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NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated
factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from
the 3= end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal pro-
tein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT. Here, we show that NuA4 KAT associates
with the GAL10 antisense transcription initiation site at the 3= end of the coding sequence. Such association of NuA4 KAT de-
pends on the Reb1p-binding site that recruits Reb1p activator to the GAL10 antisense transcription initiation site. Targeted re-
cruitment of NuA4 KAT to the GAL10 antisense transcription initiation site promotes GAL10 antisense transcription. Like NuA4
KAT, histone H3 K4/36 methyltransferases and histone H2B ubiquitin conjugase facilitate GAL10 antisense transcription, while
the Swi/Snf and SAGA chromatin remodeling/modification factors are dispensable for antisense, but not sense, transcription of
GAL10. Taken together, our results demonstrate for the first time the roles of NuA4 KAT and other chromatin regulatory factors
in controlling antisense transcription, thus illuminating chromatin regulation of antisense transcription.

Noncoding RNAs have been implicated in various cellular pro-
cesses such as X-chromosome inactivation, genomic im-

printing, dosage compensation, heterochromatin formation, me-
tabolism, development, and differentiation (1–5). There are
several classes of noncoding RNAs, which include microRNAs,
small nuclear RNAs, small interfering RNAs, Piwi-interacting
RNAs, and natural antisense transcripts (6). About 72% of genes
in human and mouse are associated with antisense transcription
(7, 8). Antisense transcripts arise from the strand opposite to the
sense strand and play regulatory functions in interfering with the
stability of sense transcripts, and hence gene expression. There-
fore, a number of studies have been focused on the use of antisense
oligonucleotides in regulation of gene expression and treatment of
diseases without permanently altering the genes. In fact, antisense
oligonucleotides are in various clinical trials for treatment of dis-
eases such as cancers, hypertension, respiratory illness, and HIV
infection (9–13).

Despite great potentials of antisense transcripts/transcription
in disease pathogenesis and treatment, it is not clearly understood
how antisense transcription is initiated. Recently, we have dem-
onstrated that, like in sense transcription, RNA polymerase II is
targeted to the 3= end of the GAL10 coding sequence by an activa-
tor Reb1p or Reb1p-binding site and general transcription factors
(GTFs) such as transcription factor IID (TFIID) (which is com-
posed of TATA-binding protein [TBP] and a set of TBP-associ-
ated factors [TAFs]), TFIIB, and Mediator to initiate antisense
transcription (14). Further, we have shown that the Gal4p activa-
tor and proteasome that facilitate GAL10 sense transcription are
dispensable for GAL10 antisense transcription (14), supporting
that GAL10 sense and antisense transcriptions are initiated inde-
pendently and differently. These recent results shed much light on
the initiation of antisense transcription (14). However, the in-
volvement of the chromatin structure/dynamics and the associ-
ated factors in regulation of antisense transcription remains
poorly understood.

Here, we have carried out experiments to analyze chromatin
regulation of antisense transcription. We have taken the advan-

tage of the GAL gene cluster, which consists of three genes,
namely, GAL1, GAL7, and GAL10 (Fig. 1A). These genes are in-
duced for sense transcription in galactose-containing growth me-
dium (14). However, long noncoding antisense transcripts are
generated from the 3= end of the GAL10 coding sequence in dex-
trose-containing growth medium (Fig. 1A), which is repressive to
GAL sense transcription (14–16). Therefore, using this GAL gene
cluster, the chromatin regulation of GAL10 antisense transcrip-
tion in dextrose-containing growth medium can be clearly ana-
lyzed without any interference from the sense transcription, hence
contributing to our understanding of the regulation of antisense
transcription by epigenetic factors. We initially focused our stud-
ies on NuA4 histone lysine (K) acetyltransferase (KAT), as NuA4
KAT is known to facilitate TAF-dependent sense transcription of
the ribosomal protein genes (17–19), while its role in regulation of
TAF-dependent GAL10 antisense transcription remains un-
known. Here, we find that NuA4 KAT is associated with the 3= end
of the GAL10 coding sequence (i.e., GAL10 antisense transcription
initiation site) (Fig. 1A) for histone H4 acetylation and antisense
transcription. However, NuA4 KAT-regulated GAL10 antisense
transcription is not controlled by TOR (target of rapamycin),
while TOR regulates sense transcription of NuA4 KAT-dependent
ribosomal protein genes. Like NuA4 KAT, histone H3 K4 meth-
yltransferase (Set1p) and histone H3 K36 methyltransferase
(Set2p), which are essential for H3 K4 and K36 methylation, re-

Received 18 August 2015 Returned for modification 11 September 2015
Accepted 30 December 2015

Accepted manuscript posted online 11 January 2016

Citation Uprety B, Kaja A, Ferdoush J, Sen R, Bhaumik SR. 2016. Regulation of
antisense transcription by NuA4 histone acetyltransferase and other chromatin
regulatory factors. Mol Cell Biol 36:992–1006. doi:10.1128/MCB.00808-15.

Address correspondence to Sukesh R. Bhaumik, sbhaumik@siumed.edu.

Supplemental material for this article may be found at http://dx.doi.org/10.1128
/MCB.00808-15.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.

crossmark

992 mcb.asm.org March 2016 Volume 36 Number 6Molecular and Cellular Biology

http://dx.doi.org/10.1128/MCB.00808-15
http://dx.doi.org/10.1128/MCB.00808-15
http://dx.doi.org/10.1128/MCB.00808-15
http://crossmark.crossref.org/dialog/?doi=10.1128/MCB.00808-15&domain=pdf&date_stamp=2016-1-11
http://mcb.asm.org


FIG 1 NuA4 KAT promotes GAL10 antisense transcription. (A) Schematic diagram showing the experimental strategy for analysis of the GAL10 antisense
transcript. The P1 primer targeted toward the 5= end of the GAL10 antisense transcript was extended by AMV reverse transcriptase-based reverse
transcription at 42°C, and subsequently the extended primer was amplified by primer pairs targeted to the coding regions, M and N, of GAL10 and GAL7,
respectively. The numbers are presented with respect to the position of the translational stop codon (TGA) of GAL10. Regions P, M, O, and N represent
GAL1 core, GAL10 5= end, GAL10 3= end, and GAL7 5= end (or GAL7 open reading frame [ORF]), respectively, in the ChIP assay. (B and C) Analysis of
the GAL10 antisense transcript in the esa1-ts mutant and wild-type (WT) strains in dextrose-containing growth medium. The RNA level in the wild-type
strain was set to 100, and the relative RNA level in the mutant strain was plotted in panel C. (D) Sense transcription analysis of GAL10, RPS5, and ACT1
in the esa1-ts and wild-type strains in galactose-containing growth medium by RT-PCR.
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spectively, facilitate GAL10 antisense transcription. Further, we
find that histone H2B ubiquitin conjugase Rad6p (which is essen-
tial for histone H2B ubiquitylation) promotes GAL10 antisense
transcription. However, the Swi/Snf (switch/sucrose nonferment-
able) chromatin remodeling factor and SAGA (Spt-Ada-Gcn5-
acetyltransferase) chromatin modification factor are dispensable
for GAL10 antisense transcription, while these factors have stim-
ulatory functions in GAL10 sense transcription. Collectively, our
results demonstrate the roles of different chromatin modification/
regulatory factors in controlling GAL10 antisense transcription,
thus significantly advancing our knowledge of the chromatin reg-
ulation of antisense transcription, as presented below.

MATERIALS AND METHODS
Plasmids. The plasmid pFA6a-13Myc-KanMX6 (20) was used for
genomic tagging of the Esa1p and Eaf5p components of NuA4 KAT,
Set1p, and Rad6p. The plasmids PRS406 (21), PRS403 (21), and pFA6a-
13Myc-HIS3MX6 (20) were used for PCR-based disruption of SET1,
SET2, EAF1, and the RING (really interesting new gene) domain of BRE1.

Strains. A yeast (Saccharomyces cerevisiae) strain harboring a temper-
ature-sensitive (ts) mutation in Esa1p (LPY3291) and its isogenic wild-
type equivalent (LPY3498) were obtained from the Pillus laboratory (Lor-
raine Pillus, University of California, San Diego, CA) (22). A yeast strain
harboring a null mutation in SWI2 (MSY143) and its wild-type equivalent
(FY406) were obtained from the Struhl laboratory (Kevin Struhl, Harvard
Medical School, Boston, MA) (23). A yeast strain harboring a null muta-
tion in RAD6 (STY2; �rad6 in FM392) and its wild-type equivalent
(STY1; FM392) were obtained from the Shilatifard laboratory (Ali Shilati-
fard, Stowers Institute for Medical Research; purchased from Research
Genetics). The PAF1 deletion mutant strain (DY7014) in the W303a back-
ground was obtained from the Stillman laboratory (David Stillman, Uni-
versity of Utah Health Sciences Center) (24). A yeast strain harboring a
null mutation in SPT20 (FY1097) and its isogenic wild-type equivalent
(FY67) were obtained from the Winston laboratory (Fred Winston, Har-
vard Medical School, Boston, MA) (25). A yeast strain carrying mutations
in the Reb1p-binding site at the 3= end of the GAL10 coding sequence and
its isogenic wild-type equivalent were obtained from the Tollervey labo-
ratory (David Tollervey, University of Edinburg, United Kingdom) (15).
A yeast strain (YKH045) expressing Flag-tagged histone H2B and hemag-
glutinin (HA)-tagged ubiquitin was obtained from the Osley laboratory
(Mary Ann Osley, University of New Mexico School of Medicine) (26).
The �set3, �rpd3, and wild-type (BY4741) strains were from the Davie
laboratory (Judith K. Davie, Southern Illinois University School of Med-
icine; purchased from Open Biosystems). SET1 was deleted in the wild-
type strain (W303a) by the PCR-based gene disruption method to gener-
ate ASY16. SET2 was deleted in the wild-type strain (ZDY2; derived from
W303a) (27) by the PCR-based gene disruption method to generate SLY7
(28). The RING domain of Bre1p was deleted in YKH045 to generate
BUY57 as done previously (29). Multiple Myc epitope tags were added at
the original chromosomal loci of SET1 and RAD6 in the wild-type strain
(W303a) to generate the PSY4 and PSY2 strains, respectively. Multiple
Myc epitope tags were added at the original chromosomal locus of EAF5
in the wild-type strain (W303a) to generate RSY70. Likewise, Eaf5p was
tagged with multiple Myc epitopes at its C terminus in the BUY24 strain
(which was derived from W303a by deleting EAF1) to generate RSY69.
Multiple Myc epitope tags were added at the original chromosomal locus
of ESA1 in the wild-type strain (Sc599) (30) to generate BUY12 (17).
Multiple Myc epitope tags were added at the original chromosomal locus
of ESA1 in the yeast strain carrying mutations in the Reb1p-binding site at
the 3= end of the GAL10 coding sequence and its isogenic wild-type equiv-
alent to generate BUY46 and BUY45, respectively. All these strains with
their genotypes are listed in Table S1 in the supplemental material.

Growth media. Yeast cells were grown in yeast extract-peptone plus
2% dextrose (YPD) up to an optical density at 600 nm (OD600) of 1.0 at

30°C prior to harvesting for analysis of GAL10 antisense transcripts or
formaldehyde-based in vivo cross-linking for chromatin immunoprecipi-
tation (ChIP) experiments. For experiments in the wild-type and ts mu-
tant strains, yeast cells were grown in YPD medium at 23°C up to an
OD600 of 0.85 and then transferred to 37°C for 1 h before cross-linking or
harvesting for RNA analysis. For analysis of rapamycin response, yeast
cells were grown in YPD medium up to an OD600 of 1.0 and then treated
with 100 nM rapamycin (Sigma) for 30 min prior to harvesting.

Antibodies. Various antibodies were used in the ChIP and Western
blot analyses. These are anti-Rpb1 (8WG16; Covance), anti-Myc (9E10;
Santa Cruz Biotechnology, Inc.), anti-HA (F-7; Santa Cruz Biotechnol-
ogy, Inc.), anti-histone H3 (Ab-1791; Abcam), anti-H3 K4 trimethylation
(Ab-8580; Abcam), anti-H3-K36 trimethylation (Ab-9050; Abcam), anti-
Flag (F3165; Sigma), and anti-acetylated histone H4 (06866; Millipore)
antibodies.

ChIP assay. The ChIP assay was performed as described previously
(17, 28). Briefly, yeast cells were treated with 1% formaldehyde, collected,
and resuspended in lysis buffer. Following sonication, cell lysate (400 �l of
lysate from 50 ml of yeast culture) was precleared by centrifugation, and
then 100 �l of lysate was used for each immunoprecipitation. Immuno-
precipitated protein-DNA complexes were treated with proteinase K, the
cross-links were reversed, and DNA was purified. Immunoprecipitated
DNA was dissolved in 20 �l of TE 8.0 (10 mM Tris-HCl [pH 8.0] and 1
mM EDTA), and 1 �l of immunoprecipitated DNA was analyzed by PCR
(a total of 23 cycles). The PCR mixture contained [�-32P]dATP (2.5 �Ci
for 25 �l of reaction mixture), and the PCR products were detected by
autoradiography after separation on a 6% polyacrylamide gel. As a con-
trol, “input” DNA was isolated from 5 �l of lysate without going through
the immunoprecipitation step and was dissolved in 100 �l of TE 8.0. To
compare the PCR signal arising from the immunoprecipitated DNA with
that from the input DNA, 1 �l of input DNA was used in the PCR analysis.
For ChIP analysis of histone H3, histone H2B, and Myc-tagged Esa1p,
Eaf5p, Set1p, Rad6p, and Rpb1p, the protocol described above was mod-
ified as described previously (17, 28). Serial dilutions of input and immu-
noprecipitated DNA samples were used to assess the linear range of PCR
amplification as described previously (18). The data presented here are
within the linear range of PCR analysis. The primer pairs used for PCR
analysis were as follows: GAL10 3= end, 5=-CTATGTTCAGTTAGTTTGG
CTAGC-3= and 5=-TTGATGCTCTGCATAATAATGCCC-3=; GAL10 5=
end, 5=-CTACGAGATTCCCAAATATGATTCC-3= and 5=-TAACGCAA
GATAGCAAACTTCCAAC-3=; GAL7 5= end, 5=-AAAGTGCAATCTGTG
AGAGGCAATT-3= and 5=-TTTTCTCTTGCTTCTCTGGAGAGAT-3=;
GAL1 core, 5=-ATAGGATGATAATGCGATTAGTTTTTTAGCCTT-3=
and 5=-GAAAATGTTGAAAGTATTAGTTAAAGTGGTTATGCA-3=;
RPS5 UAS, 5=-AGAAACAATGAACAGCCTTGAGTTCTC-3= and 5=-GCA
GGGCCATTCTCATCTGA-3=; Chr.-V, 5=-GGCTGTCAGAATATGGGG
CCGTAGTA-3= and 5=-CACCCCGAAGCTGCTTTCACAATAC-3=;
ADH1 5= end, 5=-CTGGTTACACCCACGACGGTTCTT-3= and 5=-CAG
ACTTCAAAGCCTTGTAGACG-3=; and 18S ribosomal DNA (rDNA),
5=-GAGTCCTTGTGGCTCTTGGC-3= and 5=-AATACTGATGCCCCCG
ACC-3=.

Autoradiograms were scanned and quantitated by the National Insti-
tutes of Health ImageJ (version 1.62) program. Immunoprecipitated
DNAs were quantitated as the ratio of immunoprecipitate to input in the
autoradiogram. The average ChIP signal from the biologically indepen-
dent experiments is reported with standard deviation (SD) (Microsoft
Office Excel 2003). The Student t test in Microsoft Excel 2003 (with tail �
2 and types � 3) was used to determine the P values for statistical signif-
icance of the changes in the ChIP signals. The changes were considered to
be statistically significant at a P value of �0.05. ChIP signals were deter-
mined for the upstream activating sequence (UAS), the core promoter
(core), toward the 5= end of the coding sequence (5= end), toward the 3=
end of the coding sequence (3= end), and an inactive region within chro-
mosome V (Chr.-V).
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ChDIP assay. To determine histone H2B ubiquitylation at GAL10, we
performed a chromatin double-immunoprecipitation (ChDIP) assay as
described previously (31). Briefly, 400 �l lysate from 50 ml yeast culture
was first immunoprecipitated using anti-Flag antibody and protein A/G
Plus-agarose beads. Following elution of anti-Flag immunoprecipitate by
Flag peptide (Sigma), the eluate was immunoprecipitated using an
anti-HA antibody, and immunoprecipitated DNA sample was dissolved
in 10 �l TE 8.0, of which 1 �l was used for PCR analysis. The “input” DNA
was isolated from 5 �l lysate and suspended in 100 �l TE 8.0, of which 1 �l
was used for PCR analysis.

RNA preparation. Total RNA was prepared from yeast cell culture as
described by Peterson et al. (32). Briefly, 10 ml of yeast culture was har-
vested and then suspended in 100 �l of RNA preparation buffer (500 mM
NaCl, 200 mM Tris-HCl, 100 mM Na2-EDTA, and 1% SDS) along with
100 �l of phenol-chloroform-isoamyl alcohol and a 100-�l volume-
equivalent of glass beads (acid washed) (Sigma). Subsequently, the yeast
cell suspension was vortexed at maximum speed (10 in a VWR Mini-
vortex mixer) (catalog number 58816-121; VWR) five times (30 s each).
The cell suspension was put on ice for 30 s between pulses. After vortexing,
150 �l of RNA preparation buffer and 150 �l of phenol-chloroform-
isoamyl alcohol were added to the yeast cell suspension, followed by vor-
texing for 15 s at maximum speed on a VWR mini-vortex mixer. The
aqueous phase was collected following a 5-min centrifugation at maxi-
mum speed in a microcentrifuge machine. Total RNA was isolated from
the aqueous phase by ethanol precipitation.

Analysis of GAL10 antisense transcript. Reverse transcription-PCR
(RT-PCR) analysis of the GAL10 antisense transcript was performed ac-
cording to standard protocols (14). Briefly, total RNA was prepared from
yeast culture as described above. Equal amounts (15 to 30 �g) of total
RNA were used in the reverse transcription assay for both the wild-type
and mutant strains. RNA was treated with RNase-free DNase (M610A;
Promega), and then reverse transcribed into cDNA using primer P1 (Fig.
1A) targeted to the GAL10 antisense transcript (P1, 5=-CTACGAGATTC
CCAAATATGATTCC-3=) as described in the protocol supplied by Pro-
mega (A3800; Promega). Reverse transcription was carried out at 42°C
using avian myeloblastosis virus (AMV) reverse transcriptase. PCR was
performed within the linear range using synthesized first-strand cDNA
(or the extended P1 primer shown in Fig. 1A) as the template and primer
pairs targeted to the GAL10 coding sequence (represented as region M in
Fig. 1A), GAL1 core promoter (marked as region P in Fig. 1A), and GAL7
coding sequence (marked as region N in Fig. 1A). Primer pairs targeted to
the ACT1, RPL2B, RPS5, PYK1, and ADH1 coding sequences were also
used to amplify the above cDNAs. RT-PCR products were separated by
2.2% agarose gel electrophoresis and visualized by ethidium bromide
staining. RT-PCR experiments were carried out three times. These exper-
iments are biologically independent. The average signal from these bio-
logically independent experiments is reported with SD (Microsoft Excel
2003). Student’s t test (with tail � 2 and types � 3) was used to determine
P values for statistical significances of the changes in the RT-PCR signals.
The changes were considered to be statistically significant at a P value of
�0.05. The primer pairs used in the PCR analysis of cDNAs were as
follows: GAL7 (N), 5=-AAAGTGCAATCTGTGAGAGGCAATT-3= and
5=-TTTTCTCTTGCTTCTCTGGAGAGAT-3=; GAL10 (M), 5=-CTACGA
GATTCCCAAATATGATTCC-3= and 5=-TAACGCAAGATAGCAAACT
TCCAAC-3=; ACT1, 5=-TCCACCACTGCTGAAAGAGAAATTG-3= and
5=-AATAGTGATGACTTGACCATCTGGA-3=; RPL2B, 5=-GTGCTTTC
CACAAGTACAGATTGAA-3= and 5=-TTTGACCAGAAACGGCACCTC
TAGA-3=; RPS5, 5=-AGGCTCAATGTCCAATCATTGAAAG-3= and 5=-
CAACAACTTGGATTGGGTTTTGGTC-3=; ADH1, 5=-CGGTAACAGA
GCTGACACCAGAGA-3= and 5=-ACGTATCTACCAACGATTTGACC
C-3=; PYK1, 5=-AAGTTTCCGATGTCGGTAACGCTAT-3= and 5=-TTG
GCAAGTAAGCGATAGCTTGTTC-3=; GAL1 (P), 5=-ATAGGATGATA
ATGCGATTAGTTTTTTAGCCTT-3= and 5=-GAAAATGTTGAAAGTA
TTAGTTAAAGTGGTTATGCA-3=; and 18S rDNA, 5=-GAGTCCTTGT
GGCTCTTGGC-3= and 5=-AATACTGATGCCCCCGACC-3=.

RESULTS
NuA4 KAT facilitates antisense transcription from the 3= end of
the GAL10 coding sequence. NuA4 KAT has been previously
shown to be required for recruitment of TAFs (or TFIID) to the
promoters of the ribosomal protein genes for transcriptional ini-
tiation (17). However, the role of NuA4 KAT in antisense tran-
scriptional initiation remains unknown. We have recently dem-
onstrated the roles of TAFs in antisense transcriptional initiation
from the 3= end of the GAL10 coding sequence (14). Like sense
transcription of the ribosomal protein genes, the TAF-dependent
antisense transcription from GAL10 may also require NuA4 KAT.
To test this, we analyzed the role of NuA4 KAT in antisense tran-
scription from the 3= end of the GAL10 coding sequence. In this
direction, the ESA1 (which is an integral component of NuA4 with
KAT activity) wild-type and ts strains were grown in dextrose-
containing medium (which induces GAL10 antisense transcrip-
tion and represses GAL10 sense transcription [14]) at 23°C up to
an OD600 of 0.85 and then switched to 37°C for 1 h for ts inacti-
vation of Esa1p prior to harvesting for GAL10 antisense transcript
analysis, as done previously (17). Total RNAs from the wild-type
and ts mutant strains were isolated and analyzed as described in
our recent publication (14) and schematically shown in Fig. 1A.
Briefly, a primer (P1) targeted toward the 5= end of the GAL10
antisense transcript was used for synthesis of cDNA, and subse-
quently, cDNA was amplified using a primer pair encompassing
region M in the GAL10 coding sequence. Such analysis would
generate the GAL10 antisense transcript but not sense transcript in
dextrose-containing growth medium. However, the use of the P1
primer in the cDNA synthesis can also detect sense transcripts of
other genes (e.g., ACT1, ADH1, RPS5, and RPL2B) that are ex-
pressed in dextrose-containing growth medium, since the P1
primer can randomly hybridize to RNAs (including mRNAs and
rRNAs) at 42°C during cDNA synthesis via matched (A·T and
G·C) as well as mismatched (G·T, G·A, A·C, T·C, G·G, A·A, T·T,
and C·C) base pairs (33–35), as discussed previously (14). We
found that GAL10 antisense transcription was significantly de-
creased in the esa1-ts mutant strain in comparison to the wild-
type equivalent (Fig. 1B and C; see Fig. S1A and B in the supple-
mental material). Likewise, Esa1p promoted sense transcription
of the NuA4-dependent RPS5 gene (Fig. 1B and C). However,
sense transcription of the NuA4-independent ACT1 gene (19) was
not changed in the esa1-ts mutant strain (Fig. 1B and C). Further,
as a control, we used a primer pair targeted to the GAL7 coding
sequence (region N) in the above PCR analysis. We did not ob-
serve a PCR signal (Fig. 1B), as the GAL7 primer pair (which was
successfully used in our previous studies and generated a PCR
signal when genomic DNA was used as a template [see Fig. S1C in
the supplemental material]) (14) was located upstream of the
GAL10 antisense initiation site (Fig. 1A) (14–16) and GAL7 sense
transcription does not occur in dextrose-containing growth me-
dium (14). Likewise, using a primer pair (at region P) upstream of
the P1 primer (Fig. 1A) in the above RT-PCR analysis, we did not
observe a PCR signal (see Fig. S1D in the supplemental material),
as the primer pair (which amplified the P region when genomic
DNA was used as a template [see Fig. S1C in the supplemental
material]) at region P is located outside the P1-generated cDNA of
the GAL10 antisense transcript. The absence of the PCR signals at
the N region of GAL7 or the P region (Fig. 1A and B; see Fig. S1D
in the supplemental material) supports that there was no residual
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DNA contamination in the above RT-PCR analysis. Collectively,
our results support that NuA4 KAT facilitates GAL10 antisense
transcription. However, GAL1/10 sense transcription is not regu-
lated by NuA4 KAT (19) (Fig. 1D), while RPS5 and other ribo-
somal protein genes are dependent on NuA4 KAT for sense tran-
scription (17–19) (Fig. 1D). Consistent with these results, NuA4
KAT was not found to be associated with the GAL1/10 promoter
(19) but was associated with RPS5 and other ribosomal protein
genes (17–19).

NuA4 KAT associates with the 3= end of the GAL10 coding
sequence. To determine whether NuA4 KAT plays a direct role in
facilitating antisense transcription from the 3= end of the GAL10
coding sequence, we analyzed the association of Myc epitope-
tagged Esa1p with the GAL10 3= end in dextrose-containing
growth medium. We found significant association of Myc-tagged
Esa1p with the 3= end of the GAL10 coding sequence (region O in
Fig. 1A) in comparison to the nonspecific anti-HA antibody (or
background signal) (Fig. 2A and B). As a negative control, we also
analyzed the association of Myc-tagged Esa1p with 18S rDNA (or
the gene transcribed by RNA polymerase I) and found that the
Myc-tagged Esa1p ChIP signal was same as that of anti-HA (or
background) (Fig. 2A and B). Further, the PCR analysis for 18S
rDNA was carried out within the linear range, as the ratio of the
Myc-tagged Esa1p and HA signals was not significantly altered at
various dilutions (see Fig. S2 in the supplemental material). Thus,
our results support that Esa1p is associated with the GAL10 3= end
where antisense transcription is initiated. However, similar re-
cruitment of Esa1p was not observed at the 5= end of the GAL10
coding sequence (region M in Fig. 1A) or GAL1 core promoter
(region P in Fig. 1A) in dextrose-containing growth medium (Fig.
2C). NuA4 KAT associates with the UASs of the NuA4-dependent
ribosomal protein genes for TAF-dependent sense transcription
(17–19). Thus, as a positive control, we showed that Esa1p is as-
sociated with the UAS of a ribosomal protein gene, RPS5, but not
with an inactive region within chromosome V (Chr.-V) (Fig. 2D
and E), consistent with previous studies (17, 18). Collectively, our
results demonstrate that Esa1p associates with the GAL10 anti-
sense transcription initiation site. Such association of NuA4 KAT
with GAL10 is dependent on the Reb1p-binding site (Fig. 2F) that
recruits Reb1p to the GAL10 antisense transcription initiation site
to trigger transcription (15). As a control, we showed that the
targeting of NuA4 KAT to the RPS5 UAS is not altered in the
absence of the Reb1p-binding site (Fig. 2F), since the Reb1p-bind-
ing site is absent at the RPS5 promoter/UAS. At the RPS5 promot-
er/UAS, recruitment of NuA4 KAT depends on the RPG box that
targets the activator Rap1p (17–19). Thus, our results support that
NuA4 KAT is targeted by Reb1p at the GAL10 antisense transcrip-
tion initiation site. Consistently, the Eaf5p component of NuA4
KAT is predominantly recruited to the 3= end of the GAL10 coding

sequence (Fig. 2G). Further, NuA4 KAT’s overall structural integ-
rity is maintained by its Eaf1p component (18, 36, 37). In agree-
ment with this fact, we find that the recruitment of the Eaf5p
component of NuA4 KAT to the 3= end of the GAL10 coding
sequence is impaired in the �eaf1 strain (Fig. 2H). Similarly,
NuA4 KAT components are not recruited to the promoters of the
ribosomal protein genes in the absence of Eaf1p (18).

Since NuA4 KAT is associated with the GAL10 antisense tran-
scription initiation site, it is likely to regulate targeted histone H4
acetylation. To test this, we analyzed the level of histone H4 acet-
ylation at the 3= end of the GAL10 coding sequence in the wild-
type and esa1-ts mutant strains at the nonpermissive temperature.
We found that histone H4 acetylation at the 3= end of the GAL10
coding sequence is impaired in the esa1-ts mutant strain in com-
parison to the wild-type equivalent (Fig. 3A to C). Such a decrease
of histone H4 acetylation is not due to the eviction of histone
H3/H4 tetramer, since the level of histone H3 (a representative
component of histone H3/H4 tetramer) at the GAL10 antisense
transcription initiation site is not reduced in the esa1-ts mutant
strain (Fig. 3B and C). Further, we found that the 5= end of the
GAL10 coding sequence is also acetylated at histone H4 in an
Esa1p-dependent manner (Fig. 3C). Similarly, Esa1p-dependent
histone H4 acetylation is also observed at the GAL7 coding se-
quence (Fig. 3C) and inactive region within Chr.-V (18) in dex-
trose-containing growth medium. The presence of such histone
H4 acetylation at the 5= ends of the GAL10 and GAL7 coding
sequences or Chr.-V is likely due to nontargeted global histone H4
acetylation by piccolo-NuA4 (picNuA4) (which is composed of
Esa1p, Yng2p, and Epl1p [38, 39]), as previous studies (38, 39)
demonstrated the role of picNuA4 in global histone H4 acetyla-
tion in a nontargeted fashion. Consistently, we also observed non-
targeted histone H4 acetylation at the promoters of the NuA4-
dependent ribosomal protein genes in the absence of NuA4 or
Eaf1p (18), and such acetylation is impaired in the esa1-ts mutant
(18), hence supporting the role of picNuA4 in nontargeted his-
tone H4 acetylation in the absence of NuA4. Here, we observed a
high level of histone H4 acetylation predominantly at the 3= end of
the GAL10 coding sequence (Fig. 3D), and such acetylation was
impaired in the absence of the Reb1p (or activator)-binding site
(Fig. 3E and F). These results indicate nontargeted histone H4
acetylation at GAL10 in the absence of NuA4 KAT, similar to the
results for the ribosomal protein gene and other genes (18). Al-
though picNuA4 is involved in global genome-wide histone H4
acetylation, its nontargeted association with chromatin is not gen-
erally observed by the ChIP assay (18, 19), possibly due to weak/
transient interaction. Nontargeted histone H4 acetylation is not
associated with transcription (19). For example, many genes/pro-
moters (e.g., ADH1, ACT1, and GAL1) are globally acetylated at
histone H4 by picNuA4, and such nontargeted histone modifica-

FIG 2 Analysis of NuA4 KAT recruitment to the 3= end of the GAL10 coding sequence. (A and B) Esa1p is associated with the 3= end of the GAL10 coding
sequence in dextrose-containing growth medium. Immunoprecipitation (IP) was carried out using an anti-Myc antibody against Myc-tagged Esa1p. Immuno-
precipitated DNA was analyzed by PCR using the primer pairs encompassing the 3= end of the GAL10 coding sequence (region O in Fig. 1A) and a region with
18S rDNA. The ratio of the immunoprecipitate over the input in the autoradiogram (termed a ChIP signal) was measured. The maximum ChIP signal was set to
100, and other ChIP signals relative to the maximum ChIP signal (represented as relative ChIP signal or relative occupancy) were plotted. (C, D, and E) ChIP
analysis of Myc-tagged Esa1p at the 3= and 5= ends (regions O and M, respectively, in Fig. 1A) of the GAL10 coding sequence, the GAL1 core promoter (region
P in Fig. 1A), the RPS5 UAS, and an inactive region within chromosome V (Chr.-V). (F) ChIP analysis of Myc-tagged Esa1p at the 3= end of the GAL10 coding
sequence and RPS5 UAS in the presence and absence of a Reb1p-binding site at the 3= end of the GAL10 coding sequence. (G) ChIP analysis of Myc-tagged Eaf5p
at the 3= and 5= ends of the GAL10 coding sequence and Chr.-V in dextrose-containing growth medium. (H) ChIP analysis of Myc-tagged Eaf5p at the 3= end of
the GAL10 coding sequence in the wild-type and �eaf1 strains.
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FIG 3 Analysis of histone H4 acetylation at the 3= end of the GAL10 coding sequence. (A to C) Analysis of the levels of histone H4 acetylation and histone H3/H4
tetramer at the 3= and 5= ends of the GAL10 coding sequence and GAL7 ORF (or GAL7 5= end) in the esa1-ts mutant and wild-type strains. Immunoprecipitation
was carried out using an anti-histone H4 acetylation antibody against acetylated histone H4 or an anti-histone H3 antibody against histone H3 of the histone
H3/H4 tetramer. (D) Analysis of histone H4 acetylation and histone H3 at the 5= and 3= ends of the GAL10 coding sequence and 5= end of the GAL7 coding
sequence. (E and F) The Reb1p-binding site regulates histone H4 acetylation at the 3= end of the GAL10 coding sequence. (G) Analysis of Rpb1p association with
GAL10 in dextrose-containing growth medium in the esa1-ts mutant and wild-type strains.
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tion does not modulate their transcription (19). However, tar-
geted histone H4 acetylation by NuA4 KAT regulates transcrip-
tion. For example, the promoters of the ribosomal protein genes
are acetylated at histone H4 by targeted recruitment of NuA4 KAT
for stimulation of transcription (17–19). Likewise, targeted his-
tone H4 acetylation at the 3= end of the GAL10 coding sequence
facilitates antisense transcription (Fig. 1B and C; see Fig. S1A and
B in the supplemental material) via enhanced recruitment of RNA
polymerase II (Fig. 3G).

NuA4 KAT-dependent GAL10 antisense transcription is not
regulated by TOR, while NuA4 KAT-mediated sense transcrip-
tion of the ribosomal protein genes is impaired following inhi-
bition of TOR. Previous studies (17, 40) demonstrated that the
association of NuA4 KAT with the ribosomal protein genes is
impaired by rapamycin-mediated inhibition of the TOR pathway.
Consequently, sense transcription of the ribosomal protein genes
is decreased following rapamycin treatment (40). To determine
whether TOR similarly regulates antisense transcription, we ana-
lyzed the levels of GAL10 antisense transcripts with or without
rapamycin treatment. We found that GAL10 antisense transcrip-
tion is not altered in response to rapamycin treatment (Fig. 4). As
a control, we showed that sense transcription of the NuA4-inde-
pendent ACT1 gene (17, 19) is not altered following rapamycin
treatment (Fig. 4). However, sense transcription of a ribosomal
protein gene, RPL2B, is impaired in response to rapamycin treat-
ment (Fig. 4), consistent with previous studies (17, 40). Thus,
rapamycin (or the TOR pathway) differentially regulates NuA4
KAT-dependent sense transcription at the ribosomal protein
genes (e.g., RPL2B) and antisense transcription at GAL10.

Histone H3 K4 and K36 methyltransferases facilitate GAL10
antisense transcription. Like histone H4 acetylation, histone H3
K4 trimethylation is also found at the 3= end of the GAL10 coding
sequence in dextrose-containing growth medium (15, 16) (Fig.
5A). Such modification is targeted by Reb1p (15). However, Set1p,
which methylates K4 of histone H3 (41), is not found to be asso-
ciated with the 3= end of the GAL10 coding sequence in dextrose-
containing growth medium (15). Likewise, we also did not ob-
serve the association of Set1p with the 3= end of the GAL10 coding

sequence in dextrose-containing growth medium (Fig. 5B), while
Set1p is associated with the 5= end of the coding sequence of
ADH1, which is constitutively engaged in sense transcription (Fig.
5B), consistent with previous studies (42). This could be due to
weak/transient interaction (and/or cross-linking) of Set1p with
the GAL10 antisense transcription initiation site during less fre-
quent antisense transcription, as also suggested in previous studies
(15). Nonetheless, Set1p-mediated H3 K4 methylation is observed
at the GAL10 antisense transcription initiation site (15) (Fig. 5A).
To determine the role of histone H3 K4 methylation in antisense
transcription, we analyzed the levels of GAL10 antisense tran-
scripts in the wild-type and deletion mutant strains of SET1. We
found that GAL10 antisense transcription is impaired in the �set1
strain in comparison to the wild-type equivalent (Fig. 5C and D).
As a control, we demonstrated that sense transcription of the
Set1p-independent ACT1 gene (43, 44) is not altered in the ab-
sence of Set1p or histone H3 K4 methylation (Fig. 5C and D).
Thus, our results support that histone H3 K4 methylation is asso-
ciated with GAL10 antisense transcription. Histone H3 K4 meth-
ylation has been previously implicated in controlling sense tran-
scription via Rpd3S (histone deacetylase complex small or Rpd3
small) and the Set3p-containing histone deacetylase complex (15,
16, 45). However, we found that Set3p or Rpd3p does not regulate
GAL10 antisense transcription (Fig. 5E to G). Thus, Set1p regu-
lates GAL10 antisense transcription independently of Set3p and
Rpd3p. Further, such function of Set1p is not mediated via histone
H4 acetylation, as we did not observe an alteration of histone
H4 acetylation at the GAL10 antisense transcription initiation
site in the �set1 strain in comparison to the wild-type equiva-
lent (Fig. 5H).

Previous studies (15) demonstrated Set2p-mediated histone
H3 K36 trimethylation at GAL10 under growth conditions per-
missive to GAL10 antisense transcription. Such covalent modifi-
cation is dependent on Reb1p-mediated GAL10 antisense tran-
scription (15). Histone H3 K36 methylation has been implicated
in repression of sense transcription via the recruitment of Rpd3S
(46, 47). In addition, histone H3 K36 methylation may also be
involved in regulation of GAL10 antisense transcription. To test

FIG 4 NuA4 KAT-dependent GAL10 antisense transcription is not altered in response to rapamycin treatment. (A) RT-PCR analysis of the GAL10 antisense
transcript with (�R) or without (�R) rapamycin treatment. (B) The transcription data shown in panel A were plotted.
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FIG 5 GAL10 antisense transcription is regulated by histone H3 K4 and K36 methyltransferases. (A) Analysis of histone H3 K4 trimethylation (H3-K4-Me3) and
histone H3 levels at the 5= and 3= ends of the GAL10 coding sequence and the 5= end of the GAL7 coding sequence. (B) ChIP analysis of Myc-tagged Set1p at the
5= and 3= ends of the GAL10 coding sequence, Chr.-V, and 5= ends of the ADH1 and GAL7 coding sequence. The fold increase of Set1p ChIP signal relative to HA
is plotted. (C and D) RT-PCR analysis of GAL10 antisense RNA in the �set1 and wild-type strains. The transcription data shown in panel C were plotted in panel
D. (E and F) RT-PCR analysis of GAL10 antisense RNA in the �set3 and wild-type strains. (G) RT-PCR analysis of GAL10 antisense RNA in the �rpd3 and
wild-type strains. (H) ChIP analysis of histone H4 acetylation and histone H3 levels at GAL10 in the wild-type and �set1 strains. (I and J) RT-PCR analysis of
GAL10 antisense RNA in the �set2 and wild-type strains. (K and L) ChIP analysis of histone H3 K36 trimethylation (H3 K36-Me3) and histone H3 at GAL10,
GAL7, and Chr.-V in dextrose-containing growth medium. The maximum ChIP signal was set to 100, and other ChIP signals relative to the maximum ChIP
signal were plotted.
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this, we analyzed the levels of GAL10 antisense transcripts in the
wild-type and deletion mutant strains of SET2. We found that the
level of GAL10 antisense transcript is decreased in the �set2 strain
in comparison to the wild-type equivalent (Fig. 5I and J). How-
ever, the level of ACT1 sense transcript is not altered in the �set2
strain (Fig. 5I and J), consistent with previous studies (48). Thus,
our results support that histone H3 K36 methylation favors anti-
sense transcription. Further, the deletion of Rpd3p does not alter
GAL10 antisense transcription (Fig. 5G). Thus, Set2p regulates
GAL10 antisense transcription independently of Rpd3p. More-
over, we found that the GAL10 antisense coding sequence (i.e., the
GAL10 5= end) (Fig. 1A), but not the initiation site (i.e., GAL10 3=
end) (Fig. 1A), is methylated predominantly at K36 of histone H3
(Fig. 5K and L), consistent with previous studies (15), suggesting a
role of histone H3 K36 methylation in regulation of GAL10 anti-
sense transcription elongation.

GAL10 antisense transcription is facilitated by histone H2B
ubiquitylation. Histone H3 K4 methylation is promoted by his-
tone H2B ubiquitylation during sense transcription (49). Further,
histone H2B ubiquitylation has been shown to enhance sense
transcription (50, 51). Similar to the regulation of sense transcrip-
tion, histone H2B ubiquitylation may also control antisense tran-
scription. To test this, we analyzed the levels of GAL10 antisense
transcripts in the RAD6 (which has histone H2B ubiquitin conju-
gase activity for histone H2B ubiquitylation via Bre1p ubiquitin
ligase [49]) wild-type and deletion mutant strains. We found that
the level of GAL10 antisense transcript was decreased in the �rad6
strain in comparison to the wild-type equivalent (Fig. 6A and B).
Likewise, Rad6p promoted sense transcription of ACT1 (Fig. 6A
and B), consistent with previous studies (26, 29). As a loading
control, we showed that the 18S rRNA level was not altered in the
�rad6 strain (Fig. 6A and B). Thus, our results support that GAL10
antisense transcription is facilitated by Rad6p (or histone H2B
ubiquitylation). However, we could not detect Rad6p ubiquitin
conjugase at GAL10 in dextrose-containing growth medium (Fig.
6C). Similarly, Rad6p, which ubiquitylates histone H2B during
sense transcription, was also not found to be associated with the
active ADH1 gene (Fig. 6C). This could be due to weak/transient
association (or poor cross-linking) of Rad6p with the active gene,
analogous to the fact that Mediator is not found to be associated
with the promoters of the ribosomal protein genes which require
the Mediator complex for their transcription (52). Nonetheless,
we found histone H2B ubiquitylation at GAL10, and such modi-
fication was impaired in the absence of the RING domain (which
is essential for histone H2B ubiquitylation) of Bre1p ubiquitin
ligase (Fig. 6 to F), consistent with previous studies (53). Further,
histone H2B ubiquitylation promotes GAL10 antisense transcrip-
tion (Fig. 6A and B). Such function of histone H2B ubiquitylation
is not mediated via histone H4 acetylation, as we did not observe
an alteration of histone H4 acetylation in the �rad6 strain in com-
parison to the wild-type equivalent (Fig. 6G).

The fact that histone H2B is ubiquitylated at the GAL10 5= and
3= ends in dextrose-containing growth medium (Fig. 6 to F) indi-
cates that histone H2B ubiquitylation may regulate both GAL10
antisense transcription initiation and elongation. To test this, we
analyzed the association of RNA polymerase II with the GAL10
antisense transcription initiation site (i.e., GAL10 3= end) (Fig. 1A)
and coding sequence (i.e., GAL10 5= end) (Fig. 1A) in dextrose-
containing growth medium in the wild-type and bre1�500 strains.
We found that the loss of histone H2B ubiquitylation in the

bre1�500 strain (Fig. 6 to F) did not significantly alter the associ-
ation of RNA polymerase II with the GAL10 antisense transcrip-
tion initiation site (Fig. 6H). However, RNA polymerase II asso-
ciation with the GAL10 antisense coding sequence was
significantly decreased in the bre1�500 strain (Fig. 6H). These
observations indicate the role of histone H2B ubiquitylation in
facilitation of GAL10 antisense transcriptional elongation. Like-
wise, histone H2B ubiquitylation promotes sense transcriptional
elongation (50, 51).

Histone H2B ubiquitylation is regulated by Paf1p or the Paf1p-
containing complex (53, 54). Further, Paf1p interacts with RNA
polymerase II and promotes sense transcription. We have recently
demonstrated that Reb1p targets RNA polymerase II to GAL10 for
antisense transcription (14). These observations indicate that
Paf1p may regulate GAL10 antisense transcription. To test this, we
analyzed the levels of GAL10 antisense transcripts in the wild-type
and �paf1 strains. We found that GAL10 antisense transcription is
significantly decreased in the �paf1 strain in comparison to the
wild-type equivalent (Fig. 6I and J). Likewise, the loss of Paf1p
impairs sense transcription of ACT1 (Fig. 6I and J), consistent
with previous studies (29). Thus, our results demonstrate that
Paf1p facilitates GAL10 antisense transcription. Similarly, Paf1p
also regulates GAL sense transcription (29).

SAGA does not regulate GAL10 antisense transcription but
rather promotes sense transcription. We found that histone H2B
ubiquitylation facilitates GAL10 antisense transcription. Histone
H2B ubiquitylation is regulated by the histone H2B deubiquityla-
tion activity of SAGA (31, 49). Thus, SAGA may regulate GAL10
antisense transcription. To test this, we analyzed GAL10 antisense
transcription in the SPT20 (which impairs the structural and
functional integrity of SAGA) wild-type and deletion mutant
strains (31, 55). We found that GAL10 antisense transcription is
not altered in the absence of Spt20p (Fig. 7A and B). Likewise,
transcription of the SAGA-independent ACT1 gene (56, 57) but
not the SAGA-dependent ADH1 gene (31) was not altered in
the absence of Spt20p (Fig. 7A and B). These results support
that SAGA does not regulate GAL10 antisense transcription. How-
ever, SAGA promotes GAL1/10 sense transcription (58, 59).
Hence, SAGA differentially regulates sense and antisense tran-
scription of GAL10. The fact that SAGA or its histone H2B deu-
biquitylation activity is dispensable for GAL10 antisense tran-
scription indicates that SAGA may not be targeted to GAL10
under the growth conditions (or dextrose-containing growth me-
dium) permissive to GAL10 antisense transcription. Indeed,
SAGA is not targeted to GAL1/10 in dextrose-containing growth
medium (59) but is recruited to these genes in galactose-contain-
ing growth medium by an activator, Gal4p, for sense transcription
(58, 59).

Swi/Snf does not regulate GAL10 antisense transcription,
while it promotes sense transcription. So far, we had found that
GAL10 antisense transcription is facilitated by NuA4 KAT, histone
H3 K4 and K36 methyltransferases, and histone H2B ubiquitin
conjugase, thus indicating the roles of different histone covalent
modifications in regulation of antisense transcription. However,
the functions of chromatin remodeling factors in regulation of
antisense transcription remain largely unknown. In view of this,
we analyzed the role of an important ATP-dependent chromatin
remodeling factor, Swi/Snf, that is known to enhance GAL1/10
sense transcription by remodeling chromatin and/or nucleosomal
disassembly (23), in regulation of GAL10 antisense transcription.
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In this direction, we determined the levels of GAL10 antisense
transcripts in the SWI2 (which has an ATPase activity) wild-type
and deletion mutant strains. We found that the level of the GAL10
antisense transcript was not altered in the �swi2 strain in com-
parison to the wild-type equivalent (Fig. 7C and D). Likewise,
Swi/Snf did not regulate the sense transcription of ACT1 (Fig.
7C and D), consistent with previous studies (60). However,

sense transcription of PYK1 was impaired in the �swi2 strain
(Fig. 7C and D), consistent with previous studies (23). There-
fore, our results support that GAL10 antisense transcription is
not regulated by Swi/Snf. On the other hand, GAL1/10 sense
transcription is promoted by Swi/Snf (61). Thus, GAL10 sense
and antisense transcriptions are differentially controlled by
Swi/Snf. However, another ATP-dependent chromatin remod-

FIG 6 GAL10 antisense transcription is regulated by histone H2B ubiquitin conjugase and Paf1p. (A and B) Analysis of GAL10 antisense RNA in the �rad6 and
wild-type strains. (C) ChIP analysis of Myc-tagged Rad6p at the 5= and 3= ends of the GAL10 coding sequence, Chr.-V, and 5= ends of the ADH1 and GAL7 coding
sequences. (D) ChIP analysis of Flag-tagged histone H2B and HA-tagged ubiquitin at the 5= and 3= ends of the GAL10 coding sequence in the absence of the RING
domain of Bre1p (the bre1�500 strain without 500 amino acids at Bre1p’s C terminus that contain the RING domain). Immunoprecipitation was carried out
using anti-Flag and anti-HA antibodies against Flag-tagged histone H2B and HA-tagged ubiquitin as described previously (31). (E and F) ChDIP analysis for the
levels of ubiquitylated histone H2B in the wild-type (YKH045) and bre1�500 strains expressing Flag-tagged H2B and HA-tagged ubiquitin. (G) Analysis of
histone H4 acetylation and histone H3 levels at GAL10 in the wild-type and �rad6 strains. (H) Analysis of Rpb1p association with the 3= and 5= ends of the GAL10
coding sequence in the wild-type and bre1�500 strains. The maximum ChIP signal was set to 100, and the other ChIP signals relative to maximum ChIP signal
were plotted. (I and J) Analysis of GAL10 antisense RNA in the �paf1 and wild-type strains.
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eling factor may regulate GAL10 antisense transcription, which
remains to be further elucidated.

DISCUSSION

Although antisense transcripts/transcription is involved in regu-
lation of sense transcription and cellular functions, it is not clearly
understood how antisense transcription is initiated. We have re-
cently demonstrated that an activator (Reb1p) and a set of GTFs
target RNA polymerase II to initiate antisense transcription from
the 3= end of the GAL10 coding sequence (14). Here, our results
reveal that NuA4 KAT is targeted to the 3= end of the GAL10
coding sequence by Reb1p for histone H4 acetylation (Fig. 2 and
3). The loss of NuA4 KAT-mediated histone H4 acetylation is
associated with impaired GAL10 antisense transcription (Fig. 1, 2,
and 3). Thus, our results support the role of NuA4 KAT in facili-
tation of GAL10 antisense transcription.

Like its role in stimulation of GAL10 antisense transcription,
Reb1p has been shown to promote sense transcription of many
housekeeping genes (15, 62–64). Further, intergenic Reb1p-bind-
ing sites have been detected in genome-wide ChIP-on-chip stud-
ies (65). Moreover, 215 perfect matches to the Reb1p-binding
sequences within coding sequences in Saccharomyces cerevisiae
have been identified by BLAST analysis (15). Thus, Reb1p is likely
to act in these regions to initiate antisense transcription, similar to
the results for GAL10. Further, it is yet unknown how Reb1p pro-

motes transcriptional initiation. The results presented here dem-
onstrate that Reb1p targets NuA4 KAT for histone H4 acetylation
at the GAL10 antisense transcription initiation site for recruit-
ment of RNA polymerase II and hence GAL10 antisense transcrip-
tion (Fig. 1, 2, and 3). Reb1p might similarly regulate antisense
transcription and/or sense transcription at other genes via NuA4
KAT, which remains to be further elucidated.

Like its recruitment at the GAL10 antisense transcription ini-
tiation site, NuA4 KAT is targeted to the promoters of the TAF-
dependent ribosomal protein genes by an activator, Rap1p, to
enhance their sense transcription (17–19). Transcription of the
ribosomal protein genes depends on the TOR pathway via a mech-
anism that acts on Ifh1p and Fhl1p, which are recruited to the
ribosomal protein genes by Rap1p. Although both sense tran-
scription of the ribosomal protein genes and GAL10 antisense
transcription depend on NuA4 KAT, the latter requires Reb1p
rather than Rap1p and thus may not be regulated by the TOR
pathway. We tested this by using rapamycin to inhibit the TOR
pathway and indeed found that GAL10 antisense transcription
was not affected (Fig. 4).

Further, we have recently demonstrated that the 19S regulatory
particle (RP) facilitates the targeting of NuA4 KAT to the promot-
ers of the ribosomal protein genes to enhance sense transcription
(17). Consistently, the 19S RP has been shown to promote sense
transcription of the NuA4 KAT-dependent ribosomal protein

FIG 7 GAL10 antisense transcription is not regulated by SAGA and Swi/Snf. (A and B) Analysis of GAL10 antisense RNA in the �spt20 and wild-type strains. (C
and D) Analysis of GAL10 antisense RNA in the �swi2 and wild-type strains.
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genes (17). It is not clearly known whether other genes that are
regulated by NuA4 KAT also require the 19S RP. Our results reveal
that NuA4 KAT-regulated GAL10 antisense transcription is inde-
pendent of the 19S RP (14). Thus, NuA4 KAT-mediated tran-
scription is differentially regulated by the 19S RP. Such a differen-
tial requirement of the 19S RP could be dictated by activators, as
sense transcription of the ribosomal protein genes and GAL10
antisense transcription are activated by the Rap1p and Reb1p ac-
tivators, respectively.

Like NuA4 KAT, histone H3 K4 methyltransferase (Set1p) also
favors GAL10 antisense transcription (Fig. 5A to D). Histone H3
K4 methylation associated with GAL10 antisense transcription has
been implicated in repression of sense transcription (15, 16), thus
deciphering the role of antisense transcription in regulation of
sense transcription. Our results demonstrate that, in addition to
repressing sense transcription, histone H3 K4 methylation also
promotes antisense transcription. Like histone H3 K4 methyl-
ation (or Set1p), histone H3 K36 methylation or methyltrans-
ferase (Set2p) facilitates GAL10 antisense transcription (Fig. 5I
and J). Histone H3 K36 methylation has been previously shown to
repress cryptic transcription via the recruitment of the Rpd3S
complex at the coding sequence during sense transcription (46,
47). Further, previous studies (15) at the GAL10 locus revealed a
high level of histone H3 K36 methylation under the growth con-
ditions permissive to GAL10 antisense transcription. Such meth-
ylation of histone H3 at the GAL10 locus has been implicated in
repression of sense transcription via Rpd3S and hence provided a
mechanism for regulation of sense transcription by antisense tran-
scription. However, the role of histone H3 K36 methylation in
antisense transcription was not clear. Here, we show that Set2p (or
histone H3 K36 methylation) promotes antisense transcription
(Fig. 5I and J). Thus, in addition to repressing sense/cryptic tran-
scription, histone H3 K36 methylation also promotes antisense
transcription.

Like histone H3 K4/36 methylation, histone H2B ubiquityla-
tion also facilitates GAL10 antisense transcription (Fig. 6A, B, D to
F and H). Since the level of histone H2B ubiquitylation is regu-
lated by ubiquitin protease (or deubiquitylation), histone H2B
ubiquitin protease or deubiquitylation activity of SAGA is likely to
alter the level of GAL10 antisense transcription. To test this, we
analyzed the role of SAGA in regulation of GAL10 antisense tran-
scription. SAGA has histone H3 acetylation activity in addition to
its histone H2B deubiquitylation activity. Moreover, SAGA func-
tions to stimulate the preinitiation complex formation during
sense transcription (58, 59). We found here that SAGA is dispens-
able for GAL10 antisense transcription (Fig. 7A and B). However,
SAGA is essential for GAL1/10 sense transcription (58, 59). Thus,
SAGA is differentially required for GAL10 sense and antisense
transcription. Like SAGA, the activator Gal4p (which is essential
for GAL10 sense transcription) is dispensable for GAL10 antisense
transcription (14). These results support that both GAL10 sense
and antisense transcriptions are regulated independently and dif-
ferently. Further, the fact that we did not observe the effect of
SAGA on GAL10 antisense transcription is due to the failure of
SAGA association with GAL1/10 in the absence of active Gal4p in
dextrose-containing growth medium (58, 59). However, some
other ubiquitin protease(s) may be involved in regulation of his-
tone H2B ubiquitylation associated with antisense transcription.

Previous studies (23, 66) have demonstrated that histones are
evicted during sense transcription. Such nucleosomal disassembly

promotes transcription. The Swi/Snf chromatin remodeling com-
plex participates in histone eviction during sense transcription
and facilitates transcription (23). We found here that Swi/Snf is
not required for GAL10 antisense transcription (Fig. 7C and D),
while it promotes GAL1/10 sense transcription (23, 61). Thus,
another factor may be involved in altering chromatin structure/
disassembly during antisense transcription, which needs to be fur-
ther elucidated.

In summary, we demonstrate here that NuA4 KAT is associ-
ated with the 3= end of the GAL10 coding sequence for histone H4
acetylation and antisense transcription initiation. However, such
a function of NuA4 KAT in stimulation of GAL10 antisense tran-
scription is independent of the 19S RP and TOR pathway. On the
other hand, the 19S RP and TOR play important roles in recruiting
NuA4 KAT to the promoters of the ribosomal protein genes dur-
ing sense transcription (17, 40). Thus, NuA4 KAT recruitment is
differentially regulated at the Rap1p-dependent ribosomal pro-
tein genes and Reb1p-dependent antisense GAL10 to control
sense and antisense transcription. Like NuA4 KAT, histone H3 K4
and K36 methyltransferases also facilitate antisense transcription.
Similarly, histone H2B ubiquitylation promotes antisense tran-
scription. Collectively, our results illuminate for the first time the
chromatin regulation of antisense transcription. Since the afore-
mentioned histone covalent modifications or associated factors
are conserved among eukaryotes, similar chromatin regulation of
antisense transcription is likely to exist in humans and other eu-
karyotes.
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