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Abstract

With competing risks data, one often needs to assess the treatment and covariate effects on the 

cumulative incidence function. Fine and Gray proposed a proportional hazards regression model 

for the subdistribution of a competing risk with the assumption that the censoring distribution and 

the covariates are independent. Covariate-dependent censoring sometimes occurs in medical 

studies. In this paper, we study the proportional hazards regression model for the subdistribution 

of a competing risk with proper adjustments for covariate-dependent censoring. We consider a 

covariate-adjusted weight function by fitting the Cox model for the censoring distribution and 

using the predictive probability for each individual. Our simulation study shows that the covariate-

adjusted weight estimator is basically unbiased when the censoring time depends on the 

covariates, and the covariate-adjusted weight approach works well for the variance estimator as 

well. We illustrate our methods with bone marrow transplant data from the Center for 

International Blood and Marrow Transplant Research (CIBMTR). Here cancer relapse and death 

in complete remission are two competing risks.
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1 Introduction

Biomedical research often involves competing risks in which each subject is at risk of 

failure from K different causes. For competing risks data, one only observes the first event to 

occur and this precludes the occurrence of another event. Also, one often wishes to estimate 

and model the cumulative incidence function (CIF), which is the marginal probability of 
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failure of a specific cause. The standard approach of modeling CIF is to model the cause-

specific hazard functions for all causes. Let λk(t; Z) be the kth conditional cause-specific 

hazard (k = 1, 2 for simplicity), where Z is given set of covariates. The CIF of cause 1 given 

by Z is

where  is the failure time and ∊ indicates the type of failure. Here, all cause-specific 

hazards need to be modeled adequately and correctly. Note that the cumulative incidence 

function F1(t; Z) is a subdistribution function since F1(∞; Z) < 1. Prentice et al. (1978) and 

Cheng et al. (1998) proposed using Cox (1972) proportional hazards model for all causes. 

Alternatively, Shen and Cheng (1999) considered a special additive model, and Scheike and 

Zhang (2002, 2003) proposed and studied a flexible Cox-Aalen model, which allows some 

of the covariates to have time-varying effects. Since the cumulative incidence function of a 

specific cause is a function of cause-specific hazards for all causes, it is difficult to 

summarize the covariate effect (Zhang and Fine, 2008) and to identify the covariate effect 

on the cumulative incidence function. However, regression methods have been developed to 

directly model the cumulative incidence function. Fine and Gray (1999) (FG) developed a 

regression method to directly model the CIF by modeling the subdistribution hazard 

function through a Cox type regression model, 

 based on early work by Gray 

(1988) and Pepe (1991). FG proposed using an inverse probability of the censoring 

weighting (IPCW) technique to estimate the regression parameter βk and cumulative 

baseline subdistribution hazard function . This approach has been 

implemented in an R-package, cmprsk. FG's model has been considered and used 

extensively in cancer studies, epidemiological studies, and many other biomedical studies 

(Scrucca et al., 2007; Wolbers et al., 2009; Kim, 2007; Lau et al., 2009). Let 

 and GC(t) = P(C > t), where C is the censoring time. Fine and 

Gray's approach is based on the fact that  provided 

that censoring time is independent of the covariates, and FG proposed using the Kaplan-

Meier estimator to estimate the unknown censoring distribution GC. However, in biomedical 

research studies, the censoring time may depend on some of the covariates and the treatment 

group. In a clinical trial, patients may be more likely to drop out with some specific value of 

covariate characteristics, and one treatment group may have a higher dropout rate than the 

others (Mai, 2008). DiRienzo and Lagakos (2001a,b) showed that when the distribution of 

censoring depends on both the treatment group and the covariates, in general the null 

asymptotic distribution of the score test is not centered at zero when the model is 

misspecified, the tests of treatment group effect can be severely biased. Heinze et al. (2003) 

showed that if the censoring distributions are not similar in the two comparison groups, the 

log-rank test and fitting a regression model, such as fitting a proportional hazards model, 

may not be valid. For the competing risks data, one can show that 

, where  is the 

HE et al. Page 2

Scand Stat Theory Appl. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditional censoring distribution given by Data. Thus, parameter estimates using the 

inverse probability of censoring weighting approach with the Kaplan-Meier estimator may 

be biased when the censoring distribution depends on some of the covariates. To adjust the 

IPCW when censoring distribution depends on some of the covariates, Fine and Gray (1999) 

suggested using a stratified Kaplan-Meier estimator for the discrete covariates and assuming 

the Cox model for the continuous covariates. In this study, we considered a regression 

model for the censoring distribution, such as a Cox proportional hazards model, and using 

the predicted censoring probability for each individual subject for the weight function. With 

the Cox model adjusted weight, we derived an efficient variance estimator which includes 

variation contributed from estimated censoring distribution, and we performed a simulation 

study to examine the bias that would arise without adjusting covariates for estimating the 

censoring distribution, potential bias reduction and robustness of using the Cox model for 

the censoring distribution. Furthermore, Fine and Gray proposed using a stabilized factor 

 with inverse weight . Our simulation indicates that 

this stabilized weight improves the efficiency and reduces the bias, but not enough. With the 

Cox model adjusted weight function, we also considered using a stabilized weight 

 to improve efficiency and to reduce bias, 

where X is the covariates, which is associated with the censoring distribution and could be a 

subset covariates of Z.

The outline of the remainder of the paper is as follows. In Section 2 we describe the 

competing risks data structure. We introduce a regression-adjusted inverse weighted 

estimation for the proportional subdistribution hazards model and present the asymptotic 

results that can be used for inference. Simulation studies are provided in Section 3. In 

Section 4 we analyze two real data sets, which were originally studied by Kumar et al. 

(2012) and by Ringdén et al. (2012) using data from the Center for International Blood and 

Marrow Transplant Research (CIBMTR). Concluding remarks are provided in Section 5. 

The proof of the main asymptotic result and the simulation procedure are given in Appendix 

A and B, respectively.

2 Data and covariate adjusted censoring weight

Let  and Ci be the event time and right censoring time for ith individual, respectively. ∊i ∈ 

{1,…,K} indicates the cause of failure. For simplicity, we assume K = 2 in this study. Let 

 and . We observe n independent and identically 

distributed (i.i.d.) data {Ti, Δi, Δi∊i, Zi} for i = 1, …, n, where Zi = (Zi1,…, Ziq)T are 

associated covariates. We assume that ( ) are independent of Ci given covariates of Zi. 

We are interested in modeling the cumulative incidence function of cause 1, F1(t; Z). Based 

on Gray (1988) subdistribution hazard technique, Fine and Gray (1999) proposed a 

proportional subdistribution hazards model

(2.1)
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There is a direct relationship between the CIF and subdistribution hazard function:

Let  be the underlying counting process associated with cause 1. 

For right censored competing risks data,  and  are not fully 

observed. For a censored individual, they are only observed up to the censoring time Ci. 

Define . Then  and  are computable for all 

times t. Let GC(t; Z) = P (C ≥ t|Z) be the conditional censoring distribution. Based on the 

assumption that given covariates Z the event time and censoring time are independent and 

the models are formulated as standard regression models conditional on Z, it then follows 

that given Z

FG proposed using an inverse probability of the censoring weighting (IPCW) approach to fit 

the model (2.1) and proposed an IPCW weight function 

, where  is the Kaplan-Meier estimator for 

the unknown censoring distribution. FG proposed estimating the unknown regression 

coefficient β by solving the score equation

where τ is is end of the study time point, and denote the estimate as . FG showed that 

under regularity conditions and the condition that the censoring distribution is independent 

of covariates,  is consistent for β0 and derived large sample properties for 

 and , where the cumulative baseline 

subdistribution hazard  is estimated by

It has been shown that in biomedical research studies the censoring time may depend on 

some of the covariates and the treatment group. To make asymptotically unbiased inference, 

we needed to model the censoring distribution and to estimate the censoring survival 
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probability, GC(T ∧ t; Zi), for each individual. In this study, as suggested by Fine and Gray 

(1999), we considered the commonly used Cox proportional hazards model for the censoring 

distribution,

where Xi is the covariates associated with the censoring distribution and can be a function or 

subset of Zi. In practice one can use the standard model checking procedure to check the 

Cox model assumption for the censoring distribution and use the standard model building 

procedure to identify the risk factors which are associated with the censoring time. Let xi be 

the fixed observed value for the ith individual's covariates, we estimate the predicted 

censoring survival probability 

by

(2.2)

where  is a maximum partial likelihood estimate for γ0 and  is the standard Breslow 

estimator for the cumulative baseline censoring hazard . Note that, any 

administrative censoring events at time τ are not considered as events in the regression 

estimation. In this study, we considered a covariate-adjusted IPCW weight function

We estimated β in model (2.1) by solving the score equation

(2.3)

and denoted the estimate as . Then we estimated  by

Under regularity conditions (given in Section 6.1)), it can be shown that (see (6.6))

where Ω = limn→∞ n−1ICOX(β0), ICOX(β) = −∂{UCOX(β)}/∂β, and Ω can be estimated by 

 Furthermore (see(6.4)), 

, where explicit expressions for 
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and  are given in the Appendix A. The quantities can be estimated by plug-in 

estimators denoted by  and , respectively. It follows that 

converges in distribution to a mean zero Gaussian distribution with an asymptotic variance 

that can be estimated by

where a⊗2 = aa⊺ for a column vector a.

Similarly (see (6.10)), , which 

converges weakly to a mean zero Gaussian process with asymptotic variances, which can be 

estimated by

Explicit expressions for  and  can be found in the Appendix A.

For a given set value of covariates, z0, the predicted CIF of cause 1 can be estimated by 

 or 

 respectively. Fine and Gray (1999) 

derived the large sample property for  when the censoring 

distribution is independent of the covariates. When the censoring distribution depends on the 

covariates through a Cox model, by the functional Delta method it follows that 

 converges in distribution to a Gaussian process with mean 

zero and asymptotic variances, which can be estimated by

where

Resampling techniques can be used to construct confidence bands for  and F1(t;z0) 

(Lin et al., 1994; Scheike et al., 2008).
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3 Simulations

We compared the finite-sample performance of the estimator using the covariate-adjusted 

censoring weight to the unadjusted estimator using the Kaplan-Meier estimator for the 

censoring distribution. Two simulation studies were considered to examine the potential bias 

reduction with the covariate-adjusted censoring weight estimator. For the first study, we had 

one binary covariate. For the second study, we considered one binary covariate and one 

continuous covariate. In both studies, we compared the performance of estimators using two 

weights,  and , respectively.

3.1 Study 1

The regression model below has one binary covariate Z. Given Z, the cumulative incidence 

functions are given by

and

where p = F1(∞|Z = 0). We let p = 0.66 and Z be a Bernoulli random variable, with value 1 

for half of the sample and 0 for the other half. For each setting, we simulated 10,000 

replicates with sample size of n = 100 and 300, respectively (detailed simulating procedure 

is given in Appendix B). We set β = 1 and considered the following three simulation 

scenarios.

Scenario 1 Censoring times are independent of Z:

 Generate censoring times from an exponential distribution ~ exp(λC)

 Set λC = 0.556 for 30% censoring, λC = 1.342 for 50% censoring

Scenario 2 Censoring times depend on Z by a Cox model:

 Generate censoring times from a Cox model, λC(t|Z) = λC exp(βCZ)

 Set βC = 2.5 and λC = 0.137 for 30% censoring

 Set βC = 2.5 and λC = 0.391 for 50% censoring

Scenario 3 Censoring times depend on Z, not by a Cox model:

 C ~ U(0.25, 4.00), if Z = 0, C ~ U(0.07, 1.12), if Z = 1 for 30% censoring

 C ~ U(0.25, 2.00), if Z = 0, C ~ U(0.06, 0.46), if Z = 1 for 50% censoring

The regression coefficient β was estimated by the methods described in Section 2. We report 

the average of bias (Bias), the sample standard deviation of  (SD), the average of estimated 

standard error  using formula given in Appendix A, average of standardized bias 

( ), the coverage probability of β, and the mean squared error (MSE). 
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Table 1 shows the simulation results. We also examined the potential bias of estimating the 

cumulative baseline subdistribution hazard, , using both weights at a set of time 

points, t = (0.25, 0.5, 0.75, 1.00)⊺. Figure 1 shows the simulation results.

The simulation results show that when the censoring time depends on the covariate (scenario 

2 and 3), the unadjusted estimator produces significantly biased results, and the estimator 

using the covariate-adjusted censoring weight provides satisfactory results where the biases 

are all close to zero. Both estimators give satisfactory variance estimates and have almost 

identical sample standard deviations (see scenario 2 and 3 in Table 1). Regarding the 

cumulative subdistribution hazard estimators, estimates using the Cox model adjusted 

weights have smaller biases compared to those using the unadjusted Kaplan-Meier weight at 

almost all time points (see Figure 1). Simulation results also indicated that the estimator 

using the Cox model adjusted weight provides satisfactory results when the Cox model is 

not the true model for the censoring distribution (see scenario 3 in Table 1 and Figure 1). In 

scenario 1, where the censoring distribution is independent of the covariate Z, both 

estimators provide satisfactory results in estimating the covariate effect and cumulative 

baseline subdistribution hazard function. Both estimators also have almost identical sample 

standard deviation and similar MSE, which indicate that the potential efficiency losses from 

modeling the censoring distribution are minimal when using covariate-adjusted censoring 

weights.

3.2 Study 2

The regression models below have one binary covariate Z1 and one continuous covariate Z2. 

Given Z1 and Z2, the cumulative incidence functions are given by

and

We let p = 0.66, and Z1 is a Bernoulli random variable, with a value 1 for half of the sample 

and 0 for the other half. Z2 is a N(0,1) random variable. We set β1 = 1, β2 = 0.5 and 

considered the following four scenarios.

Scenario 1 Censoring times are independent of Z1 and Z2

 Generate censoring times from an exponential distribution ~ exp(λC)

 Set λC = 0.547 for 30% censoring, λC = 1.352 for 50% censoring

Scenario 2 Censoring times depend on Z1 by a Cox model

 Generate censoring times from λC(t|Z) = λC exp(βC1Z1)

 Set βC1 = 2.5. Set λC = 0.137 for 30% censoring,

 λC = 0.397 for 50% censoring
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Scenario 3 Censoring times depend on Z1 and Z2 by a Cox model

 Generate censoring times from λC(t|Z) = λC exp(βC1Z1 + βC2Z2)

 Set βC1 = 2.5, βC2 = 2.5. Set λC = 0.082 for 30% censoring,

 λC = 0.389 for 50% censoring

Scenario 4 Censoring times depend on Z1, not by a Cox model

 C ~ U(0.25, 4.00), if Z1 = 0, C ~ U(0.07, 1.14), if Z1 = 1 for 30% censoring

 C ~ U(0.25, 2.00), if Z1 = 0, C ~ U(0.06, 0.438), if Z1 = 1 for 50% censoring

For each setting, we simulated 10,000 replicates with n = 100 and 300. The regression 

coefficients β1 and β2 were estimated by the methods described in Section 2. Table 2 shows 

the simulation results. We also examined the potential bias of estimating the cumulative 

baseline subdistribution hazard, , using both weights at a set of time points t = (0.25, 

0.5, 0.75, 1.00)T for selected scenarios. Figure 2 shows the simulation results.

This simulation study shows similar results as in study 1. The unadjusted estimator produces 

biased results when the censoring distribution depends on the covariates (scenario 2 to 4), 

and the estimator using the Cox model adjusted weight provides a good bias reduction. Both 

estimators give satisfactory variance estimates for both parameters. Regarding the 

cumulative baseline subdistribution hazard estimates, estimates using the Cox-adjusted 

weight have smaller biases at almost all points (see Figure 2).

Both simulation studies show that the unadjusted estimator produces significant biased 

results when the censoring time depends on the covariates and the proposed estimator using 

covariate adjusted weight works well in bias reduction.

4 Real data examples

4.1 Example 1

We considered data from multiple myeloma patients treated with allogeneic stem cell 

transplantation from the Center for International Blood and Marrow Transplantat Research 

(CIBMTR) (Kumar et al., 2012). The CIBMTR is comprised of clinical and basic scientists 

who share data on their blood and bone marrow transplant patients with the CIBMTR Data 

Collection Center located at the Medical College of Wisconsin. The CIBMTR has a 

repository of information regarding the results of transplants at more than 450 transplant 

centers worldwide. The data used in this paper consist of patients transplanted from 1995 to 

2005, and we compared the outcomes between transplant periods: 2001-2005 (N=488) 

versus 1995-2000 (N=375) (Kumar et al., 2012). Two competing events are multiple 

myeloma relapse and treatment-related mortality (TRM) defined as death without relapse. 

The CIBMTR study (Kumar et al., 2012) identified that donor type and prior autologous 

transplantation were associated with relapse or TRM. The variables considered in this 

example are transplant time period (GP (main interest of the study): 1 for transplanted in 

2001-2005 versus 0 for transplanted in 1995-2000), donor type (DNR: 1 for Unrelated or 

other related donor (N=280) versus 0 for HLA-identical sibling (N=584)), and prior 

autologous transplant (PREAUTO: 1 for Auto+Allo transplant (N=399) versus 0 for 

allogeneic transplant alone (N=465)).
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First, we fit a Cox model for the censoring distribution where relapsed or dead individuals 

are considered as censoring subjects. The hazard ratios (HR) are: HR(GP)=6.42 (P < 

0.0001); HR(DNR)=0.48 (p = 0.0018); HR(PREAUTO)=1.73 (p = 0.0013). These results 

indicate that the censoring distribution depends on the transplant time period, donor type and 

prior autologous transplantation. Next, we fit a proportional subdistribution hazards model 

(2.1) with the Kaplan-Meier estimated unadjusted weight and the Cox model adjusted 

weight, and we computed the predicted cumulative incidence probability for a patient who 

received an HLA-identical sibling donor allogeneic transplantation in 1995-2000 or in 

2001-2005 (see results in Table 3–4 and Figure 3). Both weights give similar estimates for 

TRM. However, for cancer relapse, the regression estimate of the main treatment effect are 

 and  by unadjusted weight and Cox model adjusted weight, respectively. At 

three years after transplant, the differences in cumulative incidence of relapse between late 

and early transplant (TX) patients are 0.09 (CIF=0.34 for the late TX versus CIF=0.25 for 

the early TX) and 0.13 (CIF=0.35 for the late TX versus CIF=0.22 for the early TX) by 

unadjusted weight and Cox model adjusted weight, respectively. The unadjusted weight 

underestimates the effect size of CIF of relapse by 4% compared to the point estimate using 

the Cox model adjusted weight (Table 4). Underestimated effect size counts about 14% 

(0.04/((0.22+0.35)/2)) of estimated average CIF, which leads to quite a large relative bias.

4.2 Example 2

We considered another CIBMTR study data set (Ringdén et al., 2012) that consists of 177 

myeloma patients who received a reduced-intensity conditioning allogeneic transplantation. 

Cancer relapse and TRM were two competing risks in this study. 105 patients received prior 

autologous transplant, and 72 patients received allogeneic transplant alone. We were 

interested in transplant type effect on relapse and TRM. Let PREAUTO be the indicator of 

transplant type (1 for Auto+Allo transplant versus 0 for Allogeneic transplant alone). Here 

the censoring distribution depends on the transplant type (p = 0.0047). We fit a proportional 

subdistribution hazards model (2.1) for PREAUTO with unadjusted weight and Cox model 

adjusted weight, respectively. For relapse, we have ; 

 and ; . Here the Cox model 

adjusted weight reduces a relative bias of 21% ((0.41 − 0.34)/0.34).

5 Concluding remarks

We have shown that the competing risks regression based on IPCW techniques may be 

biased when the censoring distribution depends on the covariates and the biases could be 

significant for fixed sample sizes. We considered a regression model for the censoring 

distribution, and used the Cox proportional hazards model to predict the censoring weight 

for each individual.

Clearly, using the Cox model to estimate the censoring weights rely on this model fitting 

well. Our methodology may be adapted to deal with other regression models for the 

censoring distribution, for example additive hazards models that are more flexible. Efficient 

variance estimator, which includes variation contributed from estimated censoring 
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distribution, needs to be derived for any alternative model-based weight function, and a 

computing package needs to be further developed as well.

The censoring time could depend on a time-dependent covariate, but in this case the 

predictions given the fixed covariates of the competing risks regression model may be hard 

to get, and this is generally not directly feasible. As Kalbfleisch and Prentice (2002) pointed 

out that the predicted survival probability is no longer feasible for a random (internal) time-

dependent covariate. Further study will be needed.

Recently, the inverse probability of censoring weighting (IPCW) technique (Robins and 

Rotnitzky, 1992) has been used extensively for right-censored survival data and, 

specifically, for completing risks data. It has been shown that regression modeling of the 

censoring distribution can be used to improve the efficiency of the IPCW technique (Bickel 

et al., 1993; Van der Laan and Robins, 2003; Scheike et al., 2008) even if the censoring 

distribution is independent of the covariates. In this study, we showed that the covariate-

adjusted IPCW technique can be used to reduce bias for modeling the subdistribution hazard 

function when censoring depends on the covariates. In general, the covariate-adjusted IPCW 

technique should be considered to improve efficiency and reduce bias.

We have developed an R-package, wtcrsk, which is available on CRAN.

6 Appendix A

Here we present regularity conditions and give detailed proofs for the asymptotic properties 

of  and . Similar arguments can been seen in Ghosh and Lin (2002). First, 

assuming the censoring distribution depends on covariates X through a Cox proportional 

hazards model where X could be a subset covariates of Z,

Let , Yi(t) = I(Ti ≥ t), UC(γ) be the partial likelihood for the 

censoring time, and

Further, let
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where  and .

We assume the following regularity conditions to be hold throughout the appendix.

6.1 Assumptions

(A1) { , Xi, Zi, , Δi, εi}, i = 1, …, n, are i.i.d. instances of { , X, Z, Y1, Δ, ε}.

(A2)  and C are independent conditional on X, Z.

(A3) There is a maximum follow-up time τ < ∞ such that P(T > τ) > 0.

(B1) The hazard for the right-censoring times is , 

where  and , for a compact .

(B2) The covariates X are bounded almost surely.

(B3) The matrix

is positive definite.

(C1) The subdistribution hazards for cause one is , where 

 and , for a compact .

(C2) The covariates Z are bounded almost surely.

(C3) The matrix

is positive definite.

6.2 Preliminaries

To estimate the censoring distribution we use Cox regression with the roles of  and C 

exchanged. Any administrative censoring events at time τ are not considered as events in the 

regression estimation. From assumption (B1) the censoring process NC(t), for 0 ≤ t < τ, has 

intensity on the Cox model form. For this process, conditions (A1), (A2), (A3), (B1), (B2), 

and (B3), are sufficient to fulfill the conditions for the large sample results on the Cox model 

of Andersen and Gill (1982) (see their Theorem 4.1).
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Let  and  be the Cox estimates of γ0 and ΛC0, and let

By the arguments given by Andersen and Gill (1982), see also Equation (2.1) of Lin et al. 

(1994), we have

(6.1)

where ΩC was defined in (B3), and

and

is a martingale with respect to the censoring filtration. Note that by (6.1),

(6.2)

Let . From the i.i.d. assumption (A1) and 

the boundedness implied by (A3), (B1), (B2), (C1) and (C2)
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uniformly in t ∊ [0, τ] and , by (6.2) and the uniform weak law of large numbers. Also 

note that, by the same assumptions, the limit is bounded from above and bounded away from 

zero, and we may take derivatives by differentiating under the integral sign.

6.3 Asymptotic normality of n−1/2UCOX(β0)

The IPCW score function (2.3) for β evaluated at β0 is

The first term on the right-hand side above is a sum of mean zero i.i.d. random variables. 

From (6.2), the second term on the right-hand side is

(6.3)

where

Thus,

(6.4)

where
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and  are independent and identically distributed zero-mean variables.

6.4 Consistency and asymptotic normality 

Consider the derivative of UCOX(β) with respect to β. Let

By the same boundedness arguments as used in connection with (6.2), n−I(β) converges in 

probability uniformly in β to a continuous limit such that limn→∞ n−1ICOX(β0 = Ω). From 

Assumption (C3), Ω is positive definite, and from the previous section we know that 

n−1UCOX(β0) = oP(1). Thus, by the argument in the proof of Theorem 2 of Foutz (1977), 

 converges in probability to β0.

Because , it follows that

(6.5)

Then by the consistency of . By (C3), Ω is 

invertible and (6.5) gives that

(6.6)

which is essentially a sum of bounded independent and identically distributed variables and 

thus by the central limit theorem it is asymptotically normally distributed with mean zero 

and variance matrix

The variance matrix  can be estimated by a plug-in estimator
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where

6.5 Consistency and weak convergence of 

We first note that  is uniformly consistent for . To see this, 

write

(6.7)
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By the arguments in Section 6.2, the consistency of  and the boundedness away from 

zero and smoothness of , the right-hand side of (6.7) converges to zero in probability, 

uniformly in t ∊ [0, τ].

Consider the first term on the right-hand side of (6.7). By the same argument as used for 

establishing (6.3),

(6.8)

where

Similar to (6.5), by a first-order expansion, the last term on the right-hand side of (6.7), is

(6.9)

where

Combining (6.5), (6.8) and (6.9),

(6.10)

where

The  terms are i.i.d. stochastic processes forming a Donsker class indexed by t. To 

see this, note that ,  and  are of bounded variation and thus Donsker and that 
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sums of bounded Donsker classes are Donsker (van der Vaart, 1998, Example 19.20, 

Example 19.11). Thus,  converges weakly to a mean-zero 

Gaussian process with variance . The variance can be estimated 

by a plug in estimator, , where

7 Appendix B

Cumulative incidence functions for cause 1 and 2 are generated from

where 0 < p < 1. Generating data step (need to set parameters p and β first):

1. Generate covariate Z

2. Based on p, β and Z, compute P1 and P2 (probability of type 1 and type 2 failures): 

P1 = F1(∞) = 1 – (1 – p)exp(βZ) and P2 = F2(∞) = (1 – p)exp(βZ)

3. Generate an uniform r.v. U1 ~ U(0, 1). Generate cause of death indicator, δ, by
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4. Based on δ = k, k = 1,2, compute the conditional probability

5. Generate second uniform r.v. U2 ~ U(0,1). Then use inverse distribution method to 

generate Tk based on .
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Figure 1. 
Simulation results (1 covariate) for biases of cumulative baseline subdistribution hazards at t 

= (0.25, 0.5, 0.75, 1)T with 30% and 50% censoring, respectively.
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Figure 2. 
Simulation results (2 covariates) for biases of cumulative baseline subdistribution hazards at 

t = (0.25, 0.5, 0.75, 1.00)T with 30% and 50% censoring, respectively.
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Figure 3. 
Predicted cumulative incidence probability of relapse and TRM for a patient who received 

an HLA-identical sibling donor allogeneic transplantation.
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Table 3

Fit a proportional subdistribution hazards model.

Unadjusted weight Cox model adjusted weight

Variable
; exp(β) (95% CI); P ; exp(β) (95% CI); P

RELAPSE

GP 0.38; 1.47(1.16–1.86); 0.0017 0.54; 1.71(1.34–2.20); < 0.0001

DNR 0.39; 1.48(1.18–1.86); 0.0007 0.35; 1.42(1.13–1.78); 0.0027

PREAUTO 0.41; 1.51(1.19–1.91); 0.0007 0.42; 1.53(1.21–1.93); 0.0004

TRM

GP −0.59; 0.55(0.42–0.73); < 0.0001 −0.56; 0.57(0.43–0.75); < 0.0001

DNR 0.57; 1.76(1.38–2.25); < 0.0001 0.55; 1.73(1.35–2.20); < 0.0001

PREAUTO −0.38; 0.68(0.51–0.91); 0.0099 −0.37; 0.69(0.52–0.92); 0.0117
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Table 4

Predicted CIF of relapse and TRM for a patient who received an HLA-identical sibling donor and allogeneic 

along transplantation

Unadjusted Weight Cox model adjusted Weight

1995–2000 2001–2005 1995–2000 2001–2005

Time
 (95% CI)  (95% CI)  (95% CI)  (95% CI)

RELAPSE

1 Year 0.16 (0.13–0.19) 0.23 (0.18–0.27) 0.07 0.15 (0.13–0.17) 0.24 (0.18–0.30) 0.09

3 Year 0.25 (0.20–0.29) 0.34 (0.28–0.40) 0.09 0.22 (0.20–0.25) 0.35 (0.28–0.42) 0.13

5 Year 0.29 (0.24–0.34) 0.40 (0.33–0.46) 0.11 0.26 (0.24–0.30) 0.41 (0.33–0.49) 0.15

TRM

1 Year 0.38 (0.32–0.43) 0.23 (0.18–0.28) 0.15 0.37 (0.34–0.41) 0.23 (0.17–0.29) 0.14

3 Year 0.42 (0.37–0.48) 0.26 (0.20–0.32) 0.16 0.42 (0.38–0.46) 0.27 (0.20–0.33) 0.15

5 Year 0.44 (0.38–0.49) 0.27 (0.21–0.33) 0.17 0.43 (0.39–0.47) 0.27 (0.21–0.34) 0.16
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