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Conductive resins improve charging 
and resolution of acquired images 
in electron microscopic volume 
imaging
Huy Bang Nguyen1, Truc Quynh Thai1, Sei Saitoh1, Bao Wu1, Yurika Saitoh1, Satoshi Shimo2, 
Hiroshi Fujitani3, Hirohide Otobe4 & Nobuhiko Ohno1,5

Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled 
the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume 
of biological specimens including brain tissues. However, volume imaging under SEM is often hampered 
by sample charging, and typically requires specific sample preparation to reduce charging and increase 
image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of 
subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins 
were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron 
microscopic observations of biological specimens. Carbon black mostly localized around tissues and did 
not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during 
SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved 
the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results 
suggest that improving the conductivities of resins with a carbon black filler is a simple and useful 
option for reducing charging and enhancing the resolution of images obtained for volume imaging with 
SEM.

Electron microscopy has been an indispensable approach for acquiring ultrastructural information in life science. 
Recent advances in volume imaging with scanning electron microscopy (SEM) have enabled the imaging of an 
unprecedentedly large volume of biological samples and also the rapid acquisition of 3D structural information of 
the nervous system1,2. Multiple approaches including serial block-face SEM (SBF-SEM), focused ion beam SEM, 
array tomography, and an automated tape-collecting ultramicrotome are available and used in growing numbers 
of studies for the volume imaging. These methods are powerful tools in neuroscience imaging brain tissues to 
achieve wiring map of brain circuitry3–7, and also provided ultrastructural information of cells and organelles in 
various tissues8–10.

Most biological samples are non-conductive in nature; therefore, increasing the conductivity of samples is 
critical for SEM observations in order to avoid the charging of samples. Therefore, prior to volume imaging 
under SEM, intensive osmium reactions and en bloc staining with heavy metals such as uranium and lead are 
used in tissue preparation before embedding to avoid severe charging and achieve high contrast in serial image 
acquisition11–13. Recent effort towards homogenous staining of bulk tissues enabled acquisition of images from 
the brain tissues for reconstruction of very large volume14,15. However, even with these approaches, imaging at 
higher magnifications and longer dwelling times for a better signal-to-noise ratio need higher electron doses and 
may be hampered by sample charging and damage, which are particularly prominent in SBF-SEM imaging16–18. 
It currently remains unclear whether increasing the conductivities of resins, which are typically non-conductive, 
reduces charging and sample damage and is beneficial for successful volume imaging with SEM.
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In the present study, we introduced carbon-based conductive resins for volume imaging of biological speci-
mens with SBF-SEM. Conductive resins were produced by adding a carbon black filler to standard resins used for 
electron microscopic observations of biological specimens. When these conductive resins were used in imaging 
small mouse tissues, carbon black mostly localized at the periphery of the tissues and infiltrated some of the 
vessels/tubules. However, embedding in conductive resins significantly improved the charging of samples. It also 
facilitated the successful cutting of samples and enhanced the resolution of the images obtained. These results 
suggest that conductive resins are a simple option for electron microscopic imaging of samples prone to charging, 
and may support the wider application of volume imaging with SEM.

Results
Increases in the conductivities of the resins were assumed to decrease charging and enhance the quality of the 
images obtained. We initially attempted to develop electron-conductive resins by mixing resins and several types 
of ionic liquids, but were unable to achieve a sufficient decrease in resin resistance (data not shown). Therefore, we 
focused on the carbon black conductive filler, Ketjen black, because it is commonly used and increases the con-
ductivity of materials. Ketjen black macroscopically appeared as a black powder (Fig. 1a, inset), and was observed 
as fibrous agglomerates of carbon under TEM (Fig. 1a). When it was added to Quetol 812 or Plain resin, the cured 
resins appeared as dark blocks (Fig. 1b, inset). Although the surface resistance of cured conductive Plain resin 
inversely decreased when more carbon was added (Fig. 1b), the viscosity of the uncured resins increased in pro-
portion to the amount of Ketjen black added to the resin (not shown), and we subsequently selected conductive 
resins containing approximately 7% and 17–19% (w/v) of carbon for Quetol 812 and Plain resin, respectively. In 
order to determine the effects of the carbon filler on serial block-face imaging under SBF-SEM, sets of various 
tissues were stained at the same time, embedded in either control resin or conductive resins (a mixture of control 
resin and Ketjen black), and observed under various conditions (Fig. 1c). We included brain and kidney tissues 
which have more resin-only spaces and prone to charging problems19. Light microscopic pictures of 1-μm-thick 
sections obtained from the samples infiltrated with normal Plain resin and embedded in the 17–19% conductive 
Plain resin revealed that the dark agglomerates of carbon were clearly observed at the light microscopic level, 
and were mostly localized around the periphery of tissues (Fig. 1d,e). Some agglomerates occasionally infiltrated 
into the large and small vessels of the samples (Fig. 1d–f); however, the dark carbon was not observed inside the 
cells. Occasional penetration into vessels and little penetration into cells of the carbon were common in the brain 
tissues (Fig. 1g,h).

Although carbon mostly localized around the tissues, embedding in conductive resins may have affected 
images inside the tissues. When the block face of mouse kidney samples embedded in Quetol 812 was imaged 
without the surface conductive treatment of gold sputtering, severe charging blurred and deformed images of the 
glomerular capillary walls (Fig. 2a). In contrast, such deformation and blurring were diminished in those embed-
ded in the 7% conductive Quetol 812 under the imaging condition at a higher resolution (Fig. 2b). Furthermore, 
when the kidney and brain samples were imaged with gold sputtering, the charging of areas without tissues was 
prominent in Plain resin (Fig. 2c,d) and Quetol 812 (Fig. 2g) without carbon black, but minimal in 17–19% con-
ductive Plain resin (Fig. 2e,f) and 7% conductive Quetol 812 (Fig. 2h). These results demonstrated that the con-
ductive resins produced by the addition of the carbon black filler significantly reduced the charging of block-face 
imaging.

In order to determine whether less charging by conductive resins benefited serial image acquisition, we 
obtained SBF-SEM images under the same observation conditions from sets of samples prepared at the same time 
and embedded in resin with (conductive) or without (control) carbon black. Serial images of tissues including 
mouse kidneys at a subcellular resolution were successfully obtained in SBF-SEM (Fig. 3a–e). When the serial 
images obtained were colored and merged to evaluate success in consecutive cutting by the colors of the profiles 
(Fig. 4a–c), the kidney samples in 17–19% conductive Plain resin and the brain samples in 7% conductive Quetol 
812 were cut smoothly and uniformly without detectable skipping, even under the observation conditions with 
intensive electron beam irradiation in which samples in control resin could not be cut uniformly (Fig. 4d–g). 
In addition, the smallest possible voxel sizes for successful serial imaging were smaller in samples embedded in 
17–19% conductive resin (Fig. 5b,d,f) than in control resin (Fig. 5a,c,e). The difference in resolution was appar-
ent when serial sections were resliced to show X-Z plane images (Fig. 5e,f), and the morphologies of cells and 
organelles were clearer in samples embedded in conductive resins (Fig. 5f). When successful serial imaging was 
defined as smooth cutting without skipping (Fig. 5g) or partial cutting (Fig. 4d,f) in 5 consecutive images, the bet-
ter resolution observed in conductive resins was common among tissue samples that included mouse kidneys and 
brains and were prepared at the same time, embedded in either control or conductive resins, and imaged under 
the same accelerating voltages, probe current, and dwelling time (Fig. 5h). Furthermore, the successful serial 
imaging was possible even under higher electron doses in samples embedded in conductive resins, when each 
set of tissue samples were imaged under the same conditions but different resolution and dwelling time (Fig. 5i). 
Taken together, these results demonstrated that carbon-based conductive resins improved charging and image 
resolution in volume imaging using SBF-SEM.

Discussion
In the present study, conductive resins were developed by adding a carbon black filler to resins commonly used in 
electron microscopic observations of biological specimens. The conductive resins were applied to the acquisition 
of serial images obtained with SBF-SEM. Embedding in conductive resins significantly reduced the charging of 
tissue blocks during imaging and also enhanced the resolution of the images obtained. These results indicated 
that increasing the conductivities of the resins with carbon black filler provided a simple and beneficial option for 
improving the image quality of volume imaging through less charging and higher resolution.
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Conductive resins improved the charging of the inside and outside of tissues in SBF-SEM. SBF-SEM imag-
ing requires thorough cutting of the block face with diamond knives and, thus, is relatively prone to charging 
when the cut surface is largely non-conductive19,20. A conductive surface coating between each cut was previously 
shown to reduce charging in SBF-SEM imaging21, but needs specialized equipment and takes additional time for 
image acquisition. The usage of conductive resins represents another solution for reducing charging, and may be 
produced simply by the addition of carbon black fillers to standard resins. Since some resins are relatively resistant 
to electron damage, it has yet to be determined which are preferred for the imaging of certain tissues with a car-
bon black filler22. In addition, we have tried Ketjen black in Durcupan, but the carbon could not be homogenously 
dispersed in Durcupan as in Quetol 812 and Plain resin (data not shown). Optimal methods to mix the Ketjen 
black may vary among different types of resins. Furthermore, future studies are needed in order to examine 

Figure 1.  Conductive resins were produced by the addition of a carbon filler. Ketjen black appeared as large 
agglomerates in a transmission electron microscopic image (a), and its powder (a, inset) was added to standard 
resins used for biological specimens in order to produce conductive resin blocks (b, inset). A scatter plot shows 
that the resistance of the block was decreased as the filler concentration increased (b). In order to address the 
effects of carbon black, control resin was first prepared (c, i), and en bloc stained samples (c, ii) were embedded 
in either the control resin (c, iii) or conductive resins (c, v) prepared by adding Ketjen black (c, iv) to the control 
resin. Light microscopic images of mouse kidney (d–f) and brain (g,h) samples embedded in conductive resins 
showed that carbon black, which appeared as dark granular aggregates, was largely distributed outside the 
tissues (d,e,g, asterisks), but was also found in large and small vessels (d–f,h, arrows). The area marked with a 
rectangle is enlarged in the inset (h). BV: blood vessels. Bars: 500 nm (a), 500 μm (b), 200 μm (d), 100 μm (g), 
50 μm (e), or 20 μm (f,h).
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Figure 2.  Conductive resins reduced the charging of block-face observations. Scanning electron microscopic 
block-face images of mouse kidney and brain tissues embedded in Quetol 812 (a,b,g,h) or Plain resin (c–f) with 
(b,e,f,h) or without (a,c,d,g) carbon and observed with (c–h) or without (a,b) the conductive surface treatment of 
gold sputtering showed that, without gold sputtering, images of samples embedded in Quetol 812 (Control-uncoated) 
were distorted (a, arrowhead) and blurred (a, arrow) due to charging, whereas these issues were less severe (b, arrow) 
in samples embedded in conductive resins (Carbon-uncoated). Furthermore, charging in the resin-only areas (c,d,g, 
asterisks), which is obvious in Plain resin or Quetol 812 (Control), was significantly reduced when conductive Plain 
resin or Quetol 812 (Carbon) was used (e,f,h, asterisks). Bars: 2 μm (a,b), 20 μm (c,e), 10μm (g,h) or 5 μm (d,f).
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whether other approaches, such as surface coating and beam deceleration21,23, are beneficial in combination with 
conductive resins.

The results of the present study suggested that the application of a conductive resin to serial block-face obser-
vations under SEM improved the resolution of the images acquired. It currently remains unknown why the usage 
of conductive resins had favorable effects on images at higher resolutions, and multiple mechanisms have been 
suggested. One possibility is less damage to the samples caused by a higher dose of the electron beam because 
charging negatively affects the physical properties of resins and samples24,25. Reduced charging may preserve the 
hardness of samples and enable thinner sectioning during imaging at higher resolutions. Another possibility 
is the effects of carbon black fillers on the physical properties of the resins. Previous studies reported that the 
addition of a carbon black filler to resins and polymers changed the physical properties and conductivities of 
the materials, and resulted in increased toughness of the materials26,27. The addition of a carbon black filler may 
enhance the hardness of standard resins, thereby facilitating thinner sectioning of the samples.

One drawback of carbon-based conductive resins is limited penetration into tissues and cells. We did not 
observe significant increases in penetration even when the tissues were incubated overnight in 3% conductive 
resin, which has lower viscosity (data not shown). Therefore, the beneficial effect of carbon could be less obvious 
if the samples become larger and contain few regions with carbon. Since carbon black infiltrated some vessels in 
kidney tissues, conductive resins may be more effective for thin, small or porous tissues such as vibratome sec-
tions or cultured cells that generally have more resin-only area around cells. The limited penetration of carbon 
may be largely due to the size and form of the conductive carbon fillers, and also partly to the higher viscosities 
of uncured conductive resins with a larger quantity of carbon. The conductivities of polymers with carbon black 
fillers have been shown to depend on the structures as well as concentrations of fillers28–30. Ketjen black may form 
relatively large agglomerates, which may contribute to increases in conductivities at relatively low concentrations 
in return for poor penetration31,32. Although other carbon black fillers may require higher concentrations to 
increase the conductivities of resins, the combination of Ketjen black and smaller carbon black aggregates may 
improve the penetration and conductivities of specimens and further enhance image quality.

Materials and Methods
Reagents for electron microscopic observations.  Fixatives including glutaraldehyde and aqueous 
OsO4, Plain resin, and the Quetol 812 kit were purchased from Nisshin EM (Tokyo, Japan). Lead nitrate was 
obtained from Kanto Chemicals (Tokyo, Japan). Thiocarbohydrazide (TCH) was purchased from Sigma Aldrich 
(St. Louis, MO, USA). Other reagents were obtained from Nacalai Tesque (Kyoto, Japan).

Animals.  All experimental procedures were approved by the University of Yamanashi Animal Care and Use 
Committee, and conducted in accordance with the Guidelines for the Care and Use of Experimental Animals by 
the University of Yamanashi. Three adult DBF-1 (for brain) or two C57BL/6 (for kidney) mice, purchased from 
Japan SLC (Shizuoka, Japan) and housed under free access to food and water, were transcardially perfused with 
4% paraformaldehyde and 0.5% glutaraldehyde in 0.1M phosphate buffer (pH 7.4) under pentobarbital anes-
thesia. Tissues of the cerebrum and kidney were collected and immersed in the same fixative at 4 °C overnight. 
Kidney tissues from two C57BL/6 mice were resected without transcardial perfusion, cut into small pieces with 
a razor blade in ice cold 0.1M phosphate buffer (pH 7.4) with 2.5% glutaraldehyde, and immersed in the same 
fixative at 4 °C over several nights. The 7 groups of tissues were cut small (< 1mm in size), washed with phosphate 
buffer saline (PBS) or 0.1M cacodylate buffer, and used for specimen preparation.

Figure 3.  Serial imaging and 3D reconstruction using the carbon-based conductive resin and SBF-SEM. An 
image at low (a) and high (b) magnifications and 3 dimensional reconstructions of glomerular capillaries  
(d,e, various colors) and Bowman’s space (d,e, gray color) obtained from the mouse kidney embedded in conductive 
resins clearly showed cellular processes (b, arrowheads) and basement membranes (b, arrows). Bars: 5 μm.
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Electron microscopic specimen preparation.  En bloc heavy metal staining was performed as reported 
previously with some modifications33. Briefly, tissues were washed with either PBS or cacodylate buffer (pH 7.4) 
for 10–15 min with a total of 5 buffer changes. Tissues were then treated with 2% OsO4 in 0.15% K4[Fe(CN)6] for 

Figure 4.  Conductive resins facilitated successful serial sectioning in SBF-SEM. Merging of the first frame, 
colored green (a), and the second frame, colored magenta (b), showed that appeared and disappeared profiles 
in a set of consecutive images were colored green (c, green arrowheads) and magenta (c, magenta arrowheads), 
respectively. Merged images obtained from mouse kidney (d,e) and brain (f,g) tissues embedded in Plain resin 
(d,e) or Quetol 812 (f,g) with (Carbon; e,g) or without (Control; d,f) carbon black and observed under the same 
conditions showed that sectioning was heterogeneous in Control resin (d,f, green and magenta arrowheads), 
in which colors only appeared in the lower part, but was homogenous in Carbon (e,g, green and magenta 
arrowheads). Bars: 5 μm (d,e) or 2 μm (f,g).
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1 hr on ice, and 0.1% thiocarbohydrazide for 20 min and 2% OsO4 for 30 min at room temperature. Thereafter, 
some tissues were treated with 1% uranyl acetate at 4 °C overnight. Tissues were then treated with lead aspartate 
solution at 70 °C for 30 min. Each of these treatments was followed by washing 5 times with double distilled water 
for 10–15 min. Tissues were dehydrated in a graded series of ethanol (60%, 80%, 90% and 95%, 5 min each), infil-
trated with acetone dehydrated with a molecular sieve, a 1:1 mixture of resin and acetone, and 100% resin. Resins 
were prepared from the Quetol 812 kit (Nisshin EM, Tokyo, Japan) by mixing 9.7 ml Quetol 812, 3.3 ml DDSA, 
6.6 ml MNA and 0.3 ml DMP-30 for 20 ml, or Plain resin (Nisshin EM, Tokyo, Japan) following the manufacturer’s 
instructions. The samples in resin were placed in a mold, and cured at 70 °C overnight. Light microscopic pictures 
were obtained by observations of 1-μm-thick sections under BX-61 (Olympus, Tokyo, Japan).

Figure 5.  Conductive resins achieved imaging at a higher resolution. Serial block-face images obtained at 
the highest possible resolution from mouse kidney samples in Control (a,c,e) or Carbon (b,d,f) showed that 
resolution was higher in Carbon than in Control, and this difference was more prominent when X-Z resliced 
images were compared (e,f). In colored serial images, as in Fig. 4d–g, the appearance and disappearance of 
profiles in consecutive cuttings (1st–4th) were observed in successful serial imaging (Success; g, upper panels, 
green and magenta arrowheads), whereas this appearance and disappearance happened in every other cutting 
in unsuccessful serial imaging (Skipping; g, lower panels, green and magenta arrowheads). The smallest 
possible voxel sizes (h) and the highest electron doses (i) in the successful serial imaging of kidney (h,i, blue 
dots and lines) and brain tissues (h,i, purple dot and line) fixed with transcardial perfusion and kidney tissues 
fixed with resection and immersion (h,i, green dots and lines) showed that the voxel sizes and the electron 
doses are smaller (the resolution is higher) and higher (more electron can be irradiated in the successful 
serial imaging), respectively, in all tissues when they were embedded in Carbon than in Control. *p <  0.05 in 
Wilcoxon matched-pairs signed rank test. N =  7 (h) or 6 (i). Each set of tissues was prepared at the same time 
and observed under the same conditions but different XY-resolutions and slicing thickness (h) or XY-resolution 
and dwelling time (i). Bars: 10 μm (a,b), 1 μm (c–f), or 2 μm (g).
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Regarding conductive resins, Ketjen black powder was manually mixed with Plain resin or Quetol 812 just 
before use. The Ketjen black powder is freely available by contacting authors, Nobuhiko Ohno or Hirohide Otobe, 
but commercially available Ketjen black with similar properties could be used as substitution. Following infiltra-
tion with normal resin or 3% (w/v) conductive Quetol 812, tissues were embedded in 7% (w/v) conductive Quetol 
812 or 17–19% (w/v) conductive Plain resin. TEM images of Ketjen black were obtained by dispersing it in 100% 
ethanol with sonication, followed by observations with TEM after drying the mixture on copper grids. The sur-
face resistance of the resins was measured using the 4 point probes method.

Observations with SBF-SEM and data analyses.  One or two blocks from each group (each of 
perfusion-fixed kidneys and brains and immersion-fixed kidneys obtained from different animals and embedded 
in either normal or conductive resins) were trimmed and mounted on aluminum rivets with conductive glue 
(CW-2400, Circuitworks). The surfaces of trimmed samples were treated with gold sputtering to increase con-
ductivity, and imaged under various imaging conditions (total 129 sessions of serial image acquisition) in Merlin 
or Sigma (Carl Zeiss) equipped with 3View (Gatan). Imaging in Merlin was performed under a constant probe 
current (150pA) and the crossover-free mode. Imaging in Sigma was performed with a 30-μm aperture. The other 
parameters for imaging conditions in the figures are summarized in Table 1. The serial images obtained were han-
dled with ImageJ and Fiji plugins (http://fiji.sc/wiki/index.php/Fiji), and segmentation and image analyses were 
performed in TrakEM234 and Amira (FEI Visualization Science Group, Hillsboro, OR, USA). The smallest possi-
ble voxel size was determined by (1) imaging the samples to acquire multiple series of images under the same con-
ditions but different pixel resolutions and slice thicknesses, and (2) finding out the smallest voxel sizes (=(pixel 
resolution)2 ×  slice thickness) where successful serial imaging was possible. The successful serial imaging was 
defined as smooth cutting without skipping (Fig. 5g) or partial cutting (Fig. 4d,f) in 5 consecutive images. The 

Panel Resin
Voltage 

(kV)
Image size 

(pixels)
Dwell time 

(us)
X-Y resolution 

(nm)
Z-step 
(nm)

Fig. 2a Normal 1.5 40962 1 7.5 50

Fig. 2b Conductive 1.5 40962 1 5.7 40

Fig. 2c–f Normal Conductive 1.5 40962 3 26 –

Fig. 2g,h Normal Conductive 1.4 40962 2 25 –

Fig. 3a–e Conductive 1.4 40962 1 5.7 30

Fig. 4d,e Normal Conductive 1.5 81922 1 4 40

Fig. 4f,g Normal Conductive 2 30722 1 4.8 40

Fig. 5a,c,e Normal 1.4 40962 1 8.6 50

Fig. 5b,d,f Conductive 1.4 40962 1 5.7 30

Fig. 5h Normal 1.5 81922 1 5.7 40

Conductive 1.5 81922 1 4 40

Normal 1.4 40962 1 8.6 50

Conductive 1.4 40962 1 5.7 30

Normal 1.4 40962 1 10.3 80

Conductive 1.4 40962 1 6.5 70

Normal 1.4 40962 2 5.9 50

Conductive 1.4 40962 2 6 40

Normal 2 30722 1 7.7 40

Conductive 2 30722 1 5.9 40

Normal 2 30722 1 7.7 50

Conductive 2 30722 1 4.8 40

Normal 2 30722 1 4.8 50

Conductive 2 30722 1 4.3 40

Fig. 5i Normal 1.5 81922 1 5.7 40

Conductive 1.5 81922 1 4 40

Normal 1.4 40962 1.6 7.5 40

Conductive 1.4 40962 2 6 40

Normal 1.4 40962 1 7.7 40

Conductive 1.4 40962 1 5.9 40

Normal 1.4 40962 1 8.7 60

Conductive 1.4 40962 1 7.4 60

Normal 2 30722 1 7.7 50

Conductive 2 30722 1 4.3 50

Normal 2 30722 1 4.8 50

Conductive 2 30722 1 4.3 50

Table 1.   Summary of imaging conditions.

http://fiji.sc/wiki/index.php/Fiji
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electron dose of the imaging was calculated from probe current (A), pixel dwelling time (s) and pixel resolutions 
(nm2), as reported previously16. The highest electron dose was determined by (1) imaging each set of samples to 
acquire multiple series of images under the same conditions but different pixel resolutions and dwelling time, and 
(2) finding out the highest electron dose where successful serial imaging was possible. Statistical comparisons 
were made by Wilcoxon matched-pairs signed rank test.
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