AD. This further supports MCI 

as an intermediate state between healthy aging and AD ([39–41]; additionally, see review 

[42]). Another study also found significant abnormalities in a crossing fiber region known as 

the centrum semiovale (close to an important hub region, [6]) only in MCI patients 

compared to cognitively healthy age-matched controls [39]. When looking at whole brain 

diffusion differences, MCI patients were found to have a higher mode of FA values in this 

region than cognitively healthy age-matched controls. Mode of FA, in this case, refers to the 

shape of diffusion ranging from −1 (indicating less directionality) to +1 (indicating more 

directionality). The study also revealed that their patient population (AD) had higher FA 

values in these regions. Together, this evidence suggests a selective degeneration in crossing 

fiber pathways. This result is important for two reasons: (a) it demonstrates that diffusion 

MRI is able to detect subtle changes in the structural connectome between disease states and 

(2) it highlights the need for further interpretation of both increases and decreases in SC with 

regards to the underlying neuropathology. Overall, changes in the fiber tracts provide 

evidence of a disruption of whole brain organization in prodromal and clinical AD through 

damage to hub regions.

Important findings have also been reported regarding FC in AD. Many studies have already 

found significant FC changes in AD patients [43, 44]. For instance, patients with severe AD 

showed reduced amplitude of fMRI oscillations, as well as reduced FC strength, specifically 

in long-distance FC connections, when compared to mild and moderate AD patients [45]. A 

reduction in clustering and modularity was also observed in patients with AD compared to 

cognitively healthy age-matched controls, indicating a less segregated or modular nature of 

connectivity, and hence a more disorganized way in which brain regions communicate [46–

48]. Finally, studies using graph theory to assess SC have also allowed us to better 

understand the relationship of SC and FC as AD progresses [31].

Other metrics have also been used to measure the way different pathways break down in 

AD. One such metric is the k-core, which is a measure that assesses the overall 

connectedness of a network by identifying the most highly interconnected sub-networks 

within a global network [6]. As opposed to looking at a whole connectivity matrix that may 

include unreliable connections making it difficult to pull out meaningful disease effects, 

using the k-core can enhance detection of changes that may be caused by the disease. This is 

accomplished by looking at deeper highly connected sub-networks or cores. In AD patients, 

k-core analysis revealed that there was a complete loss of all core networks in the left 

hemisphere indicating a dramatic unilateral change in brain network topology as disease 

progresses [49, 50]. This finding suggests that there is a loss of healthy organizational 

structure in the brains of AD patients. Similarly, Daianu and colleagues assessed structural 

cores of the brain in AD patients and found that structural brain connectivity was affected 

according to a variety of network metrics that describe the topological organization of the 
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brain [51]. Disrupted functional whole brain connectivity in cortical hubs was also reported 

in patients with MCI [48]. Evaluation of other SC measures revealed a similar story; nodal 

degree decreased as the disease progressed, as did path length and efficiency [50, 51]. It has 

recently been shown that not all structural core networks are disrupted in AD. Specifically, 

AD more strongly affected low-degree brain regions rather than the high-degree nodes that 

form a rich club, leaving this low-degree network better preserved [52]. However, more 

research is needed to better understand the SC and FC changes in AD and their impact on 

clinical and cognitive decline.

The Connectome in Populations at Risk for AD

AD is believed to have a prolonged prodromal and preclinical phase initially characterized 

by the development of silent pathologic changes, including the development of amyloid-beta 

(Aβ) plaques and neurofibrillary tangles caused by hyperphosphorylated tau, with no clinical 

symptoms [53–56]. Thus, cognitively normal individuals with significant amyloid and tau 

pathology (assessed either by measuring cerebrospinal fluid (CSF) levels or by positron 

emission tomography (PET) techniques) are at high risk for progression to AD [57–60]. 

Other changes in brain network structure and function may also be present in the preclinical 

phase of AD. For instance, one group set out to measure FC in the DMN using independent 

component analysis (ICA) in a distinct preclinical group (marked by individuals who have 

cognitive complaints yet have normal psychometric performances) along with an MCI group 

and healthy controls. It was found that the preclinical group, identified as informant-verified 

cognitive complainers (CC), demonstrated lower connectivity in the DMN, a RSN known to 

be disrupted in AD, compared to cognitively healthy age-matched controls without 

complaints yet have higher connectivity compared to the MCI group [61]. In another study 

by the same group, diffusion tensor imaging revealed white matter changes between 

diagnostic groups as measured by FA values in regions associated with AD. Their main 

findings revealed lower FA values in parahippocampal WM among the MCI group 

compared to cognitively healthy age-matched controls, as well as intermediate FA values in 

the CC group falling between MCI and cognitively healthy age-matched controls without 

complaints. These studies added evidence to the existence of a preclinical intermediate state 

using connectivity measures [62]. Another group, Drzezga and colleagues, used CSF 

measures to show that asymptomatic individuals with increased amyloid burden 

demonstrated subtle whole brain FC disruptions and hypometabolism (as measured through 

[18F]fluorodeoxyglucose PET) [48]. While the pathology of this preclinical category is still 

unclear, these studies indicate that connectomics can capture early functional and structural 

changes. This may be a consequence of emerging molecular AD pathology.

Genetic markers have also helped identify asymptomatic people with high risk for AD. The 

major genetic risk factor for late-onset AD is the ε4 allele of the apolipoprotein E (APOE) 

gene on chromosome 19 [63]. An early study demonstrated that asymptomatic APOE ε4 

carriers exhibited an increase in the magnitude and extent of brain activation during a verbal 

memory task in brain regions known to degenerate in AD. Furthermore, these same subjects 

were re-tested 2 years later and brain activation in the previously identified areas correlated 

with the degree of memory decline [64]. More recently, cognitively intact carriers of the 

APOE ε4 allele have been linked to accelerated age-related decline in local interconnectivity 
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of structural brain networks [65], as well as disruption in the functional connectome [66], 

relative to APOE ε4 non-carriers. Cognitively normal APOE ε4 carriers also show 

differences in large-scale brain functional networks (i.e., decrease in nodal efficiency in 

medial temporal areas) and structural connections (aberrant regional topological patterns in 

temporal lobe and other regions) [67]. Interestingly, Wang and colleagues found reduced 

efficiency in whole brain topological organization, as well as decreased intramodular 

connectivity, within the posterior DMN and executive control network in APOE ε4 carriers 

with AD relative to non-carriers [66]. Impaired functional hubs and their rich club 

connections with other RSNs were also found in APOE ε4 AD patients indicating 

differential brain network organization as a function of APOE ε4 variants in AD. These 

studies explore the connectome by combining different imaging modalities and a network 

science approach suggest that these tools can help elucidate changes that would otherwise be 

undetectable in a high-risk, preclinical population.

Recent Developments

While the continued development and refinement of RS-fMRI [68–70] and DWI methods 

[71] hold great promise for understanding biological changes associated with normal aging 

and dementia so can integrating genomic data. The combination of improved neuroimaging 

methods to measure biological processes and genetic information from across the genome is 

likely to provide a more complete picture of health and disease. Genetic analysis may also 

be incorporated with DWI data. Indeed, the diffusion properties of white matter, placement 

of fiber tracts, and overall SC networks are thought to have strong heritability [72]. White 

matter integrity (as measured by FA) was found to show a strong genetic influence, 

specifically in the bilateral frontal and parietal lobes and the left occipital lobe. Results from 

a larger family-based study from Kochunov and colleagues supported high heritability of 

white matter diffusion properties, showing that average measures for FA and radial 

diffusivity were highly linked to genetics [73]. Overall, these studies suggest that the 

microstructure of cerebral white matter is at least partially genetically determined. Imaging 

genetics with DWI data has also been applied to dementia research. Jahanshad et al. 

evaluated the influence of gene variants or “polymorphisms” on SC and found that 

variations in a gene known as SPON1 affected SC in an older adult population with varying 

degrees of cognitive impairment [74]. Furthermore, older adults who carried the variant 

associated with increased SC had less severe dementia scores and a lower risk of AD. This 

discovery of SPON1 variants associated with brain connectivity suggests a new neurogenetic 

pathway with links to dementia severity that can be further explored.

Genomic data may also help elucidate the biological basis for the synchronous low 

frequency fluctuations that are suggested to give rise to brain networks using RS-fMRI. One 

study found that expression of 136 genes (later identified to be involved in ion channel 

formation) were significantly associated with RS-fMRI measures in humans and 

significantly associated with axonal connectivity in a rodent model [75]. Additionally, 

Richiardi and colleagues demonstrated that functional brain networks as defined by RS-

fMRI are significantly correlated with gene expression data. Their data revealed that 

functional networks are associated with a set of genes that code for ion channels and other 

important synaptic functions (i.e., dopamine neurotransmitter release), further supporting a 
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strong biological foundation of RSNs. The results from these studies provide additional 

evidence that integrating gene expression and brain connectivity measures can provide 

insight into the molecular mechanisms underlying not only functional networks but also 

structural networks. Other studies have found that an altered expression of genes associated 

with AD can translate to altered FC at the molecular level [76]. These studies integrating 

RS-fMRI and genomics suggest that the connectome may offer a rich and promising target 

for genetic analysis.

Another future direction of brain connectomics is through the integration of different 

technologies, specifically studies that integrate multiple imaging modalities [77]. 

Multimodal imaging refers to the integration of data from more than one imaging modality, 

such as DWI, RS-fMRI, EEG, and PET. This integration typically occurs at the level of 

statistical analysis where each modality has an influence over the end result. Additionally, 

the data can be integrated in a more exploratory fashion, where the comparison is more 

qualitative than quantitative. For example, data analysis has been treated in this way with 

disorders such as autism spectrum disorder (ASD). ASD has been conceptualized as a 

breakdown of neural communication and connectivity. Integration of multimodal imaging 

techniques has shown significant promise in elucidating brain connectomics in ASD. Over 

the last decade, theoretical accounts of ASD have shifted towards emphasizing the 

breakdown of neural communication and connectivity much like AD. In light of this shift, 

the use of multimodal imaging has begun to show promise. Studies in ASD show 

convergence of altered SC and FC within the same regions, including regions of the medial 

prefrontal cortex and posterior cingulate/precuneus that are core members of specific RSNs 

[78–80]. Additionally, a convergence in altered function, volume, and connectivity of frontal 

regions involved in executive function, language, motor, and sensorimotor functions was 

also found in ASD [81–83]. Finally, a study revealed age-related differences in the coupling 

of function and structure in healthy controls that did not occur in ASD patients.

Multimodal neuroimaging are also useful for achieving the best possible spatial and 

temporal resolution (i.e., EEG and fMRI [84]) as well as for using data from one modality to 

constrain the interpretation of another modality. In the latter case, the purpose of multimodal 

imaging would not be to merge data but to assist with informed judgment of the data within 

a broader context. For instance, EEG data measuring participant alertness has been used to 

inform interpretation of fMRI data [84]. Ultimately, multimodal imaging has the potential to 

help obtain a more comprehensive physiological view of brain processes both in healthy 

adults and patients.

As a complement to the challenges and opportunities of this technological integration, the 

area of brain connectomics is also evolving from a theoretical point of view. Multimodal 

imaging naturally allows us to elaborate on multiplex or multi-layered networks [85, 86], 

where one system is not represented by a unique adjacency or connectivity matrix, but by 

more than one, attending to different features or to the different nature of their connections. 

Another emergent area of research consists of network morphospaces [87–90] where 

networks occupy a space in n-dimensional systems that obey to different trade-offs of 

network characteristics. This incorporation of information from theoretical concepts [91] 
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into brain connectomics is expanding the way we understand communication within 

networks [92, 93] and in the human brain [94, 95].

Finally, another innovation in modeling FC is the emergence of dynamic RS-fMRI. Until 

recently, most RS-fMRI studies looked at data in a stationary framework to interpret results. 

While studies employing this framework have uncovered large-scale properties of brain 

function, the resulting characterization ultimately represents an average across complex 

spatiotemporal phenomena. Quantifying changes in FC metrics over a longer scan (10 min 

or longer) may provide greater insight into fundamental properties of brain networks and 

how they change over time [96]. Recent studies have demonstrated that correlations among 

brain regions, both within and between networks, indeed evolve over time [7, 97–99]. These 

results suggest that resting brain activity can be divided into subsets or “communities” of 

brain regions that strongly interact for a time but that these interactions are not static. For 

instance, low frequency BOLD signal fluctuations revealed synchronized communities 

reoccurred intermittently in time and across scanning sessions during RS-fMRI scans [100, 

101]. In addition, the synchronized communities constitute components of previously 

defined RSNs known to be engaged in sensory-motor or cognitive function. As discussed 

earlier, altered static FC in RSNs has been found in AD patients. Thus, it would be of great 

interest to see if using a non-static or “sliding-window” approach would provide an even 

more accurate description of FC changes in AD. One of the first reports demonstrating RS-

fMRI changes in AD patients beyond the traditional average FC metrics [102] reported 

impairments in the dynamics of spontaneous activity by examining time varying changes of 

a modularity metric [103]. Using dynamic FC representations, the authors reported 

differences in the “dwell time” within different sub-network configurations of the DMN 

between AD and cognitively healthy age-matched controls. In other words, less time was 

spent in brain states with strong posterior DMN region contributions and more time in states 

characterized by anterior DMN region contributions in AD patients. This observation has the 

potential to lead to a better understanding of the large-scale characterizations of AD and 

potentially a more accurate prognostic picture. This early work offers great promise in 

revealing aspects of dynamic FC at a macroscopic scale.

Conclusion

The increased sensitivity and whole brain perspective of SC and FC measures assessed using 

diffusion weighted MRI and RS-fMRI, respectively, have already provided numerous 

insights into the specific disturbances of network organization that occur in the diseased 

brain. For instance, normal cognitive aging results in changes in brain network features but 

are mainly localized in hub regions in the frontal, parietal, and occipital lobes. However, it is 

important to note that, overall, brain networks have been shown to have high topological 

global efficiency despite aging. While significant topological modification is observed with 

brain maturation, the general structure of the connectome remains stable over time. This 

review has considered changes in both the structural and functional connectome in the 

context of AD-associated neurodegeneration as the primary example at three distinct stages, 

i.e., manifest disease, MCI prodrome, and the preclinical at-risk stage. At the disease stage, 

brain connectomic techniques have afforded a way to model the structural and functional 

failing integrity of specific neural subsystems and offered new insights into how 
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degenerative processes may spread through interconnected networks via central regions. 

Specifically, AD patients have shown disruptions in SC in important hub regions, 

interhemispheric regions, and fiber crossing regions. These changes are characterized by a 

reduced network nodal degree, change in white matter path lengths, and a decreased global 

efficiency of networks. During the MCI stages, evidence of the impact of intermediate 

neurodegeneration has been shown with regard to several network features including 

abnormal loss of white matter and significant changes in functional network organization. At 

the earliest stage, there is significant evidence of emerging changes reflected by differences 

between at-risk populations and cognitively healthy age-matched controls. These changes 

have been found primarily amid the interconnectivity between major RSNs, as well as 

differences in whole brain organization and network structure suggesting that connectomics 

level analysis is sensitive to subtle changes in brain networks before the onset of clinical 

symptoms. However, research on brain connectomics in disorders of cognitive aging 

remains at an early stage of development and new findings on changes in network features 

in preclinical and prodromal neurodegenerative diseases including non-AD and mixed types 

of disease will undoubtedly augment our knowledge in important ways relevant for clinical 

translation.

The present review also examines more recent developments such as the relationship to 

genetic markers, other multimodal imaging methods, and the emergence of dynamic FC 

which has aided the field in characterizing patient–specific abnormalities. The convergence 

of this information is likely to be beneficial for design of targeted interventions especially in 

heterogeneous diseases like AD and dementias of mixed etiology. Selective regional 

pathology plays an important role in the manifestations of different neurodegenerative 

diseases; and characterizing the progression to and from these brain regions during the 

advancement of neurodegeneration is important. Connectomics analysis is likely to be useful 

for enhancement of clinical trial designs by incorporating information about regional brain 

networks at baseline and after interventions. Connectomics analyses will also likely 

contribute to clinical trials by providing a dynamic metric that can (a) help identify subtle 

changes early in the disease course and (b) provide more comprehensive metrics to assess 

the impact of targeted therapeutic strategies.

In this review, we have illustrated the emerging utility of brain connectomics in providing 

new quantitative network features that can be used to detect specific structural and 

functional disruptions within brain circuitry including identification of white matter tracts 

and their integrity, the strength of functional connections between regions, and network 

disruption in unique RSNs. The future of brain connectomics holds significant promise in 

several areas. First, connectome studies may permit identification of early pathological 

changes that can predict disease progression. Second, due to the non-invasive nature of RS-

fMRI and diffusion MRI, it is possible to collect data more easily and at more time-points to 

address long-term cognitive and behavioral changes and relate them to changes in the 

structural and functional connectome. Third, such studies offer insight into the unique 

characterization of different diseases identifying neurodegenerative signatures based on 

network features. To elaborate on the idea of a unique signature or “fingerprint,” brain 

connectomics may be well-suited to reveal individual differences in brain networks and to 
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help adapt therapeutic approaches centered on a person’s baseline topological features and 

assess how treatment changes network topology, whether positively or negatively in terms 

of adverse side effects. In this way, connectome analysis may constitute a new approach that 

can guide the brain repair and recovery of brain networks especially as disease modifying 

interventions are developed.

Connectome-wide analyses hold promise of an unbiased means of characterizing brain 

network disturbances during manifest disease and in early preclinical and prodromal stages 

before onset of significant observable cognitive differences. However, this promise is likely 

to be realized with further improvements in imaging technology, statistical methodology, 

and integration of large-scale multimodal and dynamic data sets. Improving image quality 

will permit more precision in tracking changes in brain networks with disease progression, 

as well as to help resolve the directionality of fiber tracts with regards to SC. For SC, this 

will involve developing more accurate fiber reconstruction and tissue segmentation 

methodologies and also defining measures of connectivity that have a clear biological 

interpretation.

Further development of appropriate statistical methods is needed to allow better handling of 

complex data models, and the integration of multiple multimodal data sets as existing 

methodology is limited. Lastly, learning to account for the distinctive nature of dynamic data 

will be essential for the mapping of BOLD fluctuations in psychological states to their 

corresponding neurobiological states.

The young field of brain connectomics has been successful in generating evidence for 

aberrant network properties in early stage neurodegenerative diseases, demonstrating the 

potential for improved prediction of cognitive impairment, prior to onset of significant 

clinical symptoms. However, more clinical research is needed to refine methodology and 

validate the initial observations from patients with various neurodegenerative diseases at all 

stages. Eventually, follow-up studies linking in-vivo connectomics changes to post-mortem 

analyses of specific proteinopathies underlying many dementing disorders will be important. 

MRI sequences and post-processing methods will continue to evolve bringing significant 

improvement in accuracy and reliability, capacity for mapping more subtle changes in 

connectivity. All of these developments will facilitate the translation of intriguing research 

findings on connectome changes in cognitive aging and early stage disease to a level of 

development where they can contribute along with clinical assessment and other –omics and 

biomarkers to diagnosis and treatment monitoring as part of an evolving precision medicine.
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Fig. 1. 
(A) Top panel denotes basic steps for processing of diffusion data. (A1) Different directions 

are taken in the scanner and combined; (A2) “streamlines” are obtained from this data and 

visualized using tractography (the more directions that can be obtained, the more accurate 

the data); (A3) using segmentation masks “streamlines” that fall within white matter are 

isolated; (A4) structural connectivity matrices can be obtained from the data in both binary 

and weighted form. The binary form is represented in the upper triangular where a dark dot 

denotes the presence of fibers connecting pairs of regions. The weighted form is represented 

in the lower triangular and denotes average fractional anisotropy (FA) values. (B) Lower 

panel denotes basic processing steps for RS-fMRI data. (B1) shows extracted time course 

from fMRI images; (B2) top shows BOLD signal isolated by regressing out nuisance 

variables, shown on the bottom; (B3) top shows an example of a gray matter parcellation, 

whereas bottom shows seven most prominent resting-state networks as reported by Yeo et 

al.; (B4) example of a resting-state functional connectivity matrix with rows and columns 

ordered according to those resting-state networks. Red squares highlight each of the RSNs
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Table 1

Glossary for network terms in alphabetical order: network indices

Index SC or FC 
measure

Definition

Cluster SC and FC Refers to a group of nodes that have denser connections with each other than with the rest 
of the network

Edge SC and FC Refers to a connection between nodes. Can either be weighted or binary

Fractional anisotropy (FA) SC A scalar value between 0 (indicating unrestricted diffusivity) and 1 that describes the 
degree of anisotropy of a diffusion process

Functional connectome FC A comprehensive map of correlated brain regions as measured by BOLD signals acquired 
using RS-fMRI studied as a network by means of a network science and graph theory

Global efficiency SC Related to the idea of the average shortest path is that of global efficiency, which is the 
inverse of the average shortest path. It is the overall information transfer efficiency across 
the whole network

Hub SC and FC A highly connected node. These nodes are relevant for efficient network communication, 
and damage to these nodes might be especially disruptive for network integrity

Independent component 
analysis (ICA)

FC A statistical method that aims at decomposing multivariate signal into subcomponents. It 
has become useful in identifying resting-state networks by separating a signal into unique 
spatial and time components

K-core SC and FC A measure that assesses the overall connectedness of a network by identifying the most 
highly interconnected sub-networks within a global network

Modularity FC Modularity is revealed by subdividing the network into densely connected groups of 
nodes

Network SC and FC Graph comprising a set of nodes joined by a set of connections referred to as edges

Network core SC and FC Much like a cluster, a network core is a set of nodes that are highly and mutually 
interconnected

Node SC and FC The point at which two (or more) edges meet

Nodal degree SC and FC The amount of points at which two (or more) edges meet

Path/fiber length SC Describes the (shortest) path length between two nodes

Radial diffusivity SC and FC Derived from eigenvalues from the diffusion tensor and attempts to better capture white 
matter pathology by being sensitive to change in myelin in white matter

Rich club SC A collection of highly connected hubs, thought to be important for integration of 
information

Streamline SC A representation of a direct connection obtained through tractography (usually referring to 
white matter tracts)

Structural connectome SC A comprehensive map of anatomical white matter connections in the brain studied as a 
network by means of network science and graph theory
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