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Abstract

Rationale

Chemotherapy-induced cognitive impairment, also known as ‘chemobrain’, is now widely

recognized as a frequent adverse side effect of cancer treatment that often persists into sur-

vivorship. There are no drugs available to prevent or treat chemotherapy-induced cognitive

deficits. The aim of this study was to establish a mouse model of cisplatin-induced cognitive

deficits and to determine the potential preventive effects of the anti-diabetic drug metformin.

Results

Treatment of C57/BL6J mice with cisplatin (cumulative dose 34.5mg/kg) impaired perfor-

mance in the novel object and place recognition task as well as in the social discrimination

task indicating cognitive deficits. Co-administration of metformin prevented these cisplatin-

induced cognitive impairments. At the structural level, we demonstrate that cisplatin

reduces coherency of white matter fibers in the cingulate cortex. Moreover, the number of

dendritic spines and neuronal arborizations as quantified on Golgi-stained brains was

reduced after cisplatin treatment. Co-administration of metformin prevented all of these

structural abnormalities in cisplatin-treated mice. In contrast to what has been reported in

other models of chemobrain, we do not have evidence for persistent microglial or astrocyte

activation in the brains of cisplatin-treated mice. Finally, we show that co-administration of

metformin also protects against cisplatin-induced peripheral neuropathy.

Conclusion

In summary, we show here for the first time that treatment of mice with cisplatin induces cog-

nitive deficits that are associated with structural abnormalities in the brain. Moreover, we

present the first evidence that the widely used and safe anti-diabetic drug metformin pro-

tects against these deleterious effects of cancer treatment. In view of the ongoing clinical
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trials to examine the potential efficacy of metformin as add-on therapy in patients treated for

cancer, these findings should allow rapid clinical translation.

Introduction
Thanks to the increased efficacy of cancer therapy there are now nearly 14 million cancer survi-
vors in the United States alone[1]. However, many suffer from the long-term side effects of
cancer treatment. Chemotherapy-induced cognitive impairment, also known as chemobrain, is
a common negative side effect of cancer treatment that is also frequently reported by patients
treated for tumors outside the central nervous system. These cognitive deficits often last long
into survivorship and negatively impact quality of life[2–7]. Chemotherapy-induced cognitive
impairment was noted in 78% of the cross sectional and 69% of prospective longitudinal stud-
ies performed between 1995 and 2012 in patients treated for breast cancer[4]. Formal neuro-
psychological testing reveals decreases in processing speed, memory, executive functioning and
attention[2]. Advanced neuroimaging techniques show structural alterations in white and gray
matter as well as specific regional changes in brain activity and more global disruptions of con-
nectivity in patients suffering from chemotherapy-induced cognitive impairments[8–11]. Most
studies on chemobrain have focused on breast cancer patients[12–14]. Preclinical studies in
rodents have shown that the combination of drugs commonly used for breast cancer (e.g.
methotrexate, 5-Fluorouracil and cyclophosphamide) induce cognitive impairment that is
associated with neuro-inflammation and impaired neurogenesis[15–17]. There is emerging
evidence that cognitive impairments also frequently develop in cancer patients treated with
platinum-based agents[18]. Platinum-based compounds, such as cisplatin, are part of standard
treatment for numerous malignancies including head and neck, testicular, gynecologic and
non-small cell lung cancer[19–24]. Cisplatin penetrates into the brain where it inhibits neuro-
nal stem cell proliferation[25]. There are a few studies indicating that cisplatin treatment
reduces cognitive function in juvenile rats and adult mice[26–29]. However, these earlier stud-
ies did not examine the effects of cisplatin on brain structure.

In a previous study, we showed that cisplatin-induced peripheral neuropathy could be pre-
vented by co-administration of the anti-diabetices drug metformin[30]. metformin crosses the
blood brain barrier [31] and has neuroprotective effects in models of ischemic stroke [24, 26]
and inflammation-induced brain damage [31]. There is also evidence that metformin promotes
the differentiation of microglia towards an M2 suppressive/wound healing phenotype that
could contribute to metformin’s beneficial effects on brain damage[31].

Metformin is widely used for treatment of type 2 diabetes, is well tolerated, and safe. In can-
cer patients, there is evidence mainly from retrospective studies that metformin may prevent
recurrence and to enhance the effect of cancer treatment[25, 32].

The first aim of this study was to establish a mouse model of cisplatin-induced cognitive
impairment and identify the underlying structural cerebral abnormalities. The second aim was
to determine whether treatment with metformin protects against these cisplatin-induced func-
tional and structural deficits.

Materials and Methods

Animals
Fifty-six female C57/BL6J mice (8–10 weeks old, The Jackson Laboratory, Bar Harbor, ME)
were individually housed on a 12h light/dark cycle (lights on 6:00 am). Water and food were
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available ad libitum. All behavioral tests were performed during the light phase of the cycle.
The study was conducted in accordance with NIH guidelines for the care and use of animals
and under protocols approved by the Texas A&M Institutional Animal Care and Use Commit-
tee # 12020.

Drug Administration
Mice were intraperitoneally (i.p.) treated with cis-diamineplatinum(II) dichloride (cisplatin)
(Sigma-Aldrich, St Louis, MO) (2.3mg/kg per day) or saline for 3 cycles consisting of 5 daily
injections followed by 5 days without injections. The total cumulative dose of cisplatin was
34.5mg/kg. metformin hydrochloride (metformin) (Millipore, Solon, OH) (100mg/kg) or
saline was given i.p. for seven days starting 1 day prior to the first injection of cisplatin of each
cycle and including 1 day after the last dose of cisplatin in each cycle. Body weight was
monitored.

Behavioral Assays
Novel Object-Place Recognition Test. The novel object and place recognition test

(NOPRT) was performed as described by Le Merrer et al. [33] with minor modifications.
Briefly, starting after the final dose of cisplatin, mice were habituated to the test arena (25
(L)×25(W)×50(H) cm) for 5min/day for 5 days. On day 6, two identical objects were placed in
the arena and the mouse was permitted to freely explore the arena for 5 min. After that, the
mouse was returned to its home-cage and the arena, including the two objects, was cleaned
with 70% ethanol. Seven minutes later, the mouse was returned to the open arena, where one
object was replaced by a novel object with different shape (but made out of the same material
to avoid potential interference of deficits in sense of touch or smell) and placed in a different
location and allowed to explore for another 5 min. All sessions were recorded for later analysis.
Sniffing, climbing and touching the objects were regarded as the exploration behavior and
exploration times of the familiar and novel object were scored manually by a trained technician
blinded to treatment and were validated by a second investigator. The discrimination index
was calculated as (time with novel-time with familiar object)/total exploration time of both
objects. The NOPRT was performed during the light phase of the day/night cycle. Preliminary
studies showed a similar effect of cisplatin on behavior in the NOPRT when the test was per-
formed during the dark phase.

Social Discrimination Test. The social discrimination test according to [34] with minor
modifications was performed two-three days after the novel object-place recognition. One day
prior to the training and testing day, the test mice and the conspecific 6 week-old juveniles to
be used in the test were isolated and moved to a new home-cage with clean bedding chips. Dur-
ing the training session, one juvenile protected by a mesh wired enclosure was moved into the
home cage of the test mouse for 5 min. The test mouse was permitted to freely explore. Eighty
minutes later, the now familiar juvenile used previously and a novel juvenile in two separate
wired mesh enclosures were placed in the home cage of the test mouse for 5 mins. Behavior
during the training and test phase was recorded on video and scored manually by a trained
investigator blinded for treatment and were validated by a second investigator. The social dis-
crimination index was calculated as (time with novel-time with familiar mouse)/total explora-
tion time.

Von Frey Test for Mechanical Allodynia. Chemotherapy induced mechanical allodynia
was measured as the hind paw withdrawal response to von Frey hair stimulation using the up-
and-down method as we described previously[30,35]. Mice were placed in a plastic cage
(10×10×13cm3) with a mesh iron floor for 30 min before testing. Subsequently, a series of von
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Frey hairs (0.02, 0.07, 0.16, 0.4, 0.6, 1.0 and 1.4 g) (Stoelting, Wood Dale, IL) were applied to
the mid-plantar of the hind paw starting with 0.16g hair. A clear paw withdrawal, shaking or
licking was regarded as a positive response. Whenever a positive response was observed, a next
hair with lower g force was applied; and in the case of negative response, a next hair with higher
g force was applied. Five consecutive stimuli were recorded after the first positive response as g
force and 50% paw withdrawal threshold were converted using the method described previ-
ously[30,35].

Immunohistochemistry. Four weeks later after the last injection of cisplatin, mice were
euthanized by an overdose of CO2. For white matter staining, mice were perfused with 4%
formaldehyde/0.01M PBS (pH7.4). Fixed brains were embedded in paraffin, and coronal sec-
tion (10μm, -1.58 mm from bregma) were stained with mouse anti-myelin basic protein
(MBP) antibody (1:2000) (Sternberger Monoclonals, Dedham, MA) followed by secondary
biotin labeled antibody (1:400) (Vector Lab., Burlingame, CA) and developed with ABC
reagent (Vectastain, Vector Lab.m, Burlinggame, CA). We captured images of the cingulate
cortex and selected four continuous areas to cover the larger part of cingulate gyrus in each
image. The coherence of the myelin staining in the cingulate gyrus region was quantified using
Fiji-Image J software as we described previously[36]. Coherency of the staining was quantified
using the tool in Image J. Final data were expressed as average of coherency of each mouse.
Glial stainings were performed on perfusion-fixed frozen brains were frozen as previously
described[35]. Coronal sections (6–7μm) were labeled with rat-anti-mouse CD11b (1:300) (BD
Biosciences, San Jose, CA) or mouse-anti-mouse GFAP (1:200) (Acris Antibodies, San Diego,
CA) antibodies followed by secondary fluorescent antibodies (1:1000) (Alexa Fluor, Eugene,
OR). As a negative control primary antibody was omitted. Images were captured with a Leica
confocal microscope (Leica, CTR4000) and analyzed with Image J.

Golgi Staining
After CO2 asphyxiation and decapitation, mouse brains were quickly removed and flushed
with ice-cold Milli-Q water twice. Brains were stained using the FD Rapid GolgiStain kit (FD
NeuroTechnologies, Columbia, MD) following manufacturer’s protocol. After staining, brains
were quickly frozen and 50μm sections were cut at -1.58 mm from bregma using a Leica cryo-
stat (CM3050S). Two representative pyramidal neurons in the cingulate cortex from each
mouse were selected by an investigator blinded to group for detailed analysis.

For quantifying dendritic spines, Fiji-ImageJ was used to skeletonize the dendrites on neu-
ron. When reconstructing the neurons, the dendrites from the other neighbor neurons were
automatically deleted. For evaluating the morphological change of neurons after cisplatin and
metformin, Neuromanic software (Neuromantic V1.7.5) was used to semi-automatically re-
construct a single neuron from the original picture. Because preliminary inspection of the pho-
tographs indicated that the dendrites of pyramidal cell in the cingulate cortex showed the most
prominent change after cisplatin-treatment, we focused on this area. The skeletonized neuron
was analyzed by Scholl analysis using Fiji-Image J and the number of intersections versus the
radius was plotted.

Spine density was quantified on the same neurons as used in the Sholl analysis. Straight den-
drites, which were around 40μm away from the cell body, were analyzed. Spine density was quan-
tified as the number of protrusion elements on dendritic branches per mm dendrite length.

Statistical Analysis
The data are expressed as means ± SEM. Statistical analysis was performed with SPSS 21.0. We
used two-way ANOVA, or two-way repeated-measures ANOVA according to the experimental
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design. Raw data are available in the supplementary data file (S1 File). Post-hoc analysis was
conducted using Tukey or LSD test. All experiments were repeated 3–4 times.

Results

Cisplatin induces cognitive impairment that is prevented by pre-
treatment with metformin prior to cisplatin
Mice were treated with daily i.p. injections of cisplatin (2.3mg/kg) for 5 days followed by 5 days
of rest for 3 three cycles). At 6–8 days after completion of cisplatin treatment, mice were tested
in in the novel object and place recognition test (NOPRT; Fig 1A) to assess the effect of cis-
platin on cognitive function. During the training phase mice were exposed to two identical
objects. After 7 min. in their home cage, they were exposed to one familiar object and a novel
object in a novel location. A reduction in preference for the novel object/place is indicative of
cognitive impairment [37]. The data in Fig 1B show that cisplatin treatment significantly
reduced performance in the NOPRT. More importantly, administration of metformin (100
mg/kg/day from one day before until one day after each cycle of cisplatin) prevented this
adverse effect of cisplatin. There were no group differences in total interaction times during the
test session (Fig 1C) or in time to first interaction with the novel object (S1 Fig), indicating that
the results are not influenced by potential changes in overall activity or lack of motivation. In
addition, cisplatin also reduced performance in a novel place recognition test, when two identi-
cal objects were used (S2 Fig). Cisplatin also reduced performance in the social recognition
test, in which the preference for a novel mouse is assessed as an indication of cognitive func-
tion. (Fig 1D and 1E) Co-administration of metformin prevented the cisplatin-induced reduc-
tion in preference for the novel mouse. Total interaction times did not differ between groups as
well (Fig 1F).

The cisplatin-induced reduction in body weight was not affected by co-administration of
metformin. Recovery of body weight after completion of cisplatin-treatment was similar in
both groups (Fig 1G).

Metformin prevents development of cisplatin-induced mechanical
allodynia
We previously showed that co-administration of metformin at a dose of 200 mg/kg/injection
prevented the mechanical allodynia in the hind paws induced by two cycles of cisplatin[30].
The data in Fig 2 show that co-administration of a lower dose of metformin (100mg/kg) as
used in the present study on cognition, also completely prevented the mechanical allodynia
induced by three cycles of cisplatin. These findings indicate a robust protective effect of metfor-
min on cisplatin-induced peripheral neuropathy.

Effect of cisplatin and co-administration of metformin on the organization
of myelin basic protein-positive fibers
Next, we analyzed myelin basic protein (MBP) staining patterns in the cingulate cortex in our
mouse model of cisplatin-induced cognitive impairment as a measure of white matter integrity.
This area was selected, because initial screening indicated that this was the area with the most
prominent changes. In addition, there is evidence for the importance of this region in cognitive
function and in particular in spatial recognition [38,39]. The data in Fig 3 show that cisplatin
induced an increase in the coherency of MBP+ fibers in the cingulum, which is indicative of a
decrease in white matter complexity. Metformin treatment, however, completely prevented the
cisplatin-induced decrease in coherency of MBP+ fibers in the cingulum (Fig 3).
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Morphological Changes in Pyramidal Neurons in the Cingulate Cortex
To address the question whether cisplatin affects dendritic spines, brains obtained from mice
treated with cisplatin +/- metformin were collected after completion of behavioral assess-
ments. Brains were stained by Golgi immersion and sections were screened for morphologi-
cal abnormalities. Similar to what was observed when examining MBP staining, the cingulate
cortex seemed to be most affected. Therefore, we focused on this area to quantify spine den-
sity of pyramidal cells. Treatment with cisplatin dramatically reduced dendritic spine density
(Fig 4). In line with the protective effect of metformin on cognitive function, co-administra-
tion of metformin prevented this cisplatin-induced decrease in spine density (Fig 4). We also

Fig 1. Effects of cisplatin andmetformin on cognitive function.Mice received three cycles (5 daily
injections of 2.3 mg/kg i.p followed by 5 days without injections) of cisplatin treatment with or without
metformin (100 mg/kg i.p.). (A) Set up of novel object/place recognition test. (B) Effect of cisplatin and
metformin on performance in the novel object/place recognition test. Data were analyzed by two-way ANOVA
(interaction effect: Cisplatin×metformin, F(1,46) = 6.465, p<0.05) followed by LSD. (C) The total interaction
time with novel and familiar object did not differ between groups. Data were analyzed by two-way ANOVA.
(D) Set up of the social discrimination test. (E) Effect of cisplatin and metformin on performance in the social
discrimination test. Data were analyzed by two-way ANOVA (Interaction: Cisplatin×metformin, F(1,44) =
4.42, p<0.05) followed by LSD. (F) The total interaction time during the test did not differ between groups.
Data were analyzed by two-way ANOVA. (G) Effect of cisplatin and metformin on body weight
(Time×Cisplatin, F(3,95) = 48, p<0.05). All data are expressed as mean±SEM. *, p<0.05. n = 10–14 per
group.

doi:10.1371/journal.pone.0151890.g001
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analyzed the effect of cisplatin and co-administration of metformin on arborization of neur-
ites of pyramidal cells in the brain as visualized by Golgi immersion and quantified by Sholl
analysis. The results in Fig 5 demonstrate that cisplatin treatment reduced dendritic branch-
ing. Co-administration of metformin protected against the cisplatin-induced reduction in
neurite arborization (Fig 5).

Effects of cisplatin and metformin on brain glial activation
Neuropathic pain induced by platinum-based compounds is associated with a persistent
increase in the expression of GFAP and other markers of astrocyte activation in the spinal cord
[40–42]. However, in the brain of cisplatin-treated mice, we did not observe increases in GFAP
expression (Fig 6). In addition, we do not have evidence for microglial activation as assessed by
analyzing Iba-1 expression in the brains of cisplatin-treated mice.

Fig 2. Effect of metformin onmechanical allodynia induced by cisplatin.Mice were treated with cisplatin and metformin as in Fig 1. Mechanical
allodynia as an indicator of neuropathy was assessed over time using von Frey hairs. Co-administration of metformin (100mg/kg) prior to the cisplatin
treatment prevented the development of mechanical allodynia. Data were analyzed by Two-way repeated measures ANOVA (Time×Cisplatin×metformin, F
(4,162) = 5.78, p<0.05) followed by LSD. All data are expressed as mean±SEM. *, p<0.05. n = 10–14 per group

doi:10.1371/journal.pone.0151890.g002

Fig 3. Effects of cisplatin and co-administration of metformin on the organization of myelin basic
protein-positive fibers in the cingulate cortex.Mice were treated with cisplatin and metformin and brains
were collected after behavioral analysis. MBP staining patterns in the cingulate cortex were analyzed as a
measure of integrity of myelinated fiber networks. (A) Representative examples. (B) Pictures of all sections
were captured using a Leica microscope and quantified by Fuji ImageJ with a coherency plugin. Data were
analyzed by two-way ANOVA (cisplatin×metformin, F(1,15) = 17.36, p<0.01) followed by Tukey post hoc
testing. Scale Bar: 20μm. All data are expressed as mean±SEM. *, p<0.05; **,p<0.01. n = 4–5 per group

doi:10.1371/journal.pone.0151890.g003

Metformin Prevents Chemobrain in Mice

PLOS ONE | DOI:10.1371/journal.pone.0151890 March 28, 2016 7 / 15



Discussion
We developed a mouse model of cisplatin-induced cognitive impairment and demonstrate that
the anti-diabetes drug metformin protects against the cisplatin-induced deficiencies in cogni-
tive function. Specifically, we showed that cisplatin-treatment induced deficits in spatial orien-
tation and memory in the NOPRT and the social discrimination task. Administration of
metformin from one day before until one day after each cycle of cisplatin prevented this
adverse effect. In addition, cisplatin-induced mechanical allodynia, which we used as a measure
of peripheral neuropathy, was completely prevented by administration of metformin. These
results indicate a robust protective effect for metformin against cisplatin-related cognitive defi-
cits and neuropathic pain. We also show that cisplatin-treatment induced morphological
abnormalities in the brain on the level of white matter organization, neuronal arborization,
and dendritic spine density. In line with its efficacy against cisplatin-induced behavioral

Fig 4. Effect of cisplatin andmetformin on dendritic spine density Brains of mice treated with cisplatin andmetformin were stained using a Golgi-
staining kit and sliced were analyzed for dendritic spine density on pyramidal neurons in the cingulate cortex. (A-D) representative examples of
actual images, an actual dendrite and a skeletonized dendrite. (E) Quantified data were analyzed by two-way ANOVA (cisplatin×metformin, F(1,17) = 22.26,
p<0.05) followed by Tukey. Scale bar: 20μm. All data are expressed as mean±SEM. *, p<0.05. n = 5–6 per group

doi:10.1371/journal.pone.0151890.g004
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abnormalities, metformin also protected against the associated morphological abnormalities in
the brain.

Patients treated for cancer with platinum-based compounds frequently develop structural
abnormalities in the brain as detected by neuroimaging [8,9]. The increase in coherency of

Fig 5. Effect of cisplatin andmetformin on dendritic branching. Sholl-analysis of pyramidal cells in the cingulate cortex of Golgi-stained brains was
performed. (A) Examples of actual and (B) reconstructed pyramidal cells. (C) Plot of intersection number vs radius. (D) Areas under the curve of plots in (C)
were analyzed Two-way ANOVA (cisplatin×metformin, F(1,31) = 34.81, p<0.05) followed by LSD. Scale bar: 20μm. All data are expressed as mean±SEM. *,
p<0.05. n = 8–11 per group.

doi:10.1371/journal.pone.0151890.g005
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myelin basic protein (MBP)+ fibers that we observed in the brains of these cisplatin-treated
mice may underlie the impaired white matter integrity detected by neuroimaging in patients
treated with platinum-based compounds and reporting cognitive deficits[8,9]. We also
detected decreases in neuronal arborization and dendritic spine density in the cingulate cortex.
Such changes are known to reflect alterations in the strength and functionality of resident syn-
apses[43–46]. It is of interest that the morphological alterations we observed, such as a decrease
in dendritic spine morphology and dendritic arborization, are commonly seen in models of
neurodegeneration and correlate with altered synaptic function and behavioral deficiencies
[43–45]. We do not yet know how long these cisplatin-induced abnormalities remain, but our
data indicate that cisplatin induces a mild cerebral neurodegeneration that might reflect
increased vulnerability for advanced aging and/or degenerative diseases, such as Alzheimer’s.
Importantly, prevention of the functional cognitive deficits by co-administration of metformin

Fig 6. Astrocyte activation in brain of mice treated cisplatin andmetformin. Expression of GFAP as a
measure of astrocyte activation was analyzed in hippocampus. (A). Green: GFAP; Blue: DAPI. (B)
Quantification of GFAP expression. Data were analyzed by two-way ANOVA (cisplatin×metformin, F(1,16) =
0.8265, p>0.05). Scale bar: 20um. All data are expressed as mean±SEM. *, p<0.05. n = 5–6 per group

doi:10.1371/journal.pone.0151890.g006
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was associated with preservation of structural integrity, indicative of a causal relationship
between preservation of structure and function.

Previous studies have shown beneficial effects of metformin in models of ischemic brain
damage. For example, preventive administration of metformin before exposure to cerebral
ischemia reduced brain damage in mice[47,48]. Moreover, treatment of mice with metformin
starting within 24 h after stroke enhanced recovery and improved behavioral deficits[49]. In
these studies, suppression of inflammatory activity and reduction of oxidative stress were pro-
posed as mechanisms contributing to the beneficial effects of metformin in these models[47–
49]. Emerging evidence suggests that cognitive impairment in patients with cancer is associated
with persistent neuroinflammation[15–17]. There is evidence that neuropathic pain induced
by platinum-based compounds is associated with a persistent increase in the expression of
GFAP and other markers of astrocyte activation in the spinal cord [40–42], although there are
also conflicting data [50]. Notably, we did not observe increases in GFAP expression or micro-
glial activation in the brains of our cisplatin-treated mice. These findings argue against a prom-
inent role of neuroinflammation in cisplatin-induced cognitive impairment and the protective
effect of metformin.

It is well known that cisplatin induces mitochondrial abnormalities in the peripheral ner-
vous system that are thought to underlie the development of neuropathy. In addition, we have
preliminary evidence that cisplatin-induced cognitive impairment is associated with reduced
mitochondrial health in cerebral synaptosomes. Metformin is known to increase mitochondrial
biogenesis and respiration in various cell types[51]. Moreover, in neuronal cells, metformin
has been shown to inhibit mitochondrial damage via an AMP-activated protein kinase- depen-
dent pathway[52]. It remains to be determined whether metformin’s protective effect on cis-
platin-induced cognitive impairment and peripheral neuropathy is associated with protection
against mitochondrial damage in the absence of neuroinflammation.

In vitro studies and studies in animal models of cancer indicate that co-administration of
metformin potentiates the anti-cancer effects of radiation and chemotherapeutics, including
cisplatin, and cancer stem cell death[25,34]. Meta-analyses of mostly retrospective epidemio-
logical studies in patients treated for diabetes indicate that metformin is associated with
decreased incidence of cancer, as compared with other potential treatments or no treatment
[53–56]. Unfortunately, cognitive function and neuropathic pain were not included as end-
points in these and other clinical studies on the effect of metformin in cancer patients.

The dosage of metformin that we used in this study was based on earlier studies showing a
beneficial effect of metformin on neuropathic pain[30,57,58]. Dosing in mice cannot be
directly translated to dosing in humans because of species-related differences in metabolic rate
and drug clearance. It should be noted, however, that the dose we used here is in the dose range
used for treatment of diabetes in mice [59]. It is important to note that we only studied metfor-
min’s effect when it was started before cisplatin treatment. We showed earlier that metformin
did not have any effect on neuropathy when given after completion of cisplatin treatment [30].
We therefore recommend to use a co-administration approach in potential clinical trials.

Even though metformin is considered safe, a future clinical trial should take possible risks
into account, including the potential decrease in vitamin B12 levels that has been reported with
chronic use of metformin[60]. Patients treated with cisplatin are at risk for nephrotoxicity, and
metformin is cleared via the kidneys. Although metformin is safe in patients with diabetes who
have impaired renal function[61], close monitoring would be needed in the cancer population.

In conclusion, we demonstrate that metformin protects against cisplatin-induced deficien-
cies in cognitive function and confirm its protective effects on cisplatin-induced neuropathic
pain. These findings are clinically relevant because of increasing evidence that patients treated
for cancer with platinum-based compounds frequently develop cognitive impairment and
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structural abnormalities in the brain. Having a safe, well tolerated, and inexpensive way to pro-
tect against these treatment-related harms would be of great benefit to patients and could posi-
tively affect adherence to therapy and, as a result, patient outcomes. Our current results urge
for a clinical trial on the potential beneficial eff of metformin co-administration on cognitive
function and peripheral neuropathy in patients treated with cisplatin.

Supporting Information
S1 Fig. Latency to First Interaction with Novel Object.Mice received three cycles (5 daily
injections of 2 .3 mg/kg i.p followed by 5 days without injections) of cisplatin treatment with or
without metformin (100 mg/kg i.p.). The latency to the first interaction with novel object was
counted. Data were analyzed by two-way ANOVA. (F(1,26) = 0.02, P = 0.88)All data are
expressed as mean±SEM. n = 6–8 per group.
(PDF)

S2 Fig. Novel Place Recognition Test.Mice received three cycles (5 daily injections of 2 .3 mg/
kg i.p followed by 5 days without injections) of cisplatin treatment. Data were analyzed by
Independent t-test. (t = 4.096 df = 10; p = 0.002). All data are expressed as mean±SEM. �,
p<0.05. n = 10–14 per group.
(PDF)

S1 File. Raw Data.
(XLSX)
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