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The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic 
Beta Cells via Inhibition of CD36 

Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and 
ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol 
absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect 
through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe 
on insulin secreting cells and to determine whether this effect is related to change of CD36 
expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose 
stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) 
condition in INS-1 cells and primary rat islet cells were compared. Changes of the 
aforementioned factors with treatment with ezetimibe (20 μM) under normal or high 
glucose condition were also assessed. mRNA expression of insulin was decreased with high 
glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 
mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 
cells and primary rat islets. Three-day treatment with high glucose resulted in an increase 
in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. 
Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. 
Palmitate uptake following exposure to high glucose conditions for three days was 
significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may 
prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via 
inhibition of CD36.
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INTRODUCTION 

Physiological level of glucose stimulates insulin secretion; how-
ever, chronic hyperglycemia causes insulin secretory dysfunc-
tion, known as glucotoxicity (1).
  Fatty acids (FAs) are also important for insulin secretion; how-
ever, prolonged exposure to elevated levels of FAs causes pan-
creatic β-cell dysfunction and apoptosis, resulting in lipotoxici-
ty, which is augmented by high glucose (2,3). 
  Cellular uptake of fatty acids involves two components of 
passive diffusion through the lipid bilayer and protein-facilitat-
ed transfer playing a major role in metabolic tissues. Several 
proteins, including fatty acid translocase/cluster determinant 
36 (CD36), family of fatty acid transport proteins (FATPs) (1-6), 
and plasma-membrane-associated FA-binding protein (FAB-
Ppm) have been identified as active FAs transport proteins. 
  CD36 has been documented having an important role of FA 
transport, and it is mainly distributed in liver and muscle tissues. 
Recently it was reported that CD36 is also expressed in insulin 
producing cells including MIN-6 cell, INS-cell, and human β-cell 
(4). 
  A previous report demonstrated that high glucose stimulated 

CD36 expression and palmitate uptake in INS-1 cells along with 
decreased insulin secretion, which was normalized by suppres-
sion of CD36 (5). 
  Intestinal absorption of lipid is regulated by various trans-
porters, including CD36, scavenger receptor class B type I (SR-
BI), and Niemann-Pick C1-Like 1 (NPC1L1). 
  Ezetimibe is a lipid-lowering agent that blocks Niemann-Pick 
C1-Like 1 (NPC1L1)–mediated cholesterol absorption in the 
apical brush border membrane of jejuna enterocytes. Follow-
ing oral administration, over 80% of ezetimibe is rapidly absorb
ed and metabolized within the intestinal mucosa to form active 
ezetimibe-glucuronides, which are then transported through 
the portal vessel to the liver, where they undergo further gluc-
uronidation and subsequent biliary secretion into the intestine 
(6). Binding of ezetimibe to CD13 in the brush border mem-
brane of the small intestine has been reported to block choles-
terol uptake (7) and subsequent signaling through CD13 re-
quires co-association with additional proteins, such as CD36, 
CD64, or CD16. Ezetimibe induces conformational change in 
the extracellular domain of CD13 with masking of the co-as-
sembly with these co-receptor proteins (8). In addition, ezeti-
mibe was reported to induce a significant decrease in surface 
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expression of CD13, CD16, CD64, and CD36 of monocyte-de-
rived macrophages (9). Ezetimibe is also known to improve glu-
cose metabolism in addition to lowering lipid levels in type 2 
diabetes (10,11). Ezetimibe could inhibit the activity of hepatic 
NPC1Ll, promoting the insulin signaling pathway, and then 
improve insulin resistance in the liver (12). Several studies with 
diabetic animal models have revealed that ezetimibe could im-
prove first phase insulin secretion and protect β-cells (13,14), 
however, the specific mechanism is still unclear. 
  This study attempted to clarify the effects of ezetimibe on 
pancreatic secreting beta-cells exposed to high glucose and to 
determine whether these effects are related to change of CD36 
expression. 

MATERIALS AND METHODS

INS-1 cell culture
INS-1 cells were grown in 5% CO2 with 95% air at 37°C in RPMI-
1640 medium (GIBCO, Grand Island, NY, USA) containing 11.1 
mM pyruvate, 10 mM HEPES, 50 M 2-mercaptoethanol, 100 U 
penicillin/mL, and 100 g streptomycin/mL. The RPMI-1640 
medium used in all experiments contained the supplements 
described above. The cells were passaged weekly after they had 
been detached with trypsin–EDTA. All experiments were per-
formed using INS-1 cells between passages 21 and 29. 

Pancreatic islet isolation and cell culture
Pancreases from male Sprague-Dawley rats weighing 180-250 
grams were infused with 10 mL of 1.5 mg/mL collagenase type 
XI (Sigma, St. Louis, MO, USA)/1% fetal bovine serum/2 units/
mL RQ1 DNase (Promega, Madison, WI, USA) solution in Me-
dium 199 (Sigma). After surgical excision of the pancreas, it was 
incubated in collagenase solution at 37°C. Undigested tissue 
was removed using a 500 µm screen, and the recovered tissue 
was washed twice with ice-cold Hanks’ balanced salt solution 
containing 0.1% bovine serum albumin, followed by centrifu-
gation at 250 × g for 4 minutes. Prior to experimentation, islets 
in the pellet were separated using a Histopaque-1077 gradient 
(Sigma), and islets were then hand-picked and cultured in RPMI 
medium 1640 containing 10% fetal bovine serum, 11.1 mM glu-
cose, and penicillin/streptomycin/amphotericin B.
  mRNA expression of insulin and CD36 and intracellular per-
oxide levels were determined in INS-1 cells and primary rat islet 
cells exposed under normal (5.6 mM for INS-1 cells, 11 mM for 
primary cells) or high glucose condition (30 mM for both) with 
or without 20 μM of ezetimibe for 12 hours. The dose of ezeti-
mibe was determined according to previous studies with mono-
cyte or CaCO2 cells (7,9). Glucotoxicity was induced by three-
day treatment with high glucose (30 mM) and glucose stimulat-
ed insulin secretion (GSIS) in INS-1 cells was evaluated. INS-1 
cells were exposed to high dose palmitate (1 mM) for 24 hours.

Evaluation of reactive oxygen species (ROS) with flow 
cytometry 
Intracellular peroxide levels were detected by flow cytometric 
analysis using an oxidation-sensitive fluorescein labeled dye, 
carboxylated dichlorodi-hydrofluorescein diacetate (carboxy-
H2DCFDA, Molecular Probes, Carlsbad, CA, USA) (15). Upon 
oxidation by intracellular ROS, the non-fluorescent dye is con-
verted into its fluorescent form. INS-1 cells were labeled with 
100 M carboxy-H2DCFDA for 1 hour at 37°C. Following cell 
loading of the dye, the cells were washed twice with PBS and 
then put back into culture conditions for 2 hours. INS-1 cells 
were then harvested, washed twice with PBS, and re-suspend-
ed in trypsin-EDTA (0.25% trypsin, 2 mM Na4-EDTA, Invitro-
gen) for 5 minutes at 37°C. In order to disperse the cells into a 
single cell suspension, INS-1 cells were gently passed 20 times 
in and out of a 200-1,000 lL tip. The cells were then washed twice 
with ice-cold PBS. Analysis of cells was performed using a 488 
nm argon laser EPICS XL-MCL flow cytometer controlled by 
EXPO 32-ADC software (Beckman Coulter, Fullerton, CA, USA). 
ROS values were analyzed based on fluorescence intensity.

GSIS

Static incubation of the INS-1 rat insulinoma cell line in Krebs–
Ringer buffer (KRB) (118 mmol/L NaCl, 4.7 mmol/L KCl, 2.5 
mmol/L CaCl2, 1.18 mmol/L KH2PO4, 1.18 mmol/L MgSO4, 25 
mmol/L NaHCO3, 10 mmol/L HEPES, and 0.1% BSA, pH 7.4) 
containing either non-stimulatory or stimulatory concentrations 
of glucose (5.6 mM or 16.7 mM, respectively) was performed 
for 1 hour. Insulin levels in KRB media were collected from the 
static incubations from INS-1 cells using 95.5 ethanol: hydro-
chloric acid solution was measured using an enzyme-linked im-
munosorbent assay (Rat Insulin ELISA kit; Mercodia, Uppsala, 
Sweden).

Real time RT-PCR
Total RNA was obtained from INS-1 cells using Trizol Reagent 
(Bio Science Technology, Korea). cDNA was synthesized using 1 
μg total RNA with oligo-(dT) primers and Prime RT Premix 
(GENET BIO, Korea). Real-time RT-PCR was performed in the 
Light-Cycler (Roche, Germany) as previously described. The fol-
lowing primers were used: insulin, 50-ACC CAA GTC CCG TCG 
TGA AGT-30 (forward) and 50-CCA GTT GGT AGA GGG AGC 
AGA TG-30 (reverse); for PDX-1,50-GGC TTA ACC TAA ACG 
CCA CA-30 (forward) and 50-GGG ACC GTC CAA GTT TGT 
AA-30 (reverse); CD36, 50-GTG GCT AAA TGA GAC TGG GAC 
C-30 (forward) and 50-AGA CCA TCT CAA CCA GGC CC-30 
(reverse); β-actin, 50-TAC TGC CCT GGC TCC TAG CA-30 (for-
ward) and 50-TGG ACA GTG AGG CCA GGA TAG-30 (reverse).

Palmitate uptake
Palmitate uptake was determined using a modified method re-
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ported by Wallin et al. (4). Briefly, cells were trypsinized and 
washed in ice-cold KRB in the absence of glucose. An equal 
amount of cells was transferred to new tubes and centrifuged. 
Cells were re-suspended in ice-cold KRB (11.1 mmol/L glucose) 
and 2.1 lCi 14C-palmitate (Perkin Elemer Life Science Inc., Bos-
ton, MA, USA) and transferred to microcentrifuge tubes (50 lL), 
which were prepared with a bottom layer of 6 mol/L urea solu-
tion (20 lL) over layered by a 10:3 mixture of dibutyl-dinonylph
thalate (200 lL). Uptake was terminated by centrifugation at 
8,000 rpm for 15 minutes. The urea layer containing the cells 
was transferred into scintillation vials and radioactivity was 
measured after addition of scintillation cocktail (Aqueous Count-
ing Scintillation, Amersham, Canada) using a liquid scintilla-
tion counter (Packard Bioscience Company, Meriden, CT, USA).

Data analysis
All values are expressed as mean ± SE. One-way ANOVA was 
used for statistical analysis, and the differences between groups 
were considered significant at P values < 0.05. 

RESULTS

The mRNA expression of insulin was decreased in the high dose 

palmitate (1 mM) group, compared with the control group, where-
as mRNA expression of CD36 and intracellular peroxide level 
were increased in INS-1 cells. However, no significant change 
was observed in glucose stimulated insulin secretion (GSIS) by 
palmitate (data not shown).
  The effects of high glucose (30 mM) with or without ezetimibe 
for 12 hours on insulin secreting cells are shown in Fig. 1. The 
high glucose group showed increased CD36 mRNA expression 
and decreased insulin mRNA expression. Ezetimibe per se in 
normal glucose media induced no changes in mRNA expres-
sion of CD36 and insulin. However, treatment with ezetimibe in 
high glucose showed that the increased CD36 mRNA expres-
sion in high glucose was suppressed and decreased insulin mRNA 
expression was reversed with ezetimibe (Fig. 1A and B). Similar 
results were observed again in primary rat islet cells (Fig. 1C 
and D). 
  Three-day exposure of INS-1 cells to 30 mM glucose for in-
duction of glucotoxicity resulted in an increase in palmitate up-
take which was decreased by treatment with ezetimibe (Fig. 2A). 
An increase in Intracellular peroxide level and a decrease in 
GSIS were induced with three-day exposure of high glucose; 
however, ezetimibe induced a significant decrease in intracel-
lular peroxide level and reversal of GSIS (Fig. 2B and C). 

Fig. 1. The effects of high glucose (30 mM) with or without ezetimibe on insulin secreting cells. The mRNA expression of insulin was decreased with high glucose (H-12h), 
which was reversed by ezetimibe (H+E-12h) in INS-1 cells (A) and rat islets (C). CD36 mRNA expression was increased with high glucose (H-12h), but decreased by ezetimibe 
(H+E) in INS-1 cells (B) and rat islets (D). Bars are mean ± SE of three separate experiments. *P < 0.05 vs. Control; †P < 0.05 vs. H-12h treated cells. 12h, 12 hours.
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DISCUSSION

Findings of the present study demonstrated that ezetimibe re-
versed high glucose induced increased CD35 expression, pal-
mitate influx, and ROS levels and also increased insulin secre-
tion in INS-1 cells and primary rat islet cells. There is a contro-
versy regarding whether or not the effect of elevated FAs on pan-
creatic beta cells is beneficial (16-19). However, it is widely ac-
cepted that prolonged exposure to elevated FAs along with high 
glucose causes pancreatic β-cell dysfunction and apoptosis, re-
sulting in glucolipotoxicity (1). Findings of the present study 
demonstrated that a high level of FAs led to an increase in oxi-

dative stress and a decrease in insulin mRNA expression, but 
did not cause impairment of GSIS. The reasons why the effects 
of FAs on beta cell dysfunction in vitro have been various are 
the differences of sensitivity to the cytotoxic effects of FAs be-
tween clonal cells and primary beta cells, the disparity of con-
centration of FAs used in vitro, and lack of concern for the con-
centration of potent FAs fraction unbound to bovine serum al-
bumin (BSA) (1).
  The finding that high glucose condition in normal FA con-
centration increased intracellular uptake of FAs was shown again 
in the present study along with our previous study (5). This find-
ing implies that the conditions inducing high FA influx may re-
sult in insulin secretory dysfunction in pancreatic beta cells. In 
addition, the finding that high dose FAs or glucose both induced 
an increase of ROS demonstrates the possible involvement of 
oxidative stress in FAs-induced beta cell dysfunction. This is 
consistent with the report (20) that high FAs or glucose-induced 
beta cell apoptosis was prevented by antioxidants, so that these 
cytotoxic effects could be mediated by oxidative stress. Mecha-
nisms other than oxidative stress have been proposed to medi-
ate fatty acid-induced beta cell dysfunction, including altered 
intracellular lipid partitioning, ceramide formation, activation 
of protein kinase C, inflammatory mechanisms, and endoplas-
mic reticulum (ER) stress; and glucotoxicity and lipotoxicity are 
believed to induce a synergistic loss of beta cells (1,21-25).
  CD36 plays an important role in induction of fatty acid influx 
in pancreatic beta cells. One study demonstrated that induction 
of CD36 over-expression in INS-1 cells resulted in an increase 
in fatty acid uptake and attenuation of the normal potentiating 
effect of fatty acids on glucose stimulated insulin secretion (4). 
Findings of the present study demonstrated that even in nor-
mal fatty acid condition, high glucose induced expression of 
CD36 with increasing fatty acid influx and ROS was accompa-
nied by a decrease in insulin secretion. Therefore, it is proposed 
that regardless of concentration of fatty acids, insulin secreting 
cells exposed to high glucose show increased fatty acid uptake 
resulting in beta cell dysfunction, at this time, CD36 plays an 
important role. It is suggested that elevated levels of glucose or 
fatty acids might regulate partitioning of calories into cells by 
induction of genes like CD36 that promote fatty acid uptake 
and triglyceride deposition, which contribute to acceleration of 
insulin resistance, cellular dysfunction, and atherosclerosis 
(26,27). Several studies have demonstrated that suppression of 
CD36 expression in insulin producing cells resulted in decreased 
fatty acid uptake and increased insulin secretion (28,29), and 
our previous study also demonstrated that suppression of CD36 
by transfection with CD36 siRNA resulted in decreased oxida-
tive stress and improved glucose stimulated insulin secretion in 
INS-1 cells (5). These findings suggested that inhibition of CD36 
could be a target for prevention of glucotoxicity in pancreatic 
beta cells. 

Fig. 2. The effects of three-day exposure of INS-1 cells to 30 mM glucose. Palmitate 
uptake (A) and intracellular peroxide levels (B) following an exposure to high glucose 
conditions (H-3d) for 3 days were significantly elevated, which were decreased by the 
ezetimibe (H-3d+E-12h) in INS-1 cells. Decreased glucose stimulated insulin secre-
tion (GSIS) (C) by high glucose (H-3d) was reversed by ezetimibe (H-3d+E-12h). Bars 
are mean ± SE of three separate experiments. *P < 0.05 vs. Control; †P < 0.05 vs. 
H-3d. 3d, 3 days; 12h, 12 hours. 
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  Ezetimibe blocks absorption of Niemann-Pick C1-Like 1 (NP
C1L1)-mediated cholesterol in the apical brush border mem-
brane of jejuna enterocytes (6). Recently, ezetimibe has also 
been reported to decrease the surface expression of CD36 (7-9). 
Therefore, ezetimibe seems to be able to prevent beta cell dys-
function by inhibition of CD36. The present study demonstrat-
ed that ezetimibe induced a decrease in expression of CD36, 
fatty acid uptake, and ROS, which were elevated in high glucose 
condition, and reversed the suppressed insulin secretion in INS-
1 cells and primary rat islet cells. These findings are consistent 
with those of other studies reporting that ezetimibe-treated db/
db mice showed improvement of the first phase of insulin se-
cretion, reduced β cell loss, and protected function of β cells 
(13), and chronic administration of ezetimibe in OLETF rats 
was effective in glycemic control and lowering free fatty acids 
accompanied with preservation of pancreatic beta cell mass 
(14). According to one report, ezetimibe could inhibit the activ-
ity of hepatic NPC1Ll, reducing oxidative stress and ER stress, 
and then improve insulin resistance in the liver, resulting in gly-
cemic control (12). However, few studies have reported on the 
mechanism underlying the effect of ezetimibe on pancreatic is-
lets, saving the study reported by Yang et al. (14), in which ezeti-
mibe induced a decrease in the activity of serum dipeptidyl pep-
tidase-4 (DPP-4) and an increase in serum active glucagon, like 
peptide-1 (GLP-1) in OLETF rats, suggesting involvement of 
GLP-1 in the ezetimibe-mediated effects on pancreatic beta 
cells. However, there was an inconsistent report that treatment 
with ezetimibe in obese men did not affect the serum glucose-
dependent insulinotropic polypeptide (GIP) and active GLP-1 
(30). Therefore, results of the present study demonstrated that 
ezetimibe may have a beneficial effect on glucotoxicity in insu-
lin secreting β-cells through inhibition of fatty acid influx via 
CD36.
  In summary, high glucose increased CD36, fatty acid influx, 
and oxidative stress, resulting in impairment of insulin secre-
tion, and ezetimibe reversed the insulin secretory dysfunction 
through inhibition of fatty acid influx via CD36 in pancreatic 
beta cells. Therefore, elevation of CD36 resulting from hypergly-
cemia, even at normal fatty acid level, may induce beta cell dys-
function through increase of fatty acid influx; it is proposed that 
aggressive correction of hyperglycemia with dyslipidemia may 
be needed in order to prevent glucotoxicity, even in diabetic 
patients with normal blood lipid levels. 
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