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Abstract

Delivering radiation to eradicate a solid tumor while minimizing damage to nearby critical organs 

remains a challenge. For esophageal cancer, radiation therapy may damage the heart or lungs, and 

several qualitatively different, possibly recurrent toxicities associated with chemoradiation or 

surgery may occur, each at two or more possible grades. In this article, we describe a Bayesian 

group sequential clinical trial design, based on total toxicity burden (TTB) and progression-free 

survival duration, for comparing two radiation therapy modalities for esophageal cancer. Each 

patient’s toxicities are modeled as a multivariate doubly stochastic Poisson point process, with 

marks identifying toxicity grades. Each grade of each type of toxicity is assigned a severity 

weight, elicited from clinical oncologists familiar with the disease and treatments. TTB is defined 

as a severity-weighted sum over the different toxicities that may occur up to 12 months from the 

start of treatment. Latent frailties are used to formulate a multivariate model for all outcomes. 

Group sequential decision rules are based on posterior mean TTB and progression-free survival 

time. The proposed design is shown to provide both larger power and smaller mean sample size 

when compared to a conventional bivariate group sequential design.
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1 Introduction

Esophageal cancer affects over 17,000 people per year in the United States, with five-year 

survival rates between 20% and 35%. Standard of care is neoadjuvant chemoradiation, 

consisting of radiation therapy (RT) and concurrent chemotherapy, possibly followed by 

surgery. The decision of whether surgery may be performed is made adaptively based on 

early chemoradiation outcomes. Since the esophagus is nestled between critical organs, 

dosimetric RT planning is challenging. An ideal RT plan delivers sufficient dose to the 
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tumor while minimizing or avoiding radiation exposure to the heart anteriorly, the spinal 

cord posteriorly, and the lungs on either side.

One recently developed X-ray modality, intensity modulated radiation therapy (IMRT), uses 

a computer-controlled multi-leaf collimator to partially block the paths of five beams of 

charged high energy photons. The approach enables flexibility for controlling the extent of 

radiation intensity over the irradiated volume, and thereby has the potential to effectively 

irradiate the targeted tumor volume, while limiting radiation exposure to critical organs 

surrounding the tumor. However, because X-ray beams deposit energy along a path that 

passes through the targeted volume and beyond, IMRT is incapable of sparing healthy 

tissues located directly behind the tumor. Another modality, proton beam therapy (PBT), 

delivers radiation using a beam of charged protons that have been accelerated through a 

cyclotron to high energy levels. Unlike photons, protons have a limited range and can be 

modulated to deposit their maximum intensity at the tumor site, thus sparing the surrounding 

organs. For example, Zhang et al. (2008) have demonstrated that PBT results in better 

sparing of the lung compared to IMRT.

In this article, we describe a design that is being used to conduct a randomized, group 

sequential clinical trial for comparing radiation modalities for stage II-III esophageal cancer 

(The University of Texas MD Anderson Cancer Center, 2015). The purpose of this trial is to 

determine whether PBT’s dosimetric advantages over IMRT translate into meaningful 

improvements in clinical outcomes, primarily reduced toxicity and prolonged progression-

free survival (PFS), defined as the time to disease progression or recurrence, or death, from 

the start of RT. Patients with esophageal cancer undergoing this regime, called “trimodality 

therapy,” are at risk of several qualitatively different toxicities. These may occur at random 

times and at varying levels of severity, and some may occur more than once. Toxicities not 

only impact the patient’s quality of life, but also may decrease the patient’s ability to 

undergo surgery and thus increase the risk of disease recurrence. The surgeon’s decison of 

whether a patient may undergo surgery includes consideration of toxicities that have 

occurred with the chemoradiation. Patients who do receive surgery are at risk of 

postoperative complications (POCs), which may be exacerbated by earlier toxicities from 

the chemoradiation. Although each particular toxicity is unlikely, all are potentially life 

threatening, necessitating a design with rules that terminate the trial early if the interim data 

show that the trimodality regime is safer with one RT modality versus the other. Moreover, 

while the risk of toxicity often dominates thinking about RT modalities, delaying disease 

recurrence/progression and thereby prolonging survival remains the therapeutic goal.

The main statistical challenge in designing a trial to compare RT modalities used with the 

chemoradiation ± surgery trimodality regime is that the clinical outcomes are very complex. 

To measure the combined impact of the diverse array of possible toxicities, we define a 

statistic, total toxicity burden (TTB), which provides a continuous measure of the combined 

effect of all toxicities experienced by the patient over the course of follow up. To construct 

this statistic, numerical weights of each possible grade of each toxicity that quantify their 

relative severities first must be elicited from the physicians planning the trial. TTB is 

defined as a severity-weighted sum over the different toxicities that may occur. Since some 
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toxicities may occur up to 12 months from the start of treatment, each patient’s observed 

TTB is a process that may change over time.

Our trial design treats TTB and PFS as co-primary endpoints. It relies on a multivariate 

Bayesian model that accounts for the incidence and severity of each type of toxicity, and 

accounts for dependence between the toxicity vector, an indicator of whether surgery is 

performed, and PFS. A key feature of the model is that it provides an analytically tractable 

expression for mean TTB. The two RT modalities are compared using two group sequential 

rules, based on the posterior distributions of mean TTB and PFS log hazard ratio, 

respectively.

Including a vector of qualitatively different toxicities via TTB in this way is very different 

from most randomized oncology trials, which are based on PFS or survival, while including 

toxicities as secondary outcomes. In most trials, toxicity is monitored informally. When 

formal decision rules based on toxicity are used, they are defined by first reducing the vector 

of toxicities to a binary indicator of the worst toxicity of any type occurring at or above a 

given grade, ignoring recurrences entirely. As a basis for comparison, we consider a trial 

with two sets of conventional group sequential rules with O’Brien-Fleming (O’Brien and 

Fleming, 1979) boundaries, one based on PFS and the other based on an indicator of any 

toxicity occurring within one year of follow up. Our simulations, given in Section 5, show 

that our design yields as much as a 66% increase in power and 18% reduction in mean 

sample size when compared to this conventional design.

The general problem of designing clinical trials to compare multiple endpoints has been 

considered by many authors, predominately using frequentist approaches for testing 

composite hypotheses, and relying on large-sample normal approximations. O’Brien (1984) 

considered a generalized linear least squares statistic for composite alternatives that 

characterizes treatment differences among multiple endpoints using a common multiplier. 

Tang et al. (1989a) proposed an approximate likelihood ratio test for multiple treatment 

effects over all possible directions, with application to group sequential design (Tang et al., 

1989b). Tang et al. (1993) provided group sequential critical values for designs based on 

several types of frequentist multiple hypothesis testing procedures. Other authors have 

considered two-stage and multi-stage designs for monitoring toxicity and response rates in 

single-arm trials where both endpoints are binary and observed shortly after treatment 

(Bryant and Day, 1995; Conaway and Petroni, 1995). Quality-adjusted time without 

symptoms and toxicity (Q-TWiST) methods were developed to incorporate health-related 

quality of life measures into analysis of time-to-failure endpoints (Gelber et al., 1995). 

Kosorok et al. (2004) provided a group sequential design for multiple primary endpoints 

with multiple decision rules that control overall type I error and probabilities of concluding 

incorrect alternatives. O’Neill (2008) discussed challenges in evaluating the risk versus 

benefit of new therapies in clinical trial design and analysis.

The ideas in this article are presented in the following sequence. In Section 2, we define 

TTB for the esophageal RT trial. The group sequential design is presented in Section 3. In 

Section 4, we present the probability model, derive mean TTB, and discuss prior 

specification and elicitation. In Section 5, we present results of a simulation study. Section 6 

Hobbs et al. Page 3

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



describes our process and rationale in constructing the model and design for this study, and 

provides general guidelines for practitioners who may wish to use TTB.

2 Total Toxicity Burden

Table 1 presents the 11 toxicities monitored in the RT trial. Each toxicity is either possibly 

recurrent at random times over the patient’s follow up period, or is a POC evaluated once, 

approximately one week after surgery. Radiation-induced pulmonary and cardiovascular 

toxicities may occur up to 12 months following RT, and thus require long-term follow-up 

(Abid et al., 2001; Rancati et al., 2003; Yusuf et al., 2011). Each of the first three possibly 

recurrent toxicities, pericardial effusion, pleural effusion, and pneumonitis, and the POC 

anastomotic leak, is ordinal with three severity levels. Each of the remaining seven toxicities 

has one severity level. The set of severity weights used in the trial are given in Table 1, with 

a higher weight corresponding to greater severity. The numerical value of each severity 

weight reflects the relative extent of harm that is associated with experiencing the toxicity at 

the given level of severity in relation to the other severity levels of the same toxicity and 

other toxicities monitored in the trial. These were elicited from the clinical oncologists 

planning the trial, and represent the group’s consensus. For example, pericardial effusion 

requiring medical but not surgical intervention, and the occurrence of a pulmonary 

embolism, both have elicited weight 60, and thus are considered equally harmful. Weights 

were elicited in the range 0 to 100 for convenience, since the oncologists were comfortable 

with this domain. However, any finite positive domain would work in practice. In our study, 

w = 0 implies no harm to the patient, while w = 100 represents an extent of harm that is 

imminently life threatening. We describe the manner in which we elicited the severity 

weights as well as provide justification for the numerical values in Section 6 and in Section 

A of the supplementary material.

Figure 1 illustrates TTB for a hypothetical patient, computed using each of the four sets of 

weights. Each spike in the bottom graph indicates either a single toxicity or a collection of 

POCs. The heights of the spikes correspond to the weights, and thus illustrate severities. The 

top graph plots the patient’s TTB over time for each of the four sets of weights. The 

hypothetical patient’s TTB was zero until postoperative reintubation and stroke in week 13, 

then successive onsets of pneumonia at weeks 27 and 37. Using the elicited weights, these 

toxicities contributed severity scores 70+90=160 at week 13 and 40 at each of weeks 27 and 

37.

The following notation expresses TTB as a function of elicited severity weights and event 

indicators arising from two multivariate marked point processes, one characterizing 

recurrent toxicity, the other POCs following surgery. Indexing the toxicities in Table 1 by k 

= 1, … , 11, we denote the vectors of elicited ordinal toxicity severity weights by w1, … , 

w11. For example, w1 = (w1,1, w1,2, w1,3) = (10, 60, 90) for the three levels of pericardial 

effusion, w4 = w4,1 = 30 if atrial fibrillation occurs, and so on (Table 1). Without loss of 

generality, we represent patient follow-up as a proportion of the maximum follow-up 

duration (52 weeks) required to account for late-onset radiation-induced toxicity, t ∈ (0, 1]. 

Let N(t) = {N1(t), … , N6(t)} denote the multivariate counting process characterizing the 

numbers of toxicities occurring by time t for the 6 recurrent toxicities. The 1 × Mk vector 
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Zk,j(t) = {Zk,j,1(t), … , Zk,j,Mk(t)} denotes the multinomial point process that marks the 

severity of the jth occurrence of toxicity type k. Each Zk,j,m(t) is a simple point process with 

Zk,j,m(t*) = 1, for all t* > t if the jth incidence of the kth toxicity occurs at the mth severity 

level prior to time t. If the jth event has not occurred by time t, then Zk,j,m(t*) = 0, for all m = 

1, …, Mk.

We use the elicited weights, wk, the observed occurrence processes, Nk(t), and the mark 

processes, Zk(t), to define the toxicity burden for the kth recurrent toxicity at follow-up time 

t,

(1)

The jth occurrence of recurrent toxicity type k produces a jump of size  in the 

 process at the event time. We define the total toxicity burden contributed by the 6 

recurrent toxicities at follow-up time t as the sum,

For the subset of patients who undergo surgery, there are five possible POCs in the RT trial. 

These consist of one ordinal-valued toxicity, anastomotic leak, indexed by k = 7, with M7 = 

3 levels, and four binary-valued toxicities for which Mk ≡ 1, indexed by k = 8, … , 11. The 

POCs are assessed only once, approximately one week following surgery. Let {S(t) = 0, 1 : 0 

< t < 1} denote an event process with at most a single jump discontinuity of size +1 at the 

time surgery is performed. Matching indices for recurrent events (k, j, m) = (toxicity type, 

recurrence number, severity level), we use Z7(t) = {Z7,1,1(t), Z7,1,2(t), Z7,1,3(t)} to denote the 

vector of severity level indicators for the ordinal-valued POC. The occurrence indicators for 

the four remaining POCs are denoted by Zk,1,1(t), k = 8, … , 11. We define the toxicity 

burden contributed by POCs at follow-up time t as

We can now define each patient’s TTB at follow-up time t as the sum of these two 

components,

(2)

Because we account for occurrence over time and possible recurrences, this definition 

generalizes that used for Bayesian phase I dose-finding by Bekele and Thall (2004).
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3 Group Sequential Bivariate Trial Design

Because toxicities induced by RT are rare but serious, our trial must include interim 

monitoring based on TTB. In planning the radiation therapy trial, the participating 

oncologists were unwilling to continue randomizing if the data showed strong evidence of a 

difference between PBT and IMRT for either TTB and PFS. Consequently, these are co-

primary endpoints, and the group sequential design stops the trial early if one modality is 

superior with respect to TTB, PFS, or both. The trial’s decision scheme thus is complex. For 

each interim decision, there are three possibilities for each of the two outcomes, namely that 

PBT is superior, IMRT is superior, or neither is superior. This yields nine possible joint 

decisions.

At any trial time, patients will have different follow up times t1, … , tn, and some will have 

undergone surgery while others will not, so in general their TTBs will not be comparable. 

E.g., BREC(0.5) and BREC(1) correspond to different follow up periods. Thus, we will 

conduct the trial by specifying a joint model for the multivariate patient outcome, deriving 

the resulting expectation of TTB, E{B(1)}, and formulating group sequential decision rules 

for comparing safety using the inter-modality difference in mean TTB. Importantly, 

E{B(1)}, is the function of severity weights and model parameters (we’ll use θ to denote 

model parameters) that characterizes the extent of total toxicity burden experienced by a 

patient on average over the course of the entire at risk duration for one modality. Our trial’s 

decision rules are based on the resulting posteriors of the difference in mean TTB, Δ(θ, w) = 

E{B(1) ∣ IMRT} − E{B(1) ∣ PBT}, and the PFS log hazard ratio, δξ. Model specification and 

derivation of Δ(θ, w) is given in Section 4.

Let  denote the observed data for all patients enrolled by trial time τ. Let εTTB denote a 

small value of Δ(θ, w) and εPFS a small value of δξ that are considered clinically 

insignificant. At interim analysis time τ, the safety comparison is based on posterior 

probabilities that difference in mean TTB of one modality compared to the other exceeds 

εTTB,

Similarly, the PFS comparison is based on the posterior probability that the PFS log hazard 

ratio exceeds εPFS in favor of one modality compared to the other,

The model, which is described in Section 4, is formulated such that larger values of 

φPB(εTTB, τ) represent stronger a posteriori evidence that PBT is the safer modality, while 

larger values of χPB(εPFS, τ) correspond to PBT being more effective for delaying 
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recurrence/progression and prolonging survival. Similarly, larger φIM(εTTB, τ) or χIM(εPFS, 

τ) correspond to superior safety or effectiveness of IMRT.

Numerical values of εTTB and εPFS must be specified in the context of possible values of 

Δ(θ, w) and δξ. While the hazard ratio δξ is readily interpretable, the magnitude of clinical 

relevance for Δ(θ, w) may be less obvious. For the RT trial, any improvement in mean TTB 

or PFS was considered clinically relevant by the participating oncologists, therefore 

posterior probabilities were computed using εTTB = εPFS = 0. The resulting decision rules are 

structurally similar to the multiple hypothesis test-based method of Kosorok et al. (2004) 

using “vague” alternative hypotheses.

In order to conduct a trial with the group sequential comparisons, one must determine both 

the “timing” and minimal extent of “evidence” that is required to confer each decision at 

each analysis time. For our trial, we defined posterior thresholds on φ and χ, referred to 

hereafter as “decision boundaries,” to which the posterior probabilities will be compared to 

make decisions during the trial as functions of information statistics. The information 

statistics characterize the proportion of total information, , that has been 

observed at the time of analysis in relation to the maximum possible information that could 

be observed in the trial. Using accumulated information, rather than calendar time or sample 

size, to decide when to perform the interim comparisons provides robustness to mis-

specification of the assumed enrollment rate, which is a common practical issue in group 

sequential trials.

Let n(τ) denote the number of patients enrolled by τ. We used the cumulative follow-up 

duration at , to define an information statistic for TTB. Because ti 
denotes the ith patient’s proportion of total follow-up out of 52 weeks, , represents the 

cumulative follow-up for toxicity as a proportion of total follow-up that would be observed 

if all N patients were monitored for toxicity for the entire post-RT toxicity at-risk period of 

52 weeks. The appropriate information statistic for PFS is the proportion of events by τ, 

. To use φ and χ for decision making, we defined boundaries 

on the posterior probability domain using the function

(3)

at trial time τ. The exponents, αTTB, αPFS > 0, and scaling parameters, 0 < βTTB, βPFS < 1, 

must be calibrated to obtain a design that satisfies pre-specified size, power, and optimality 

criteria. The approach is similar to the boundary functions proposed by Wathen and Thall 

(2008). The boundaries (3) are consistent with conventional group sequential designs 

(O’Brien and Fleming, 1979; Lan and DeMets, 1983; DeMets and Lan, 1994) in the sense 

that early stopping requires a smaller numerical difference as more information accrues 

during the trial.

The nine joint decision rules are given in Table 2. Decisions 1, 2, or 4 each would lead to the 

conclusion that PBT is superior, since it is superior to IMRT for either both endpoints or at 

least one endpoint without evidence of a clinically significant difference for the other. 
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Similarly, Decisions 6, 8, or 9 would lead to the conclusion that IMRT is superior. Decision 

5 corresponds to the absence of evidence for a meaningful difference between PBT and 

IMRT for either endpoint. Decision 5 may be achieved at the end of the trial, in this case it 

might be described as failing to reject the global null hypothesis. Decisions 3 and 7 both 

conclude that, with either modality, it is inferior for one outcome and superior for the other. 

These conclusions are not made by conventional hypothesis tests, but easily could arise in 

any clinical setting where treatments have both harmful and beneficial effects. At the 

extremes, Decisions 1 and 9 might be called “win-win” decisions, and represent extremely 

optimistic scenarios that are rarely obtained in practice. For this treatment regime and 

disease, it is considered unethical to continue randomizing patients if one modality is 

determined to be inferior for either endpoint. Thus, the only case where the trial is continued 

interimly is under Decision 5, since it reflects clinical equipoise, or indifference for both 

PFS and TTB.

For trial conduct, the decision rules are applied at three interim analyses when 33%, 50%, 

and 67%, of the expected total information has accrued, and utilized at the final analysis one 

year after the patient enrollment period ends. Patients are expected to be enrolled at a rate of 

4 per month, requiring a total of 3.75 years to reach the targeted maximum enrollment of N 

= 180, and 4.75 years to complete patient follow-up.

4 Probability Model

We expect associations among the toxicities, surgery, and PFS. Thus, we formulated our 

model to induce a dependence structure that we believed was qualitatively consistent with 

the clinical context, for which we assumed the following. Radiation delivered to the thoracic 

cavity may adversely affect critical organs and thus has the potential to reduce survival. 

Additionally, a patient with early RT-induced toxicity is less likely to undergo surgery, 

hence experiencing both a higher risk of disease progression and a lower risk of POCs. To 

reflect these assumptions, we used the following frailty model. Indexing patients by i = 1, 

… , n, let {Ui, i = 1, … , n} denote i.i.d. random patient frailties with E(Ui) = 1 and var(Ui) 

= ϕ. To induce positive correlation among the counts of the recurrent toxicities, we 

employed the common device of assuming that the kth recurrent toxicity process Ni,k(t) of 

patient i in treatment arm x is Poisson with conditional intensity Uiψk(x). This is presented in 

Section 4.1. We used an exponential model for time-to-surgery (presented in Section 4.2) 

with hazard rate multiplied by . The conditional distribution of PFS Yi given Ui, 

presented below in Section 4.3, is assumed to follow a piecewise exponential distribution 

with the baseline hazard on each time subinterval multiplied by Ui. Details are given in 

Section B of the supplemental material. Averaging over the distribution of Ui, these 

assumptions give a model with (1) association among the recurrent toxicity counts Ni,1(t), 

… , Ni,6(t), (2) each Ni,k(t) negatively correlated with Yi, so that increased toxicity is 

associated with shorter PFS, and (3) negative association between surgery and the incidence 

of each recurrent toxicity, and positive association between surgery and PFS.

Moreover, the model must also yield analytical tractability for expressing the difference in 

mean TTB between treatment modalities as a function of model parameters and severity 

weights, since its posterior along with the posterior distribution for the PFS hazard ratio are 
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used in the group sequential procedure. We assumed that the frailties follow an inverse 

gamma distribution, . This gives a multivariate model that yields an 

analytically tractable expression for the mean TTB difference. We considered other 

parametric and non-parametric models, but did not use them because they required 

numerical integration to compute mean TTB, which complicated computation of the 

design’s operating characteristics.

Our model represents just one possible set of assumptions. Moreover, alternative methods 

could have been used to account for interdependence among toxicities, surgery, and PFS. 

For example, instead of using recurrent event processes, one could assume that a 

transformation, g(), applied to the TTB statistic and perhaps scaled per follow up duration 

(i.e. g{B(t)/t} ) is Gaussian. Then one could conceivably proceed by specifying a 

multivariate normal model for the transformed TTB statistic in conjunction with 

transformations of the time-to-surgery and time-to-PFS endpoints. A perhaps more 

appealing, but less tractable solution might use copulas to describe the dependence among 

toxicities, surgery, and PFS.

4.1 Recurrent Toxicity Processes

Initially, we considered a model with toxicity-specific marked point processes for severities 

and treatment effects for both event recurrence and severity probabilities. For the 6 recurrent 

toxicities, this requires a minimum of 18 model parameters. Similarly, assuming POC-

specific marked point processes with a modality effect for the rate of surgery and separate 

modality effects for the severity probabilities for each of the 5 POCs requires a minimum of 

12 model parameters. We found this model too complex to use as a practical basis for trial 

design.

To further simplify the model and reduce its dimension, we now exploit the fact that 

treatment comparisons based on TTB need only consider the incidence of each possible total 

toxicity severity. Together, the recurrent toxicities in the RT trial may have one of seven 

unique severities, w* = (10, 20, 30, 40, 60, 70, 90). Thus, with a slight abuse of notation, 

hereafter we formulate the model in terms of the counting processes Ni,1(t) for all toxicities 

of any type giving total severity 10, Ni,2(t) for all toxicities of any type with total severity 

20, and so on. Hereafter, the toxicity index is k = 1, … , 7 rather than 1, … , 11. This reduces 

the number of model parameters from 30 to 18. However, to assess robustness in the 

simulation studies described in Section 5, we will use a saturated 11-dimensional marked 

point process model to generate the data.

We assume that each patient’s risk of radiation-induced toxicity depends on the type of 

irradiation that is delivered (at the group-level) as well as the anatomic location of the tumor 

(at the patient-level). The latter impacts the dosimetric plan and thereby determines the 

extent of irradiation that is delivered to healthy tissues in neighboring regions. To 

accommodate intra-patient dependence, we used doubly stochastic Poisson (Cox) processes 

to induce association among recurrent toxicity severities (Cox, 1955; Snyder and Miller, 

1991; Jacobsen, 2006; Cook and Lawless, 2007).
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We’ll denote treatment by x = −0.5 for IMRT and x = +0.5 for PBT. Let 

 denote the mean rate of recurrent toxicity severity k for a patient in 

treatment arm x. Thus, λk > 0 is the baseline rate and  is the real-valued PBT-versus-IMRT 

RT modality effect on the log mean rate. We assume that, given Ui and xi, the kth recurrent 

severity process {Ni,k(t), t ≥ 0 ∣ Ui, xi} for patient i is a Poisson process with conditional 

intensity Uiψk(xi). The random frailty, Ui, acts as a common scalar of the mean rates of 

Ni,1(t), …, Ni,7(t) inducing positive association among the event processes. Since E(Ui) = 1, 

after averaging over the distribution of Ui, Ni,k(t) has unconditional mean tψk(xi), variance 

tψ(xi) + ϕ t2ψk(xi)2, and covariance cov {Ni,r(t), Ni,l(t) ∣ xi} = ϕ t2ψr(xi)ψl(xi). The frailty 

variance, ϕ, determines the degree of association between counts over disjoint intervals 

within each event process as well as the degree of association between different event 

processes (Cox and Isham, 1980; Breslow, 1984; Lawless, 1987a,b).

A likelihood is necessary to conduct posterior inference. Section B.1 of the supplemental 

material provides the likelihood contribution for the toxicity count vector Ni(t). Our model is 

parameterized so that larger treatment effects, denoted by δ with appropriate subscripts and 

superscripts, correspond to superiority of PBT over IMRT. For example, a larger positive 

value of  corresponds to a smaller occurrence rate of recurrent severity k with PBT versus 

IMRT.

4.2 Surgery Process and Postoperative Complications

Because TTB is the sum B(t) = BREC(t) + BPOC(t), treatment comparison based on E{B(t)} is 

influenced by the probability of undergoing surgery following chemoradiation, and thus 

becoming at risk of POCs. We assumed that a patient experiencing a severe toxicity with 

chemoradiation is less likely to undergo surgery, while surgery reduces the risk of disease 

recurrence and thus is positively associated with PFS. To reflect these relationships, given 

frailty Ui and treatment arm xi, we assume that the time-to-surgery distribution is 

exponential, with conditional hazard rate , inducing dependence with Ni(t) 

and PFS as per our assumptions when ϕ > 0. Thus,  is the baseline rate and  is the real-

valued PBT-versus-IMRT RT modality effect, with  > 0 corresponding to increased relative 

rate of surgery in favor of PBT. Section B.2 of the supplemental material provides the 

likelihood contribution. However, as described in Section 5.1, we evaluate our design’s 

operating characteristics by generating surgery times with an approximation of the baseline 

hazard function that we expect to observe in the trial using a piecewise constant model.

The POCs that are monitored in this trial are serious, rare events. A major motivation for the 

trial is whether the relative incidences or severities of these POCs may differ between the 

two RT modalities, since chemoradiation may impact the extent to which a patient tolerates 

surgery. Because all five POCs are assessed at a single time point following surgery, we use 

a multinomial model for the aggregate severity of the POCs. There are 24 possible values of 

the total POC severity (computed from Table 1) which we denote in order from least to most 

severe by . Let Zi(t) = {Zi,1(t), … , Zi,24(t)} denote the vector of 

aggregate severity level indicators for patient i, whereby  if S(t) > 0, and 
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Zi,m(t) = 0, for all m otherwise. We assume [Zi(t) ∣ xi] ~ Multinomial{π(xi)}, with RT-

specific probability vector π(xi) = {π1(xi), … , π24(xi)}, where . Section B.

3 of the supplemental material provides the likelihood contribution for POC severity.

4.3 Progression-Free Survival and Mixture Model

Our trial uses a piecewise constant hazard formulation for PFS (e.g. Ibrahim et al., 2001, 

section 3.1). This model facilitates between-modality comparisons under the typical 

proportion hazards assumption that are robust to the actual shape of the underlying baseline 

hazard. Given the frailty, Ui, we assume that the hazard for PFS is piecewise constant over 

the time axis partition (0, s1], (s1, s2], …, (sG−1, sG], (sG, ∞), where 0 < s1 < s2 < … < sG < 

∞. For [Yi ∣ Ui] in the interval (sg−1, sg], g = 1, …, G, the constant baseline hazard is ξg(xi, 

Ui) = Uiγg exp {−xiδ
ξ}, where γg > 0, and we denote γ = (γ1, …, γG). This model can 

approximate any underlying smooth baseline hazard function, providing a robust relative 

comparison between modalities. We selected the set of hazard discontinuities, (s1, …, sG), 

adaptively using the interim data to obtain a time axis partition that is AIC-optimal among 

sets of all equidistant quantiles so that each interval contains at least 10 observed events. 

Positive values of δξ correspond to longer median PFS for PBT versus IMRT. Section B.4 of 

the supplemental material provides the likelihood contribution for PFS. Additionally, 

multiplying each interval hazard γg exp {−xiδ
ξ} by the frailty Ui provides subject-specific 

perturbations of the baseline hazard function inducing positive (negative) correlation with 

surgery (toxicity).

Collecting terms, the ith patient’s observable outcome vector is 

, and the overall joint likelihood contribution is 

obtained by averaging the product of conditional likelihoods of the observables. Since these 

are assumed to be conditionally independent given Ui, this is

(4)

The model parameter vector is , and we denote the data for n 

patients by .

4.4 Mean Total Toxicity Burden

Having specified a model for the multivariate patient outcome, we can now derive the 

expectation of (2) as well as the inter-modality difference in mean TTB, Δ(θ, w) = E{B(1) ∣ 

IMRT} − E{B(1) ∣ PBT}, which provides the basis for comparing safety in our trial. The 

marginal expected toxicity burden of Nk(t) for a patient assigned to treatment x is

(5)

The expected severity from POCs over the follow-up period [0, t) for a patient assigned to 

treatment x is a tractable function of π(x), the surgery rate , and frailty variance ϕ, 

given by
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(6)

Details of the derivation are provided in Appendix A. In the absence of frailty dispersion (ϕ 

= 0), the mean TTB from POCs would be the multinomial mean . 

Equation (6) shows that the frailties reduce  by a multiplicative factor that depends 

on  and takes values between 0 and 1. As the frailty dispersion increases, there is 

a decrease in the probability of undergoing surgery after experiencing recurrent toxicity, 

thereby attenuating the influence of POCs. The multiplicative term approaches the lower 

limit , as ϕ → ∞, which is the largest multiplicative amount by 

which frailty dispersion may reduce .

The μ’s given by (5) and (6) quantify risk-severity trade-offs, and their sum,

(7)

is the mean TTB for a patient assigned to modality x. Recalling that x = −0.5 for IMRT and 

x = 0.5 for PBT, the design uses the 52 week (t = 1) mean difference as the basis for IMRT-

versus-PBT safety comparison, denoted by Δ(θ, w) = μ(−0.5, θ) − μ(0.5, θ). Positive values 

of Δ(θ, w) correspond to superior safety for PBT compared to IMRT.

4.5 Establishing Priors

To specify priors, we selected distributions to satisfy model constraints or exploit analytical 

properties of conditional conjugacy. Let  characterize the respective modality 

differences for recurrent toxicity, surgery, and PFS. The remaining parameters in θ 

characterize baseline features of the recurrent toxicity severity or surgery processes, severity 

probabilities from POCs, or the frailty dispersion.

Given that one modality effectuates a safer plan, we expect reductions in the event rates of 

each of the radiation-induced toxicities monitored in the trial. Under this assumption, 

parameters that characterize the corresponding “group-level” treatment effects should be 

positively associated. To effectuate this, we used a hierarchical prior to induce shrinkage 

among exchangeable treatment effects : . A non-informative 

prior was assumed for the hierarchical mean, δψ ~ N(0, 100). Following the 

recommendations of Gelman (2006), the hierarchical standard deviation, ω, was assumed to 

be uniform over (0, 10]. For the treatment effects for surgery, , and PFS, δξ, we assumed 

N(0, 100) priors. We assumed weakly informative priors for the non-treatment effect 

parameters, including conditionally conjugate gamma distributions for the λ’s, and for the 

piecewise constant PFS hazard parameters, γ, and Dirichlet priors for the POC severity 

probabilities, π(x). In the absence of prior knowledge about the extent of interdependence 
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among the observables, we assumed a weakly informative uniform prior distribution over 

the interval (0, 10] for the frailty variance.

Prior hyperparameters for baseline means were estimated from historical data and/or elicited 

from the team of oncologists. Each hazard component for PFS was centered at the estimated 

hazard rate derived from a parametric exponential fit to a cohort of 246 patients with stage 

II-III esophageal cancer who underwent the trimodality regime at MD Anderson with IMRT. 

Table 3 summarizes elicited information characterizing the non-occurrence rate and severity 

probability of each toxicity. Prior means of baseline event rates of recurrent toxicities were 

derived by combining event rates and severity probabilities among toxicity-grades having 

identical severity weights, assuming independence. For example, the occurrence of an atrial 

fibrillation or a pleural effusion requiring medical intervention both have severity weight 

. The corresponding elicited baseline event rate was obtained by mapping the induced 

probability that both toxicities are absent after 52-weeks of follow-up onto the domain of λ. 

The prior mean baseline event rate for surgery followed similarly from the expectation that 

65% of patients would undergo surgery. For each treatment arm, the mean probability of 

each POC severity level, depicted in Figure 2, was calibrated using the elicited POC-specific 

severity probabilities in Table 3 under the assumption of independence.

Prior variances for toxicity severity and surgery were specified using prior effective sample 

size (ESS) (Morita et al., 2008, 2012) to characterize prior informativeness relative to the 

amount of information contributed by the likelihood based on the trial’s maximum sample 

size of N = 180. The concentration hyperparameters for probability of aggregate POC 

severity were scaled to sum to 1, inducing a Dirichlet prior with ESS = 1. We set the gamma 

rate hyperparameter for each conjugate time-homogeneous Poisson process to 5. Thus, 

conditional on the frailty, the induced prior distribution for each baseline intensity contained 

information equivalent to 5 patients.

Given the frailty variance, priors for the unconditional intensities, Uλk∗s and , are 

proportional to an intractable mixture of Meijer G-functions (Springer and Thompson, 

1970). Therefore, unconditional prior ESS values were derived using least squares gamma 

approximations. Among the recurrent toxicity severities, the resulting ESS values ranged 

from a minimum of 0.68 for severity weight w∗2 = 20 (RP of grade< 3) to a maximum of 1.8 

for w∗7 = 90 (surgical PEF or RP of grade 4). The unconditional event rate for surgery had 

prior ESS= 0.74.

5 Simulation Study

5.1 Simulation Design

We used simulation as a tool to calibrate the boundary function parameters in order to obtain 

a design with desirable operating characteristics, including acceptable overall frequentist 

size and power. Proper evaluation of the design’s frequentist properties required simulation 

of observables under a reasonable set of true distributions. To ensure robustness, these must 

include distributions substantially different from those in the model used to construct the 

design. We thus simulated the toxicities using a saturated multivariate marked point process 

with toxicity-specific parameters for event intensities and severities. Baseline model 
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parameters for PFS were fixed at estimates derived from analysis of a cohort of 246 

historical patients treated with IMRT by the participating oncologists. Posterior inference 

used the model and approach for selecting the time-axis partition described in Section 4.3, 

which resulted in an AIC-optimal partition with two intervals [0, 83], (83, ∞) and a median 

of 81.6 weeks. Figure 3 provides the Kaplan-Meier curve, with 95% log-transformed (Klein 

and Moeschberger, 2003) pointwise confidence intervals, and fitted survival curve derived 

from analysis using the piecewise constant hazard formulation (in blue). The corresponding 

piecewise constant baseline hazard parameters were used to generate random PFS durations 

in the simulations.

Surgery event times were generated using the hazard function that we expect to observe in 

the trial, which is well approximated by a step function. For example, it is expected that 65% 

of enrolled patients will undergo surgery following RT, with none undergoing surgery 

within 4 weeks following RT (therefore within the first 9 weeks of follow-up). For most 

patients who do undergo surgery it is expected to take place before week 15. Specifically, 

surgery times were generated using a piecewise constant baseline hazard with cumulative 

distribution probabilities 0.065, 0.49, 0.55, 0.65 at follow-up durations 10.33, 14.67, 19, 52, 

respectively. Both the time axis partition and cumulative event probabilities were elicited 

from the surgeon performing the procedure in the trial. The baseline POC severity 

probability vector was fixed at the elicited prior mean used for analysis (Figure 2). After 

exploring a range of numerical values, the frailty variance was set equal to 0.20 in the 

simulations to induce moderate correlation among counts of recurrent events, surgery, and 

PFS.

The top portion of Table 4 provides the baseline mean burden for each toxicity separately, 

and their sum or TTB. The participating oncologists expect that a typical patient in the trial 

will experience a TTB score of 33.67, and they believe that atrial fibrillation will contribute 

the largest component of TTB, followed by pneumonia and anastomotic leak.

A total of 19 scenarios, given in Table 4, were simulated to evaluate the design’s operating 

characteristics. Modality effects were induced by adjusting the relative baseline toxicity 

event rates, recurrent and POC severity probabilities, and difference in PFS hazards. For 

each scenario, Table 4 provides the percentage change from baseline in mean toxicity 

burden for each toxicity, and the IMRT-versus-PBT hazard ratio (HR) for PFS. Scenario 0 is 

the global null, where the modalities have identical mean TTB and the PFS HR= 1. 

Scenarios 1-12 characterize alternatives chosen randomly to yield a 50% reduction in mean 

TTB for PBT versus IMRT, with PFS HR ≡ 1. For example, Scenario 12 achieves 50% 

reduction in mean TTB for PBT by adjusting the relative event occurrence rates and severity 

probabilities for recurrent toxicities only to induce 60% reduction for PBT versus IMRT in 

mean toxicity burden for pericardial effusion, 59% reduction for pleural effusion, as well as 

60%, 41%, 78% and 32% reductions for radiation pneumonitis, pneumonia, atrial 

fibrillation, and myocardial infarction, respectively, in combination with no difference in 

mean toxicity burden contributed by POCs and equivalent PFS hazard.

For PFS, we evaluated sensitivity to four different time-invariant hazard ratios, while 

constraining mean TTB difference Δ(θ, w) ≡ 0 in Scenarios 13-16. Two additional scenarios 
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were used to evaluate the design’s sensitivity to detecting modality effects for both 

endpoints. Scenario 17 combines Scenarios 6 and 16 to yield a “win-win” scenario 

consisting of a 50% reduction in mean TTB for PBT and 2-fold increase in PFS hazard for 

IMRT. Scenario 18 combines Scenario 6 with a 2-fold decrease in PFS hazard for IMRT, 

yielding a “win-lose” scenario for PBT. Posterior probabilities for the TTB and PFS 

modality comparisons were calculated using Markov chain Monte Carlo (MCMC), details of 

which are given in Section C of the supplemental material.

As a comparator, we used a conventional frequentist bivariate group sequential design based 

on PFS and a binary indicator YT of any toxicity occurring at any severity level by 52 weeks 

(τ = 1). For each patient, YT was scored as 1 at the time of toxicity, or as 0 at τ = 1 if no 

toxicity occurred. A group sequential log-rank test (see e.g. Klein and Moeschberger, 2003) 

was used for PFS, and a normal approximation for a two-sample binomial test for toxicity, 

both with O’Brien-Fleming monitoring boundaries (O’Brien and Fleming, 1979; Jennison 

and Turnbull, 2000). Although the information times for the binomial data were not identical 

to  used for TTB, we formulated the monitoring schedule for toxicity in the 

conventional design to be as close as possible to that of TTB in the Bayesian design. 

Additionally, the conventional design was calibrated so that its familywise type I error rate 

was 0.07 to match that of the Bayesian design. Appendix B describes the process for 

selecting optimal monitoring boundaries for our design, and presents the corresponding 

optimal group sequential critical values that were used to implement the conventional 

design.

5.2 Operating Characteristics

In this section we present operating characteristics (OCs) for the RT trial when implemented 

using our group sequential design based on TTB and PFS, and for the conventional design. 

Table 5 presents the marginal decision probabilities for scenarios that characterize true 

treatment effects for only one endpoint. Corresponding values for the conventional design 

are given in parentheses. In Scenarios 1 - 12, all of which have true PFS HR = 1, our design 

provides probability 0.83 to 0.95 of detecting a 50% reduction in mean TTB, while 

controlling the false positive rate for TTB at < 0.02. The TTB design has early stopping 

probabilities 0.56 to 0.72, resulting in a trial with mean sample size 140 to 153 in these 

scenarios. In contrast, the conventional design provides probability 0.50 to 0.81, and in each 

scenario it is far less likely than the Bayesian design to correctly conclude that PBT is the 

safer modality, far less likely to stop early, and has a larger mean sample size. These large 

differences may be attributed, in large part, to the conventional practice of combining many 

toxicities into one binary variable and ignoring their severities.

In Scenario 16, where the true difference in mean TTB is Δ(θ, w) ≡ 0, both designs result in 

identical probability of 0.89 to detect a 2–fold increase in PFS hazard, while controlling the 

false positive rate for PFS at ≤ 4%. However, the Bayesian design is far more likely to stop 

early and offers smaller mean sample size when compared to the conventional design. That 

is, the Bayesian design detects the difference in PFS with the same reliability but offers a 

shorter trial, with mean sample size 139 versus 160 for the conventional design.
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Table 6 provides the joint probabilities for each of the nine decisions under Scenarios 0, 6, 

17, and 18. In the null Scenario 0, both designs have familywise false positive rate ≤ 0.07. 

Moreover, the four corner decisions have probability of approximately 0.00, so it is very 

unlikely that either design results in a trial that yields a false positive for both endpoints. 

Recall that Scenario 6 corresponds to a 50% reduction in mean TTB with PBT when the 

PFS HR = 1. The TTB design provides much higher probability for concluding that PBT is 

superior for TTB and indeterminate PFS when compared to the conventional design, 0.88 

versus 0.66. For Scenario 17, the “win-win” case for PBT, the probability that both of the 

Bayesian design’s tests, for TTB and for PFS, correctly conclude that PBT is superior is 

0.20. However, since PBT will be chosen as the superior modality for any of the three 

decisions 1, 2, or 4 in Table 3, the design provides probability equal to 0.20 + 0.42 + 0.37 = 

0.99 to detect an improvement for at least one endpoint. Moreover, the Bayesian design has 

probability 0.89 of terminating early and mean sample size 125, when compared to 0.65 and 

152 for the conventional design, respectively. The 0.01 false negative probability is confined 

only to the global null decision. In Scenario 18, the “win-lose” case for PBT, the Bayesian 

design has probability 0.21 of making the correct “win-lose” conclusion, probability 0.33 of 

concluding that PBT is superior for TTB and indeterminate for PFS, and probability 0.45 of 

concluding that IMRT is superior for PFS and indeterminate for TTB. Again, the 0.01 false 

negative probability is confined only to the global null decision and, similarly to Scenario 

17, the design has probability 0.88 of terminating early.

6 Guidelines for Constructing a Design with TTB

When patients are at risk of multiple, qualitatively different toxicities, a Bayesian design 

based on TTB and PFS may offer a powerful tool for comparing safety and effectiveness 

between competing treatments. However, many decisions must be made when choosing the 

set of toxicities, features of the Bayesian model, and sequential decision rules. These 

decision are inherently subjective, and require close collaboration between the statisticians 

and physicians. In this section, we briefly explain the process for constructing a design and 

evaluating its operating characteristics.

6.1 Eliciting toxicities and severity weights

The two essential components of the TTB statistic are the toxicities and severity weights. 

The toxicities, and when each may occur in the treatment regime, are identified by the 

physicians. In essence, there are three fundamental types of toxicities: toxicities that occur at 

random times 1) with and 2) without the possibility of recurrence and 3) toxicities that are 

observed only at prespecified evaluation times, such as POCs following surgery. The next 

step is to ask the physicians to define the ordinal categories of each toxicity that matter 

clinically, e.g. the three groups grade 1-2, 3, and 4-5 for radiation pneumonitis, or simply 

whether pneumonia occurs, in Table 1. Once this structure is established, the numerical 

severity weights must be elicited.

Section A of the supplementary material describes the process that we used to elicit the 

severity weights in Table 1 as well as provides the medical rationale put forth by the 

participating oncologists to justify the resultant numerical values. Our approach should be 

considered informal in the sense that we didn’t use an established method (e.g. Hunink et al., 

Hobbs et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2014), which would have been preferable. For example, a structured communication 

technique known as the “Delphi method” (Dalkey and Helmer, 1963; Dalkey, 1969; Brook 

et al., 1986) could have been used to quantify the relative severity of each possible grade of 

each toxicity. Additional techniques for elicitation, characterization, and use of expert 

opinion were examined systematically by Cooke (1991). A few authors have effectuated 

implementations of such utility-based approaches to clinical cancer studies in recent years. 

Swinburn et al. (2010) conducted in-depth interviews with clinical experts to establish the 

relative burden of a variety of toxicities commonly encountered from first-line therapies for 

metastatic renal cell carcinoma (RCC) when each is experienced in conjunction with stable 

versus progressive disease. Wong et al. (2012) conducted sequential semi-structured 

interviews with cancer patients to attempt to establish patient priorities for weighing 

prolonged PFS versus inflated risk of multiple types of toxicities that may occur from 

second-line therapy for RCC.

6.2 Modeling decisions

The model should provide a reasonable representation of the process of treatment and 

outcome observation, but must be tractable. One must decide whether the toxicities and 

other outcomes are positively associated, negatively associated, or independent. We 

characterized toxicity incidence using a multivariate Poisson process and formulated a joint 

model for the toxicities, surgery, and PFS duration using i.i.d. patient frailties. A simple 

device is to invert the patient frailty, i.e. use 1/U, to accommodate negative association, or 

omit it for independence. In the RT trial, radiation-induced toxicities were assumed to be 

influenced by the RT modality (at the group-level) and the anatomic location of each 

patient’s tumor (at the patient-level). Because the tumor’s location within the esophagus 

influences how a dosimetric plan is formulated and implemented, incidences of all radiation-

induced toxicities were assumed to be positively associated. Because radiation-induced 

toxicities may decrease survival, and PFS includes death as an event, toxicity incidence was 

assumed to be negatively associated with PFS.

To specify prior hyperparameters, a general approach that works well in practice is to use 

elicited values to establish means and then calibrate the variances using ESS. One should 

avoid priors that are either excessively informative or unrealistically dispersed. Taking this 

approach, we specified priors that characterized the expected incidence of each toxicity, and 

marginally contained the amount of information that would be contributed by 1 or 2 patients. 

One also must decide whether treatment effects that determine the relative incidences of 

each toxicity severity are independent or a priori dependent for the therapeutic regimes. We 

decided that it was appropriate to assume that the treatment effects for the radiation-induced 

toxicities were exchangeable, and thus used hyperpriors to induce shrinkage for the 

esophageal RT trial. Finally, the model requires specification of a prior for the frailty 

variance in relation to an assumed degree of association between the endpoints on the scale 

of the Poisson intensity domain. We used an uniform prior with lower bound at 0 

(independence) and selected the upper bound, 10, to restrict the prior to an interval that 

excluded an unrealistically high probability of toxicity recurrence.
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6.3 Design considerations

Several design features must be considered when planning a TTB-based trial. One first must 

determine the maximum follow-up duration for which a patient will be monitored for 

toxicity following treatment. The design requires a schedule for the group sequential tests, 

based on the information statistics that determine the number and “timing” of the interim 

analyses. The schedule should be specified in relation to the trial’s expected enrollment rate 

and the assumed event rates. In addition, the investigators must fix ε to reflect a difference 

in mean TTB that should be considered too small to be clinically relevant.

We next describe the process of using simulation to calibrate tuning parameters to obtain 

targeted operating characteristics. To construct alternative simulation scenarios from 

combinations of the treatment effects, δ, one first must ascertain a “baseline” value for mean 

TTB, hereafter denoted by μ0, (e.g. Table 4a) that reflects the expected TTB for a typical 

patient receiving the control therapy. This can be achieved by accounting for or neglecting 

prior uncertainty for the model parameters, depending on investigator preference. The 

former approach requires Monte Carlo simulation, whereby one generates model parameters 

from the priors for the baseline model parameters (treatment effects omitted), obtains a prior 

distribution for mean TTB, and fixes μ0 at the resulting mean. The latter, more practical 

approach simply fixes the model parameters at their respective prior means and uses (7) to 

determine μ0 where δ = 0.

When considering simulation scenarios, one uses μ0 to identify targeted “effect sizes” for the 

power computations by considering scenarios that induce varying degrees of relative 

difference in true mean TTB between treatments. For example, μ0 was determined to be 

33.67 for the control modality, IMRT, in the esophageal trial. The sample size was selected 

to target a 50% reduction in mean TTB for PBT, which we denote by %Δ*. Thereafter, one 

can identify alternative simulation scenarios (e.g. Scenarios 1 – 12, 17, 18 in Table 4b) 

through computation by selecting treatment effect vectors at random, δ = δ*, that achieve the 

target , where μ* and  denote true values of mean TTB determined 

by δ* for treatment and control, respectively. Note for our model  attains the baseline 

value, , when δ* = 0.

After establishing the alternative scenarios, one must simulate trials under each alternative 

and the null, δ* = 0, storing the resulting posterior probabilities obtained for each sequential 

interim analysis. After determining the design’s false positive rate, optimal monitoring 

boundaries can be selected using the process described in Appendix B. In the presence of 

co-primary endpoints, an objective function characterizing the relative importance of power 

for each endpoint must be defined with respect to at least one alternative scenario before 

selecting an optimal design (note that Appendix B uses equal costs). Finally, operating 

characteristics can be obtained through post-processing of the replicate trials using the 

optimal monitoring boundaries. The entire simulation process may be repeated multiple 

times to determine a minimal sample size that detects %Δ* with acceptable power for all 

alternative scenarios.
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7 Discussion

We have proposed a Bayesian design for a randomized clinical trial with group sequential 

treatment comparisons based on posterior mean TTB and PFS. The complexity of the 

underlying probability model reflects the complexity of the disease and therapeutic 

outcomes. TTB, constructed from subjective severity weights, provides a practical 

continuous statistic for measuring the extent to which a patient tolerates a therapeutic 

intervention. The statistical model and corresponding trial design offer powerful tools for 

sequential safety monitoring in settings wherein patients are at risk of many types of 

toxicities that may result from each single treatment or stem from the combined impacts of 

multiple types of therapy when used concurrently or administered over a sequence of 

intervention periods. The trial design reflects the fact that, for many diseases and therapeutic 

regimes, it is essential to account for both toxicity and efficacy in treatment evaluation.

The problem of handling multiple co-primary endpoints is quite general, and does not 

pertain specifically to whether Bayesian or conventional frequentist decision rules are used. 

There is an extensive literature on testing for multiple endpoints. Some useful references are 

O’Brien (1984), Cook and Farewell (1996), Wassmer et al. (1999), and Jennison and 

Turnbull (2000). For our comparator in the simulation study, we assumed that PFS and the 

indicator of toxicity were independent. Alternative approaches that account for association 

between multiple endpoints have been proposed. Pocock et al. (1987) extended the multiple 

endpoint testing methods of O’Brien (1984) to address the bivariate problem of combining 

survival and binary endpoints using linear combinations of asymptotically multivariate 

normal test statistics. Chang et al. (1997) considered sequential analysis of paired survival 

endpoints using multivariate counting processes arising from a time-dependent frailty 

model. Murray (2000) discussed a method for two-sample sequential monitoring of paired 

censored survival endpoints based on weighted log-rank statistics. The latter two methods 

could have been used as the comparator in our simulation study by replacing the toxicity 

indicator with a time-to-event endpoint. Application of any of the three methods 

aforementioned may have yielded a more powerful comparator.

An important aspect of our decision rules is that they allow the conclusion that one modality 

is superior in terms of TTB but yields shorter PFS. Such scenarios are not unlikely in many 

oncology settings, where qualitatively different or more aggressive treatments may improve 

PFS or survival, but at the cost of increased severity or incidence of adverse events. The 

model and joint decision rule used in our sequentially adaptive design provide a formal 

method for treatment comparison based on both safety and efficacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: A Mean Total Toxicity Burden Derivation

Here we provide additional details pertaining to the derivation of mean TTB in Section 4.4. 

Denoting v = 1/u and

by iterated expectation,

(A.

1)

B Selecting Optimal Sequential Monitoring Boundaries

A set of optimal sequential monitoring boundaries was selected using the following process. 

Initially, we simulated 3000 replications for each of scenarios 0, 6 and 16. For each 

simulated sequential trial, g = 1, …, 3000, we saved the set of posterior probabilities 

corresponding to each of the four sequential analyses, τ1, …, τ4 :

Any improvement in mean TTB or PFS was considered clinically relevant by the 

participating oncologists, therefore posterior probabilities were computed using εTTB = εPFS 

= 0.

A gradient optimization method was implemented to select the set of values for the posterior 

boundary parameters, αTTB, αPFS, βTTB, βPFS, that yielded maximum total power for 

Scenarios 1 and 16 among all choices that controlled the familywise type I error at ≤ 0.07 

under Scenario 0. We defined the total power to be the sum of the marginal probability that 

the sequential procedure concluded that PBT was superior to IMRT for TTB in Scenario 1 

plus the marginal probability that the sequential procedure concluded that PBT was superior 

to IMRT for PFS in Scenario 16. The final design used αTTB = 3.92, βTTB = 0.030 and αPFS 

= 0.965, βPFS = 0.028, which produced the OCs provided in Tables 5-6.
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In contrast, the conventional design used O’Brien-Fleming boundaries for both group 

sequential rules. The OCs in Tables 5-6 were computed using the following critical values 

for comparing toxicity rates between modalities using sequential z-tests for a difference in 

proportions: (3.60563, 3.08866, 2.74145, 2.13505). The sequential log-rank testing 

procedure used the following critical values for z-tests for a difference in PFS corresponding 

to each of the four analyses: (3.675, 3.217, 2.529, 2.167). The O’Brien-Fleming group 

sequential critical values were obtained through a two-step process that involved generating 

a set of candidate boundaries using statistical software PASS version 11 using the closest 

approximation of the actual interim monitoring schedule, then simulating the TTB design 

under each candidate boundary and selecting the one that yielded the largest total power 

among those that controlled familywise type I error rate at ≤ 0.07.
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Figure 1. 
Example of toxicity severity scores (lower graph) and their sum, the total toxicity burden, 

(upper graph) for a single patient.
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Figure 2. 
Elicited Dirichlet prior mean for aggregate POC severity used for posterior inference with 

prior effective sample size set at 1. The domain of numerical scores, which represents the 24 

unique values that result from all possible combinations of the ordinal-valued POC 

severities, is slightly irregular.
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Figure 3. 
Progression-free survival for a cohort of 246 patients with stage II-III esophageal cancer 

who underwent the trimodality regime with IMRT: Kaplan-Meier curve (dashed), fitted 

piecewise constant curve (blue) with 95% pointwise confidence intervals (dotted).
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Table 1

Toxicities and elicited severity weights for the 11 toxicities that are monitored in the esophageal cancer trial. 

Medical rationale to justify the numerical values is provided in Section A of the supplemental material.

Recurrent Toxicities Severity Level Elicited Weight

non-symptomatic 10

Pericardial Effusion (PEF) medical intervention 60

surgical intervention 90

non-symptomatic 10

Pleural Effusion (PLE) medical intervention 30

surgical intervention 60

grade 1-2 20

Radiation Pneumonitis (RP) grade 3 60

grade 4-5 90

Pneumonia (PNA) occurrence 40

Atrial Fibrillation (AFIB) occurrence 30

Myocardial Infarction (MI) occurrence 70

Postoperative Complications Severity Level Elicited Weight

radiographic only 30

Anastomotic Leak (AL) medical intervention 60

surgical intervention 90

Acute Respiratory Distress
Syndrome (ARDS)

occurrence 90

Pulmonary Embolism (PEM) occurrence 60

Reintubation (RI) occurrence 70

Stroke (ST) occurrence 90
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Table 2

Joint decision rules for monitoring TTB and PFS at trial time τ. For brevity, we denote the posterior 

probabilities φPB = φPB(εTTB, τ), φIM = φIM(εTTB, τ), χPB = χPB(εPFS, τ), and χIM = χIM(εPFS, τ) and the 

monitoring boundaries cTTB = cTTB(τ) and cPFS = cPFS(τ). We denote ind. to abbreviate indeterminate and u ∨ 

v = maximum {u, v}.

TTB Rule

φPB > cTTB φPB ∨ φIM < cTTB φIM > cTTB

PFS
Rule

χPB > cPFS 1. PBT safer and
more effective

2. PBT more effective
with ind. safety

3. IMRT safer and
less effective

χPB ∨ χIM < cPFS 4. PBT safer
with ind. efficacy

5. continue
enrolling patients

6. IMRT safer
with ind. efficacy

χIM > cPFS 7. PBT safer and
less effective

8. IMRT more effective
with ind. safety

9. IMRT safer and
more effective
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Table 3

Elicited prior information based on experience treating patients with photon radiation therapy. For each 

recurrent toxicity, the probability that a patient will not experience the toxicity over 52 weeks was elicited. 

Binomial/multinomial severity probabilities were elicited for POCs and recurrent toxicities with ordinal 

severities. Elicited values for toxicities with identical severity weights were combined to establish prior 

distributions for baseline model parameters.

Recurrent Toxicity Event Processes

Toxicity 52-week Absence Probability

Pericardial Effusion (PEF) 0.96

Pleural Effusion (PLE) 0.95

Radiation Pneumonitis (RP) 0.90

Pneumonia (PNA) 0.85

Atrial Fibrillation (AFIB) 0.75

Myocardial Infarction (MI) 0.95

Recurrent Ordinal Toxicity Severities

Toxicity Severity Level Severity Probability Given Occurrence

non-symptomatic 0.50

Pericardial Effusion medical intervention 0.30

surgical intervention 0.20

non-symptomatic 0.60

Pleural Effusion medical intervention 0.20

surgical intervention 0.20

grade 1-2 0.80

Radiation Pneumonitis grade 3 0.10

grade 4 0.10

Postoperative Complications

Toxicity Severity Level Severity Occurrence Probability

absence 0.87

Anastomotic Leak (AL) radiographic only 0.08

medical intervention 0.03

surgical intervention 0.02

Acute respiratory distress
syndrome (ARDS)

absence 0.97

Pulmonary Embolism (PEM) absence 0.97

Reintubation (RI) absence 0.95

Stroke (ST) absence 0.98
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Table 5

Marginal probabilities of final comparative decisions and early stopping. a) considers decisions for TTB under 

scenarios 0-12. b) considers decisions for PFS under the null (Scenario= 0) and Scenarios 13-16. Operating 

characteristics for conventional bivariate sequential design using O’Brien Fleming monitoring boundaries are 

provided in parentheses, ().

a) Total Toxicity Burden with identical PFS hazard

Final Decision for TTB Early Stopping
Probability

Mean
Sample SizeScenario PBT Indeterminate IMRT

0 0.01 (0.01) 0.98 (0.98) 0.01 (0.01) 0.04 (0.01) 178 (180)

1 0.83 (0.50) 0.17 (0.50) 0.00 (0.00) 0.56 (0.18) 153 (173)

2 0.89 (0.66) 0.11 (0.34) 0.00 (0.00) 0.66 (0.28) 145 (168)

3 0.93 (0.80) 0.07 (0.20) 0.00 (0.00) 0.70 (0.38) 143 (163)

4 0.85 (0.54) 0.15 (0.46) 0.00 (0.00) 0.58 (0.22) 150 (172)

5 0.89 (0.62) 0.11 (0.38) 0.00 (0.00) 0.64 (0.25) 149 (170)

6 0.90 (0.67) 0.10 (0.33) 0.00 (0.00) 0.68 (0.30) 144 (167)

7 0.87 (0.61) 0.13 (0.39) 0.00 (0.00) 0.60 (0.27) 150 (169)

8 0.86 (0.53) 0.14 (0.47) 0.00 (0.00) 0.59 (0.19) 151 (172)

9 0.87 (0.61) 0.13 (0.39) 0.00 (0.00) 0.61 (0.27) 149 (170)

10 0.90 (0.67) 0.10 (0.33) 0.00 (0.00) 0.65 (0.27) 148 (169)

11 0.93 (0.79) 0.07 (0.21) 0.00 (0.00) 0.71 (0.41) 143 (164)

12 0.95 (0.81) 0.05 (0.19) 0.00 (0.00) 0.72 (0.40) 140 (162)

b) Progression-free Survival with identical mean TTB

Final Decision for PFS Early Stopping
Probability

Mean
Sample SizeScenario PBT Indeterminate IMRT

0 0.02 (0.02) 0.96 (0.96) 0.02 (0.02) 0.04 (0.01) 178 (180)

13 0.26 (0.27) 0.74 (0.73) 0.00 (0.00) 0.17 (0.08) 169 (177)

14 0.56 (0.57) 0.44 (0.43) 0.00 (0.00) 0.33 (0.25) 162 (172)

15 0.76 (0.80) 0.24 (0.20) 0.00 (0.00) 0.52 (0.41) 149 (167)

16 0.89 (0.89) 0.11 (0.11) 0.00 (0.00) 0.66 (0.52) 139 (160)
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Table 6

Joint probabilities of final decisions for TTB and PFS for Scenarios 0, 6, 17, and 18 using three interim 

analyses. Operating characteristics for conventional bivariate sequential design using O’Brien Fleming 

monitoring boundaries are provided in parentheses, ().

Scenario 0: Identical mean TTB and PFS hazard (global null)

TTB Decision

PBT Better Indeterminate IMRT Better

PBT Better 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

PFS Decision Indeterminate 0.01 (0.01) 0.93 (0.93) 0.01 (0.01)

IMRT Better 0.00 (0.00) 0.02 (0.02) 0.00 (0.00)

Early Stopping Probability = 0.04 (0.01); Mean Sample Size = 178 (180)

Scenario 6: 50% reduction in mean TTB for PBT and PFS HR= 1 (null case)

TTB Decision

PBT Better Indeterminate IMRT Better

PBT Better 0.01 (0.005) 0.01 (0.01) 0.00 (0.00)

PFS Decision Indeterminate 0.88 (0.66) 0.07 (0.31) 0.00 (0.00)

IMRT Better 0.01 (0.005) 0.02 (0.01) 0.00 (0.00)

Early Stopping Probability = 0.68 (0.30); Mean Sample Size = 144 (167)

Scenario 17: 50% reduction in mean TTB for PBT and PFS HR= 2 (in favor of PBT)

TTB Decision

PBT Better Indeterminate IMRT Better

PBT Better 0.20 (0.16) 0.42 (0.65) 0.00 (0.00)

PFS Decision Indeterminate 0.37 (0.15) 0.01 (0.04) 0.00 (0.00)

IMRT Better 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Early Stopping Probability = 0.89 (0.65); Mean Sample Size = 125 (152)

Scenario 18: 50% reduction in mean TTB for PBT and PFS HR= 0.5 (in favor of IMRT)

TTB Decision

PBT Better Indeterminate IMRT Better

PBT Better 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

PFS Decision Indeterminate 0.33 (0.35) 0.01 (0.02) 0.00 (0.00)

IMRT Better 0.21 (0.29) 0.45 (0.34) 0.00 (0.00)

Early Stopping Probability = 0.88 (0.73); Mean Sample Size = 126 (147)
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