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ABSTRACT

To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human im-
munodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans,
we examined the plasma of 13 viremic macaques infected with SHIVSF162P3N and 85 HIV-1-infected humans with known times of
infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs)
against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years
p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i.
Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reac-
tive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope
trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs)
isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity
against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of
gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed
MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs.

IMPORTANCE

HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus
macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13
SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected ma-
caques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with mo-
nomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none
of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the correspond-
ing plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-di-
rected MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-
1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.

The isolation and characterization of human broadly neutraliz-
ing antibodies (bnAbs) against human immunodeficiency vi-

rus type 1 (HIV-1) (1, 2) have demonstrated the ability of the
human immune system to mount effective antibody responses
against the virus. Following this line of investigation, a large anal-
ysis of 205 chronically infected sera found that half of the tested
sera were capable of neutralizing half of the 219 viral strains tested
(3). These results indicate that neutralizing antibodies with 50%
breadth are common in chronically infected individuals and sup-
port the current goal of inducing a similar spectrum of antibody
responses with vaccines. However, current HIV-1 vaccines cannot
induce such antibody responses. As HIV-1 vaccine candidates rely
on nonhuman primates (NHP) for preclinical tests (4), it is also
important to characterize NHP antibody responses to the
HIV-1 envelope (Env) in simian-human immunodeficiency vi-
rus (SHIV)-infected rhesus macaques and to compare them to the
responses in HIV-1-infected humans.

To date, bnAbs against HIV-1 tier 2 isolates have rarely been
detected in SHIV-infected macaques (5–9). A previous screening
of 40 macaques infected with uncloned SHIVAD8 or a molecular

clone of SHIVAD8-CK15 identified a single animal, CE8J, that de-
veloped potent bnAbs directed to the N332 glycosylation site
(5). In an additional study of 19 macaques infected with un-
cloned SHIVAD8 or a molecular clone of SHIVAD8-EO, CE8J-like
bnAb response was not detected (6). Instead, 7 macaques in the
latter study exhibited cross-reactive antibodies with limited
potency, and one animal, CL5E, displayed impressive neutral-
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ization breadth and potency (6). Here, we screened 13 viremic
macaques infected with the clade B R5 uncloned SHIVSF162P3N

(10–13) or its derivative molecular clones (14) for neutralizing
activity against HIV-1. Compared with the commonly used
SHIVSF162P3, the lineage-related late isolate SHIVSF162P3N is more
macaque adapted and more pathogenic (10), and macaques in-
fected with the virus are more likely to demonstrate a sustained
viral load (13). Since high levels of plasma viral load have been
associated with bnAb development in HIV-1-infected individuals
(15), these viremic SHIVSF162P3N-infected animals are of interest
to screen for possible bnAbs against HIV-1.

As most experimental SHIV infections are terminated at 2
years p.i., parallel analysis of antibody responses during the first 2
years of infection in HIV-1-infected humans is warranted. Al-
though early studies of human samples have initially focused on
time points relatively late during infection (i.e., �3 years p.i.)
(16–18), more recent research has shifted to analyzing longitudi-
nal samples from individuals newly infected with HIV-1 (19–22).
These studies documented that autologous antibody responses
develop early, within 1 year p.i. (19, 22), but that bnAbs take 1 to
3 years of infection to become detectable (21). While still a work in
progress, research has also attempted to track bnAb maturation
pathways (23, 24) and to identify sequential Env variants that can
be attributed to bnAb development (25). Here, we analyzed the
plasma of 85 HIV-1-infected individuals who are part of the
Aaron Diamond AIDS Research Center (ADARC) Acute and
Early HIV-1 Infection Cohort (26–28) and identified those with
neutralization breadth.

To further characterize the human and macaque broadly neu-
tralizing plasma samples, and in particular their antibody epitope
specificities, we generated gp120-based probes for plasma-map-
ping analysis. The RSC3 probe (29), derived from the HXB2 gp120
core and designed to expose the CD4-binding site (CD4bs) of
gp120, has been successfully used to isolate the monoclonal anti-
body (MAb) VRC01 (29) and other bnAbs targeting the CD4bs
(23, 30–32). Because RSC3 does not bind to CD4 and thus does
not interfere with the CD4 cellular receptor, it has also been used
directly in the TZM-bl-based neutralization assay for plasma
mapping (23, 29, 30, 32). However, since certain bnAb epitopes at
the CD4bs are altered in RSC3, we generated additional gp120
probes with point mutations to minimize CD4 interference for
direct plasma-mapping analysis and isolation of MAbs from a
subset of study samples.

MATERIALS AND METHODS
Human specimens. The plasma and peripheral blood mononuclear cell
(PBMC) samples analyzed in this study were collected from 85 partici-
pants in the ADARC Acute and Early HIV-1 Infection Cohort (26–28), in
which newly infected individuals were recruited and followed longitudi-
nally, with Institutional Review Board (IRB)-approved protocols at the
Rockefeller University. All the individuals were infected with clade B
HIV-1 (26, 27). At the time of sampling, these subjects had been infected
for 3 to 85 months and had not initiated antiretroviral therapy.

Rhesus specimens. The rhesus plasma and PBMC samples analyzed in
this study were from macaques described in previous studies that had
been inoculated with the pathogenic clade B R5 SHIVSF162P3N (10–14) as
an uncloned viral swarm or with its derivative molecular clones. All of the
rhesus specimens were collected at the Tulane National Primate Research
Center in compliance with its Guide for Care and Use of Laboratory
Animals and under protocols approved by the Institutional Animal Care
and Use Committee (IACUC).

Antibodies, CD4-Ig, cells, plasmids, and viruses. The anti-gp120
MAbs VRC01 (CD4bs), 17b (coreceptor binding site [CoRbs]), and A32
(inner domain) were obtained from the NIH AIDS Reagent Program and
were contributed by John Mascola (VRC01) and James Robinson (17b
and A32). The anti-V3-loop MAb 447-52D was provided by Susan Zolla-
Pazner. The anti-V3-stem MAb PGT128 (33) was produced by gene syn-
thesis and cloning (34). The sheep anti-gp120 C5 polyclonal antibody
D7324 was purchased from Aalto Bio Reagents (Dublin, Ireland). CD4-Ig
was produced by gene synthesis and cloning into pcDNA3.1 (Invitrogen,
Thermo Fisher Scientific, Waltham, MA). The TZM-bl cells and the
HIV-1 SG3�env backbone (35, 36) were obtained from the NIH AIDS
Reagent Program and were contributed by John Kappes and Xiaoyun Wu.
The HIV-1 clade A, B, and C reference rev-env expression plasmids (37–
40) were obtained from the NIH AIDS Reagent Program and were con-
tributed by Julie Overbaugh, Beatrice Hahn, Cynthia Derdeyn, Lynn Mor-
ris, and Carolyn Williamson. The HIV-1 Env pseudoviruses were
prepared by cotransfecting 293T clone 17 (ATCC, Manassas, VA) with the
rev-env plasmids and the SG3�env backbone.

HIV-1 env SGA and sequence analysis. The AD358 autologous env
gene was amplified from a plasma sample collected at 2 months p.i. using
a single-genome amplification (SGA) method described previously (41–
43). Briefly, 140 �l plasma was used to extract viral RNA using the
QIAamp viral RNA minikit (Qiagen, Valencia, CA). Reverse transcription
(RT) was carried out at 50°C for 60 min, followed by 55°C for an addi-
tional 60 min, in a total volume of 100 �l, including 50 �l viral RNA, 20 �l
5� first-strand buffer, 5 �l deoxynucleoside triphosphates (dNTPs) (each
at 10 mM), 1.25 �l antisense primer envB3out (43) at 20 �M, 5 �l dithio-
threitol (DTT) at 100 mM, 5 �l RNaseOut (Invitrogen), and 5 �l Super-
Script III (Invitrogen). Synthesized cDNA was titrated to single copy,
where PCR-positive wells constitute about 30% of the reactions. Nested
PCRs were carried out in a volume of 20 �l consisting of 2 �l 10� buffer,
0.8 �l MgSO4, 0.4 �l dNTP (each at 10 mM), 0.2 �l of each primer at 20
�M, 0.1 �l Platinum Taq High Fidelity DNA polymerase (Invitrogen),
and 1 �l template DNA. The primers were envB5out and envB3out for
1st-round PCR and envB5in and envB3in for the 2nd round (43). The
cycler parameters were 94°C for 2 min and 35 cycles (45 cycles for the 2nd
round) of 94°C for 15 s, 55°C for 30 s, and 68°C for 4 min, followed by
68°C for 10 min. The PCR amplicons were subjected to direct Sanger
sequencing, and all sequencing chromatograms were inspected in Se-
quencher 5.3 (Gene Codes, Ann Arbor, MI) for mixed bases (double
peaks), which were evidence of priming from more than one template or
of PCR errors. Any sequence with double peaks was excluded. A total of 38
env SGA sequences were obtained from the AD358 2-month-p.i. plasma
sample and codon aligned using ClustalW built in BioEdit (http://www
.mbio.ncsu.edu/bioedit/bioedit.html). The aligned nucleotide sequences
were submitted to DNADist built in BioEdit for calculation of the pairwise
distance. With one exception, 37 out of the 38 env sequences were homo-
geneous, with 20 being identical and the rest varying by 0.19% at maxi-
mum. The one variant (AD358_m2_37) differs by 3.16 to 3.33% from the
37 homogeneous sequences. A representative of the 37 env sequences,
AD358_m2, was reamplified from the 1st-round PCR mixture containing
full-length rev-env and cloned into pcDNA3.1 Directional TOPO (Invit-
rogen).

HIV-1 gp120 expression and purification. Codon-optimized genes
encoding the CD5 leader and the JR-FL and AC10.29 gp120s (amino acids
32 to 507, according to the HXB2 codon position) with C-terminal Avi
and 6�His tags were synthesized and cloned into pcDNA3.1 (Invitrogen)
at ImmuneTech (New York, NY). The Yu2 gp120 expression plasmid was
obtained from Joseph Sodroski. Point mutations D368R (44) and W479A
(45) were generated by site-directed mutagenesis (GB Biosciences, Gaith-
ersburg, MD). Soluble gp120s were expressed by transfecting 293F cells
(Invitrogen); after 6 days, the culture supernatants were harvested and
filtered through 0.45-�m filters, and the buffer was changed to PBS using
Pierce Slide-A-Lyzer flasks (Thermo Fisher Scientific). The gp120 pro-
teins were purified via 6�His using HisTalon gravity columns (Clontech,
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Mountain View, CA), and then the buffer was changed to PBS and con-
centrated to 1 mg/ml with Amicon 30K filter units (Millipore, Billerica,
MA). The purified gp120s were examined on SDS-PAGE (Invitrogen) and
stored in aliquots at �80°C.

Single-B-cell sorting by fluorescence-activated cell sorter (FACS).
Avi-tagged gp120 proteins were biotinylated using the biotin ligase Bir A
(Avidity, Denver, CO), followed by streptavidin-mediated conjugation of
allophycocyanin (APC) or phycoerythrin (PE) (Invitrogen). PBMCs were
stained with a cocktail of antibodies to CD3-PE-CF594 (BD Biosciences,
San Jose, CA), CD19-PE-Cy7 (BioLegend, San Diego, CA), CD20-APC-
Cy7 (BioLegend), IgG-fluorescein isothiocyanate (FITC) (BD Biosci-
ences), and IgM-V450 (BD Biosciences). In addition, LIVE/DEAD yellow
stain (Invitrogen) was used to exclude dead cells. After washing, the cells
were sorted using a multilaser MoFlo sorter (Beckman Coulter, Jersey
City, NJ) contained with biosafety level 3 standards. Fluorescence com-
pensation was performed with anti-mouse IgG(�) beads (BD Biosciences)
stained with each antibody in a separate tube. Individual B cells were
sorted into 96-well PCR plates containing 20 �l lysis buffer per well. The
lysis buffer contained 0.5 �l RNaseOut (Invitrogen), 5 �l 5� first-strand
buffer, 1.25 �l 0.1 M DTT, and 0.0625 �l IGEPAL (Sigma, St. Louis, MO).
The PCR plates with sorted cells were frozen on dry ice and then stored at
�80°C. The total content of PBMCs passing through the sorter was ana-
lyzed with FlowJo (TreeStar, Cupertino, CA).

Single-B-cell RT-PCR, sequencing, and cloning. From each sorted
cell, the variable regions of IgG heavy and light chains were amplified by
RT-PCR and cloned into expression vectors as previously described (34).
Briefly, frozen plates with single B-cell RNAs were thawed at room tem-
perature, and RT was carried out by adding to each well 3 �l random
hexamers at 150 ng/�l (Gene Link, Hawthorne, NY), 2 �l dNTPs (each at
10 mM), and 1 �l SuperScript II (Invitrogen), followed by incubation at
42°C for 2 h. We note that these RT parameters may be suboptimal com-
pared to those described previously (29, 34). After RT, 25 �l water was
added to each well to dilute the cDNA, and the cDNA plates were stored
at �20°C. The IgG heavy and light chain variable regions were amplified
independently by nested PCR in 50 �l volumes, using 5 �l cDNA as the
template, with HotStarTaq Plus DNA polymerase (Qiagen) and primer
mixtures described previously (34, 46). The cycler parameters were 94°C
for 5 min, 50 cycles of 94°C for 30 s, 52 to 55°C for 30 s, and 72°C for 1 min,
followed by 72°C for 10 min. The PCR amplicons were subjected to direct
Sanger sequencing. Human antibody sequences were analyzed using
IMGT/V-QUEST (http://www.imgt.org/). Rhesus antibody sequences
were analyzed using IgBLAST (47) to align them against a collection of
rhesus germ line V genes (48, 49) and to calculate hypermutation frequen-
cies. The rhesus germ line V gene that gave the lowest hypermutation
frequency for each query sequence was assigned and reported. Selected
PCR sequences that gave productive heavy or light chain rearrangements
were reamplified with custom primers containing unique restriction di-
gest sites and cloned into the corresponding human IgG1 heavy and light
chain expression vectors as described previously (34). Full IgG1 was ex-
pressed by cotransfecting 293F cells (Invitrogen) with equal amounts of
paired heavy and light chain plasmids and purified using Pierce recombi-
nant protein A agarose (Thermo Fisher Scientific).

ELISA, endo H treatment, and MAb competition analyses. HIV-1
gp120 or gp120-derived proteins (e.g., RSC3 and �RSC3, obtained from
the NIH AIDS Reagent Program and contributed by Zhi-Yong Yang, Pe-
ter Kwong, and Gary Nabel) were used to coat enzyme-linked immu-
nosorbent assay (ELISA) plates at 2 �g/ml in phosphate-buffered saline
(PBS) overnight at 4°C. For endo-�-N-acetylglucosaminidase H (endo H)
treatment, the amount of undiluted gp120 required to coat the plates was
first calculated and mixed with 1 �l endo H (New England BioLabs, Ips-
wich, MA) and 10� buffer for 1 h at 37°C; an equal amount of gp120
(untreated) was processed under identical conditions without endo H.
Both treated and untreated gp120s were diluted in PBS to 2 �g/ml to coat
the plates. The coated plates were blocked with 1% bovine serum albumin
(BSA) in PBS for 1 h at 37°C, followed by incubation with serially diluted

MAbs for 1 h at 37°C. Horseradish peroxidase (HRP)-conjugated goat
anti-human IgG Fc (Jackson ImmunoResearch, West Grove, PA) was
added at 1:10,000 for 1 h at 37°C. All ELISA incubation volumes were 100
�l/well, except that 200 �l/well was used for blocking. The plates were
washed between steps with 0.1% Tween 20 in PBS and developed with
3,3=,5,5=-tetramethylbenzidine (TMB) (Novex, Life Technologies) for 5
min with 1 M H2SO4 as the terminator and read at 450 nm. For compe-
tition ELISA, MAbs with known epitopes, such as CD4-Ig for CD4bs,
447-52D for V3 loop, PGT128 for V3 stem, 17b for CoRbs, and A32 for the
inner domain, were biotinylated using EZ-Link NHS-Biotin (Thermo
Fisher Scientific). The MAbs isolated in this study, such as GB40_b11 and
GB40_b13, were also biotinylated and tested against competing antibod-
ies with known epitopes. Serially diluted competing antibodies were first
added at 50 �l to gp120-coated plates for 15 min at room temperature;
another 50 �l of biotin-labeled MAbs was then added at a fixed final
concentration as follows: to JR-FL and AC10.29 gp120s, 100 ng/ml CD4-
Ig– biotin and 5 ng/ml 447-52D– biotin; to JR-FL gp120, 1 �g/ml
PGT128-biotin; and to AC10.29 gp120, 2 �g/ml 17b-biotin, 150 ng/ml
A32-biotin, 400 ng/ml GB40_b11-biotin, and 100 ng/ml GB40_b13-bio-
tin. The plates were incubated at 37°C for 1 h, followed by incubation with
250 ng/ml streptavidin-HRP (Sigma) at room temperature for 30 min,
and finally developed with TMB as described above.

HIV-1 neutralization assay and gp120 competition. HIV-1 neutral-
ization was measured using single-round infection of TZM-bl cells with
Env pseudoviruses as described previously (37, 50). Neutralization curves
were fitted by 5-parameter nonlinear regression (50) built in Prism 6.0
(GraphPad Software, La Jolla, CA). The 50% inhibitory titers were re-
ported as the plasma reciprocal dilutions (50% inhibitory plasma dilu-
tions [ID50s]) or antibody concentrations (50% inhibitory concentrations
[IC50s]) required to inhibit infection by 50%. Neutralization competition
was assessed by adding a fixed amount (25 �g/ml) of gp120 proteins to
serially diluted plasma samples or antibodies for 15 min at 37°C prior to
addition of virus. The resulting neutralization curves were compared
to control curves with mock PBS added.

Statistical analysis. The numbers of human and macaque broadly
neutralizing plasma samples identified within 1 to 3 years p.i. were com-
pared using Fisher’s exact test and the chi-square analysis built into Prism
6.0 (GraphPad Software).

Nucleotide sequence accession numbers. The nucleotide sequence of
AD358_m2 env is available in GenBank under accession number
KT808396. The nucleotide sequences of the heavy and light chain variable
regions of 17 AD358 MAbs (7 unique clones) are available in GenBank
under accession numbers KT799877 to KT799909. The nucleotide se-
quences of the heavy and light chain variable regions of 26 Chinese rhesus
macaque GB40 MAbs (13 unique clones) are available in GenBank under
accession numbers KT778824 to KT778875.

RESULTS
Plasma screening from HIV-1-infected humans. Using the
TZM-bl-based neutralization assay, we screened plasma samples
collected from 3 to 85 months p.i. for neutralizing activity against
10 HIV-1 Env pseudoviruses (Fig. 1). These Env isolates were
selected from clades A, B, and C, and the majority of them repre-
sent tier 2 neutralization susceptibilities of HIV-1 primary isolates
(50). Plasma samples that neutralized 5 or more out of the 10
tested HIV-1 strains with at least one ID50 value of �100 recipro-
cal dilutions were considered broadly neutralizing. Of 22 plasma
samples collected within 1 year p.i., only sporadic and weak neu-
tralizing activity (ID50 	 100) was detected; among those showing
activity, individual plasma samples often neutralized only one or
two strains. A single broadly reactive plasma of this group,
AD402_10mpi, showed weak ID50s against 5 tested strains. In 23
plasma samples collected between 1 and 2 years p.i., neutralizing
activity, although still weak, was more frequently detected; among
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those showing activity, two plasma samples, AD415_20mpi and
AD353_24mpi, neutralized at least 5 strains, with AD415_20mpi
meeting our definition of broad neutralization. In 19 plasma sam-
ples from 2 to 3 years p.i., neutralizing activity was comparable to
the activity of those from 1 to 2 years p.i. but became slightly more
potent, with ID50s often �100. Two plasma samples of this group,
AD379_25mpi and AD414_26mpi, neutralized at least 5 tested
strains, with AD414_26mpi defined as broadly neutralizing. Be-
cause the neutralization profiles of the 1- to 2-year-p.i. and 2- to
3-year-p.i. groups are comparable, we combined the two into a
single 1- to 3-year-p.i. group comprising a total of 42 plasma sam-
ples. Based on our criteria, 2 of the 42 plasma samples (5%) from
1 to 3 years p.i. were broadly neutralizing. Consistent with the
observation that neutralization breadth is often developed af-
ter 3 years p.i. (21), in 21 plasma samples collected after 3 years
p.i., neutralizing activity was much more commonly detect-
ed— every tested plasma except one (AD348_54mpi) showed
some activity. Similar to a larger study (3) that found relatively
common broadly neutralizing activity in chronic sera, we also
identified in the 3-year-p.i. group 7 plasma samples that were
broadly neutralizing. Taken together, of 85 plasma samples
tested, we identified 9 (11%) showing neutralization breadth,
namely, AD415_20mpi, AD414_26mpi, AD360_37mpi,
AD355_48mpi, AD304_50mpi, AD339_58mpi, AD344_58mpi,
AD342_61mpi, and AD358_66mpi (Fig. 1).

Screening plasma from SHIV-infected macaques. Previously,
we infected Indian and Chinese rhesus macaques with a single-
dose intrarectal challenge of pathogenic uncloned SHIVSF162P3N

(10–13) or its derivative molecular clones (14). We identified 13
animals with sustained viral loads for at least a year, including two

Chinese rhesus macaques, GL26 and GB40 (12). Using banked
plasma samples, we tested two time points for each animal, one at
less than 1 year p.i. and another at 1 to 2 years p.i. (Fig. 2). In
addition to the same 10 HIV-1 Env pseudoviruses used for human
plasma screening, we also tested 4 homologous molecular clones,
4, 8, 10, and 11, derived from the SHIVSF162P3N inoculum (14).
Because animals EE29 and FF59 were infected with clones 8 and 11
(C. Cheng-Mayer, personal communication) and animals FD83
and FF94 were infected with clone 8 (14), their antibody responses
to these clones are considered autologous. Consistent with the
finding that autologous and homologous neutralizing antibody
responses are common and arise relatively early in viremic ani-
mals (6–8), 11 of the 13 viremic macaques developed autologous
or homologous neutralizing antibodies within 1 year p.i., with
ID50s reaching or exceeding 1:1,000 dilution. In contrast, cross-
reactivity to HIV-1 in these animals was weak and sporadic
within 1 year p.i. Only two plasma samples, FF69_42wpi and
DD80_50wpi, cross-neutralized 7 HIV-1 strains tested. Over
time, from 1 to 2 years p.i., the autologous and homologous re-
sponses were largely maintained in these animals and did not ap-
pear to increase further. On the other hand, their HIV-1 cross-
reactivity was clearly broadened. FF69_96wpi plasma neutralized
all 10 tested HIV-1 Env pseudoviruses, indicating further broad-
ening of neutralization from its 42-week-p.i. plasma. Interest-
ingly, FF69 neutralized the HIV-1 strain BG505 most potently at
42 weeks p.i., and this activity dropped by 10-fold at 96 weeks p.i.,
indicating the dynamics of antibodies in the animal. DD80_79wpi
plasma remained similar to that from 50 weeks p.i. Notably,
GB40_70wpi neutralized 6 HIV-1 strains, and GL26_83wpi and
FD83_100wpi each neutralized 5 HIV-1 strains, demonstrating

FIG 1 Neutralization ID50 titers of plasma (reciprocal dilutions) from 85 HIV-1-infected human subjects from the ADARC cohort against 10 HIV-1 Env
pseudoviruses as indicated, with clades in parentheses. The dashed horizontal lines indicate the tested limit of 1:25 dilution; resistant values (	25) are plotted
between 11 and 20. The study subjects are grouped based on the estimated lengths of their infection times. mpi, months postinfection; YPI, year(s) postinfection.

Jia et al.

4020 jvi.asm.org April 2016 Volume 90 Number 8Journal of Virology

http://jvi.asm.org


progressive breadth development in these animals. Taken to-
gether, we identified 5 macaque plasma samples (38%) that
were broadly neutralizing, namely, FF69_96wpi, DD80_79wpi,
GB40_70wpi, GL26_83wpi, and FD83_100wpi. These numbers
(5 out of 13), if treated as independent observations, are signif-
icantly higher than the 2 out of 42 (5%) seen in similarly studied
human plasma samples from 1 to 3 years p.i., as determined by
Fisher’s exact test or a chi-square test ( Table 1). Even if we relax
the criteria to include 2 additional human plasma samples
(AD353_24mpi and AD379_25mpi) that neutralized 5 strains but
with ID50s of 	100, the numbers (4 out of 42 [10%] human sam-
ples from 1 to 3 years p.i.) are still significantly lower than those for
the macaques (Table 1) (Fisher’s exact test or chi-square test).
However, given the fact that the macaques were infected with the
same SHIV isolate or its derivative molecular clones, they cannot

be treated as independent observations. Therefore, the difference
observed here cannot be generalized to other SHIV-infected ma-
caques. With this limitation in mind, the tested SHIVSF163P3N-
infected macaques did not appear to lag behind the general pop-
ulation of HIV-1-infected humans in mounting bnAb responses.

Development of full-length gp120 probes. As an initial at-
tempt to map the antibody specificities in broadly neutralizing
plasma samples, we generated recombinant soluble gp120 probes
based on the sequences of JR-FL, Yu2, and AC10.29. Because sol-
uble wild-type (WT) gp120s bind effectively to the CD4 receptor
and block baseline infection, they cannot be used directly in the
neutralization assay to interrogate antibody specificities. We
therefore introduced the D368R (44) mutation, which greatly re-
duces CD4 binding to minimize the soluble-gp120 interference
with CD4. As the D368R mutation also reduces gp120 binding by

FIG 2 Neutralization ID50 titers of plasma (reciprocal dilutions) from 13 viremic SHIVSF162P3N-infected rhesus macaques against 4 homologous SHIV Env
pseudoviruses (top) and 10 HIV-1 Env pseudoviruses (bottom), as indicated. The dashed horizontal lines indicate the tested limit of 1:25 dilution; resistant values
(	25) are plotted between 11 and 20. The blue symbols in the top diagram indicate autologous responses, as animals EE29 and FF59 were infected with the
SHIVSF162P3N inoculum-derived molecular clones 8 and 11 and animals FD83 and FF94 were infected with clone 8. Each animal was tested at two time points.
wpi, weeks postinfection.

TABLE 1 Statistical comparison of numbers of broadly neutralizing plasma samples (based on the indicated criteria) between HIV-1-infected
humans and SHIVSF162P3N-infected macaques

Criterion Neutralization

No. of plasma samples

Humans 1–3 yr p.i. Macaques 1–2 yr p.i. Total no.

Neutralizing �5 out of 10 tested HIV-1 strains
with an ID50 of �100a

Broad 2 5 7
Not broad 40 8 48
Total no. 42 13 55

Neutralizing �5 out of 10 tested HIV-1 strainsb Broad 4 5 9
Not broad 38 8 46
Total no. 42 13 55

a Fisher’s exact test, P 
 0.006; chi-square test, P 
 0.001.
b Fisher’s exact test, P 
 0.026; chi-square test, P 
 0.014.
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most CD4bs-directed bnAbs, including VRC01 and its class (29),
we generated another mutant, W479A, to complement D368R for
plasma mapping and MAb isolation. The W479A mutation re-
duces gp120-CD4 interaction by keeping gp120 in an unliganded
conformation (45) but largely retains binding by most CD4bs
MAbs. We expressed and purified these soluble gp120 WT and
mutant proteins and examined their binding to CD4-Ig (Fig. 3,
top) and VRC01 (Fig. 3, middle). CD4-Ig and VRC01 bound well
to all three WT gp120s. Compared with its binding to WT gp120s,
CD4-Ig showed substantially reduced binding to both D368R and
W479A mutants, as expected. In contrast, VRC01 showed sub-
stantially reduced binding only to D368R gp120s but largely re-
tained its binding to W479A gp120s compared to the WT. The
D368R and W479A gp120s were then tested at 25 �g/ml to adsorb
VRC01-mediated neutralizing activity against each gp120 se-
quence-matched strain (Fig. 3, bottom). Because D368R gp120s
lacked tight binding to VRC01, they were unable to adsorb
VRC01-mediated neutralizing activity. In contrast, W479A
gp120s retained binding affinity to VRC01 close to that of the WT,
and thus, they were effective at adsorbing VRC01. These results
supported the use of soluble D368R and W479A mutant gp120s to
map neutralizing specificities in complex plasma.

Plasma mapping using gp120 mutants. We applied JR-FL
D368R and W479A gp120s to interrogate neutralizing activities
(Fig. 4A) from 7 human broadly neutralizing plasma samples that

neutralized JR-FL with ID50s of �100, along with 2 additional
plasma samples (AD379_25mpi and AD359_52mpi) that also
neutralized JR-FL. With the exceptions of AD359_52mpi and
AD358_66mpi, the plasma neutralization curves against JR-FL
were mostly unchanged after adding either D368R or W479A
gp120 compared to a mock control, indicating that these gp120s
were ineffective at adsorbing JR-FL neutralizing activities from the
tested plasma samples. From AD358 and AD359 plasma samples,
D368R and W479A gp120s distinctively adsorbed neutralizing ac-
tivities. Specifically, W479A gp120, but not D368R, partially ad-
sorbed neutralizing activity from AD358_66mpi, while the oppo-
site was observed for AD359_52mpi—D368R gp120 was more
effective than W479A. Because the D368R mutation is specific for
CD4bs and W479A is not, these results suggest that AD358 con-
tains neutralizing antibodies directed to the CD4bs and AD359
contains neutralizing antibodies directed to gp120 but not to the
CD4bs.

Similarly, we applied the D368R and W479A gp120s (Fig. 4B)
to analyze 3 macaque broadly neutralizing plasma samples that
neutralized JR-FL, Yu2, or AC10.29 with an ID50 of �100, along
with FF59_80wpi, which also neutralized JR-FL. Compared to
mock controls, addition of either D368R or W479A gp120 did
not change the neutralization curves of DD80_50wpi and
FF69_96wpi, suggesting that neutralizing antibodies in these ani-
mals are not directed to these gp120s. Both D368R and W479A

FIG 3 Characterization of recombinant gp120s for ELISA binding with CD4-Ig (top) and VRC01 (middle) and for neutralization competition with VRC01
(bottom). The gp120 sequences were based on JR-FL, Yu2, and AC10.29, as indicated. Each strain was tested as the WT or with a point mutation (D368R or
W479A). (Bottom) For neutralization competition assays, the D368R and W479A gp120 mutants were tested at 25 �g/ml to adsorb VRC01 neutralizing activity
against the indicated gp120-matched strains.
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gp120s were effective at adsorbing neutralizing activities from
GB40_70wpi and FF59_80wpi, indicating neutralizing specifici-
ties directed to these gp120s. To our knowledge, this is the first
plasma-mapping analysis of SHIV-infected macaques using
gp120-based proteins, although BG505 gp120 D368R has been
used to map the postimmune plasma samples of macaques immu-
nized with a BG505-based gp140 immunogen (51). Importantly,
two of the best neutralizing plasma samples identified in this
study, FF69_96wpi and GB40_70wpi, displayed distinct neutral-
izing antibody specificities.

AD358 MAbs isolated by gp120 probes. The effectiveness of
gp120 adsorption suggested that the gp120 probes could be ap-
plied to AD358 and AD359 samples for MAb isolation. Since the
AD358_66mpi plasma displayed a broader and more potent

neutralization profile than AD359_52mpi, we proceeded with
AD358_66mpi PBMCs for MAb isolation. From 7 million
PBMCs, we sorted 34 B cells that stained positive for JR-FL gp120
W479A-PE and negative for JR-FL gp120 D368R-APC (Fig. 5A).
We recovered 7 unique gp120-reactive MAb clones, including a
major clone, AD358_n1, with 10 clonal variants. The immuno-
globulin gene usage, somatic hypermutations, and CDR3 lengths
of these isolated MAbs are summarized in Table 2. We clon-
ed and expressed three variants, AD358_n1, AD358_n1.2, and
AD358_n1.6, for neutralization and binding tests. The AD358_n1
MAbs neutralized JR-FL, Yu2, REJO.67, and the subject’s early
autologous Env clone AD358_m2 (Table 3). Two additional
AD358 MAb clones, AD358_n2 and AD358_n3, also neutralized
the autologous AD358_m2, JR-FL, and REJO.67 (Table 3). When

FIG 4 Plasma-mapping analysis using recombinant gp120 proteins. Broadly neutralizing plasma samples from 9 HIV-1-infected humans (A) and 4
SHIVSF162P3N-infected macaques (B) were tested for antibody neutralization against HIV-1 strain JR-FL, Yu2, or AC10.29, as indicated, in the presence of
strain-matched gp120 recombinant proteins with a D368R or W479A mutation. The gp120s were tested at 25 �g/ml to adsorb plasma neutralizing activity.
Compared with mock controls, reduced or ablated activities indicate the presence of neutralizing antibodies directed to the corresponding gp120s.
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tested by ELISA, these MAbs bound well to JR-FL gp120 WT and
W479A, but not to D368R (Fig. 5B), consistent with the CD4bs
specificity; this specificity was further supported by their effec-
tive competitions with biotin-labeled CD4-Ig (Fig. 5C). These
CD4bs MAbs did not bind to RSC3, with the exception of mod-
erate binding to RSC3 and �RSC3 by AD358_n2 (Fig. 5B). The
other 4 AD358 MAbs comprised three (AD358_b4 to
AD358_b6) to the CD4bs and one (AD358_b7) to the V3 loop
(Table 2 and Fig. 5B); these specificities were supported by
their effective competitions with biotin-labeled CD4-Ig or 447-
52D, known to target V3 (Fig. 5C). Unlike the “conventional”
CD4bs-directed MAbs, the MAb AD358_b6 largely retained its
binding to gp120 D368R (Fig. 5B), indicative of an epitope not
centered at the key CD4 contact residue, Asp368. Two previ-

ously known human CD4bs bnAbs, HJ16 and 179NC75, also
bind to some gp120s with D368R (32, 52, 53). The MAbs
AD358_b4 to AD358_b7 neutralized only tier 1 strains and did
not neutralize the tier 2 strains tested (Table 3). Thus, while
MAbs with the CD4bs specificity can be isolated from AD358
using gp120 probes, they are not broadly neutralizing.

GB40 MAbs isolated by gp120 probes. We next processed
PBMCs from the Chinese rhesus macaque GB40 for MAb isola-
tion because of its better neutralization profile over FF59. From
7.5 million GB40_75wpi PBMCs, we sorted 160 B cells that were
dual positive for AC10.29 gp120 D368R and W479A (Fig. 6A). We
recovered 13 unique gp120-reactive MAbs, and their immuno-
globulin gene usage, somatic hypermutations, and CDR3 lengths
are listed in Table 2. When tested by ELISA, the GB40 MAbs

FIG 5 Isolation and characterization of AD358 MAbs. (A) B-cell staining and sorting from the PBMCs of AD358_66mpi by FACS. SSC, side scatter; FSC, forward
scatter. (B) ELISA binding curves of AD358 MAbs to gp120 and RSC3 proteins, as indicated. (C) Competition ELISA analysis of AD358 MAbs.
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GB40_b1 to GB40_b8 bound tightly to AC10.29 WT, D368R, and
W479A gp120s (Fig. 6B); this binding profile is consistent with the
gp120 probes used for the B-cell sort (Fig. 6A). Competition
ELISA against 447-52D– biotin indicated that MAbs GB40_b1
to GB40_b8 are directed to V3 (Fig. 6B, right). The other 5
non-V3 GB40 MAbs showed varying binding affinities to AC10.29
WT, D368R, and W479A gp120s, with two (GB40_b9 and
GB40_b13) bound tightly, two (GB40_b11 and GB40_b12) mod-
erately, and one (GB40_b10) poorly to gp120 W479A (Fig. 6C,
top). We tested these MAbs in competition ELISA against CD4-
Ig– biotin and 17b-biotin and confirmed that they are not directed
to CD4bs or CoRbs. We determined that GB40_b9 is directed to
the V3 stem, as it effectively competed with PGT128-biotin

(Fig. 6C, top right). As PGT128 binds to glycans N301/N332 at the
V3 base (54), we deglycosylated AC10.29 WT gp120 with endo H
and tested it for MAb binding (Fig. 6C, top left). All 5 GB40
non-V3 MAbs bound the endo H-treated (dashed lines) and un-
treated (solid lines) gp120s equally well. As a control, the glycan-
dependent PGT128 lost most of its binding to the endo H-treated
gp120. These results indicate that the tested GB40 MAbs do not
rely on gp120 glycans for binding. We also determined that
GB40_b10 is directed to the inner domain of gp120, as suggested
by its effective competition with biotin-labeled A32 (55, 56) (Fig.
6C, bottom left). Based on similar binding curves of GB40_b11
and GB40_b12 to AC10.29 WT, D368R, and W479A gp120s (Fig.
6C, top), we biotin labeled only GB40_b11 and GB40_b13 and

TABLE 2 Genetic compositions and epitopes of isolated human and macaque gp120-specific MAbs

MAb identifier (ID) Origin Host Time p.i. Isotype V genea (% hypermutation) CDR3 lengthb (aa) Epitope on gp120

AD358_n1 Human AD358 66 mo IgG1 HV3-11 (19) H3, 13; L3, 10 CD4bs
LV2-14 (13)

AD358_n1.2 Human AD358 66 mo IgG1 HV3-11 (19) H3, 13; L3, 10 CD4bs
LV2-14 (11)

AD358_n1.6 Human AD358 66 mo IgG1 HV3-11 (19) H3, 13; L3, 10 CD4bs
LV2-14 (9)

AD358_n2 Human AD358 66 mo IgG1 HV3-11 (22) H3, 13; L3, 10 CD4bs
LV2-14 (12)

AD358_n3 Human AD358 66 mo IgG1 HV3-11 (19) H3, 13; L3, 10 CD4bs
LV2-11 (9)

AD358_b4 Human AD358 66 mo IgG1 HV1-18 (10) H3, 16; L3, 9 CD4bs
KV3-11 (5)

AD358_b5 Human AD358 66 mo IgG1 HV1-18 (14) H3, 17; L3, 10 CD4bs
KV3-11 (6)

AD358_b6 Human AD358 66 mo IgG1 HV3-11 (13) H3, 14; L3, 8 CD4bs
KV3-15 (5)

AD358_b7 Human AD358 66 mo IgG1 HV5-51 (15) H3, 8; L3, 9 V3 loop
LV6-57 (9)

GB40_b1 Chinese rhesus macaque GB40 75 wk IgG1 HV5.46 (13) H3, 14; L3, 11 V3 loop
LV1.22 (7)

GB40_b2 Chinese rhesus macaque GB40 75 wk IgG1 HV3.63 (8) H3, 17; L3, 10 V3 loop
LV2A (7)

GB40_b3 Chinese rhesus macaque GB40 75 wk IgG1 HV3.24 (10) H3, 6; L3, 11 V3 loop
LV1.22 (5)

GB40_b4 Chinese rhesus macaque GB40 75 wk IgG1 HV3.44 (12) H3, 7; L3, 8 V3 loop
KV2E (9)

GB40_b5 Chinese rhesus macaque GB40 75 wk IgG1 HV3.44 (13) H3, 21; L3, 9 V3 loop
KV2E (5)

GB40_b6 Chinese rhesus macaque GB40 75 wk IgG1 HV3.44 (10) H3, 20; L3, 9 V3 loop
KV2E (6)

GB40_b7 Chinese rhesus macaque GB40 75 wk IgG1 HV3.44 (7) H3, 21; L3, 9 V3 loop
KV2E (4)

GB40_b8 Chinese rhesus macaque GB40 75 wk IgG1 HV1.53 (13) H3, 14; L3, 11 V3 loop
LV1A (9)

GB40_b9 Chinese rhesus macaque GB40 75 wk IgG1 HV4-F (7) H3, 7; L3, 9 V3 stem
KV2E (7)

GB40_b10 Chinese rhesus macaque GB40 75 wk IgG1 HV4.11 (12) H3, 13; L3, 11 Inner domain
LV1D (3)

GB40_b11 Chinese rhesus macaque GB40 75 wk IgG1 HV3.58 (12) H3, 18; L3, 9 C5
KV2.44 (11)

GB40_b12 Chinese rhesus macaque GB40 75 wk IgG1 HV3.24 (13) H3, 10; L3, 8 C5
KV2.46 (4)

GB40_b13 Chinese rhesus macaque GB40 75 wk IgG1 HV3.17 (10) H3 11; L3 8 C5
KV3K (6)

a The MAb sequences were assigned to the closest known human or macaque germ line V genes, as appropriate.
b The MAb CDR3 lengths were determined according to the Kabat definition (67).
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examined GB40_b11 to GB40_b13 for cross-reactivity, as well as
against the sheep polyclonal antibody D7324, known to target a
conserved peptide in the C5 region of gp120 (Fig. 6C, bottom
right). All three GB40 MAbs cross-competed, with GB40_b13 be-
ing most effective, as it has the best binding affinity to AC10.29
gp120. D7324, as a polyclonal antibody, was tested at a higher
concentration (100 �g/ml) and was effective at competing
against GB40_b11-biotin and GB40_b13-biotin. These results
suggest that the epitopes of GB40_b11 to GB40_b13 overlap
D7324 and involve gp120 C5. The V3 loop- and V3 stem-directed
GB40 MAbs GB40_b1 to GB40_b9 neutralized tier 1 but generally
not tier 2 strains (Table 3), including the homologous
SHIVSF162P3N clones 8 and 10, which are most sensitive to GB40
plasma neutralization (Fig. 2, top). The non-V3-directed GB40
MAbs GB40_b10 to GB40_b13 lacked neutralizing activity
against even tier 1 strains (Table 3). Therefore, the isolated
gp120-reactive MAbs from GB40 are mainly V3 directed, with
minimal cross-neutralizing activity.

Human anti-V3 MAbs have been associated with preferred use
of the IGHV5-51 gene (57), which is also used by the only anti-V3
MAb isolated from AD358 (GB40_b7 [Table 2]). In this regard,
the isolated macaque anti-V3 MAb GB40_b1, with three clonal
variants, uses the rhesus VH5.46 gene (Table 2), which resembles
the human IGVH5-51 gene, suggesting similarity between the hu-
man and macaque immunoglobulin genes used to encode some
V3-directed MAbs.

DISCUSSION

Compared to chronically or long-term HIV-1-infected individu-
als, the development of bnAbs against tier 2 HIV-1 has rarely been
detected in SHIV-infected macaques; this was also the case for the

SHIVSF162P3N-infected rhesus macaques in this study. Several fac-
tors of current SHIV models may have contributed to this poor
bnAb response in macaques. First, the number and genetic diver-
sity of the available SHIV strains are limited compared to those of
circulating HIV-1 strains. Consequently, the types of antibody
responses induced by these limited SHIVs may be constrained as
opposed to those induced by HIV-1 infections. Second, the dura-
tion of infection has been shorter for macaques. As the infected
macaques have been typically followed for up to 2 years p.i., it is
difficult to compare antibody responses in these animals with
those in long-term-infected humans with a different course of
infection, often lasting for more than 10 years. Third, viral loads
are highly variable in macaques, with most animals failing to sus-
tain viremia (58–60). Of 13 viremic macaques infected with
SHIVSF162P3N, 11 (85%) were identified with homologous neu-
tralizing titers and 5 (38%) with breadth, according to our defini-
tion for the tested HIV-1 strains. Since the macaque plasma sam-
ples were collected at 1 to 2 years p.i., we compared their
neutralization profiles to those of the infected human plasma sam-
ples collected at 1 to 3 years p.i. Unlike plasma samples from
chronic infection, the development of bnAbs in infected humans
is also uncommon in the early course of infection. Among the
plasma samples from 85 individuals who have been followed dur-
ing the acute and early course of infection, we identified a total of
9 subjects (11%) with neutralization breadth and potency, but
only 2 of them were from 1 to 3 years p.i. These numbers suggest
that with specific SHIV strains, such as SHIVSF162P3N, studied
here, and SHIVAD8, identified previously (5, 6), some infected
macaques can sustain viremia and mount effective and timely
bnAb responses against tier 2 HIV-1 strains. These results sup-

TABLE 3 Neutralization IC50 titers of isolated human and macaque gp120-specific MAbs

MAb ID Epitope

Neutralization IC50 (�g/ml)a

Tier 1 Tier 2

HXB2 SF162 BaL.01 JR-FL Yu2 AC10.29 REJO.67 AD358_m2 SHIVSF162P3Nclone 8 SHIVSF162P3Nclone 10

AD358_n1 CD4bs 0.22 0.10 50 0.19 5.3 �50 9.1 3.7
AD358_n1.2 CD4bs 0.05 0.16 0.26 0.34 8.6 �50 1.5 3.0
AD358_n1.6 CD4bs 15.0 �50 �50 2.4 �50 �50 1.8 0.91
AD358_n2 CD4bs 0.28 0.06 0.05 0.17 �50 �50 31.0 6.3
AD358_n3 CD4bs �50 2.7 �50 50.0 �50 �50 0.69 4.7
AD358_b4 CD4bs 0.41 1.4 �50 �50 �50 �50 �50 �50
AD358_b5 CD4bs 0.05 0.21 7.0 �50 ND ND ND �50
AD358_b6 CD4bs 0.06 0.38 �50 �50 ND ND ND �50
AD358_b7 V3 loop �50 0.002 0.11 �50 ND ND ND �50
GB40_b1 V3 loop �50 0.03 0.72 50.0 �50 �50 �50 �50
GB40_b2 V3 loop 0.72 0.01 0.85 50.0 �50 �50 �50 �50
GB40_b3 V3 loop �50 16.4 15.5 �50 �50 �50 �50 �50
GB40_b4 V3 loop �50 0.02 0.34 45.0 �50 �50 �50 �50
GB40_b5 V3 loop 0.03 0.08 2.4 �50 �50 �50 �50 �50
GB40_b6 V3 loop 11.5 0.23 2.6 50.0 �50 �50 �50 �50
GB40_b7 V3 loop 1.9 0.05 7.9 �50 �50 �50 �50 �50
GB40_b8 V3 loop �50 0.09 1.7 �50 �50 �50 �50 �50
GB40_b9 V3 stem �50 0.04 1.1 45.0 �50 �50 �50 �50
GB40_b10 Inner domain �50 �50 �50 �50 �50 �50 �50 �50
GB40_b11 C5 �50 �50 �50 45.0 �50 �50 �50 �50
GB40_b12 C5 �50 �50 �50 �50 �50 �50 �50 �50
GB40_b13 C5 �50 �50 �50 �50 �50 �50 �50 �50
a ND, not done.
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port the feasibility of developing SHIV models that consistently
produce bnAbs. For this purpose, it would be of interest to
track the bnAb maturation process in selected macaques, such
as the animals FF69 and GB40 in this study and CE8J and CL5E
from previous SHIVAD8 studies (5, 6), and to determine if in-
oculations with SHIVs expressing sequential Env clones from
these animals reproduce similar bnAb responses.

Based on our prior success in mapping neutralizing antibody
specificities and in isolating VRC01 and other CD4bs MAbs using
a gp120 core-based probe, monomeric gp120s with either D368R
or W479A mutations were generated to further characterize
plasma samples with neutralization breadth. We recognize that
while these probes were designed to bind and adsorb most gp120-
directed antibodies, including those directed to CD4bs, removing

one specificity in a competition assay may not be sufficient to
cause decrease of the overall neutralizing activity of plasma that is
likely to contain complex antibodies with diverse epitopes. With
this caveat, only 2 of 9 human plasma samples, AD358 and AD359,
and 2 of 4 macaque plasma samples, GB40 and FF59, were found
to contain neutralizing antibodies directed to monomeric gp120,
suggesting that the bulk of human and macaque bnAbs bind to the
Env trimer (including gp41) rather than to the gp120 monomer.
Characterization of the isolated gp120-reactive MAbs showed that
6 of 7 MAbs recovered from AD358 were directed to CD4bs, with
3 CD4bs-directed MAbs (AD358_n1 to AD358_n3) exhibiting
neutralizing activity against JR-FL and the autologous Env strain
AD358_m2. These CD4bs MAbs with limited cross-reactivity are
clearly different from the VRC01 class or other CD4bs-directed

FIG 6 Isolation and characterization of GB40 MAbs. (A) B-cell staining and sorting from the PBMCs of GB40_75wpi by FACS. (B) ELISA and competition
ELISA analyses of 8 GB40 MAbs directed to the V3 loop of gp120. (C) ELISA and competition ELISA analyses of 5 non-V3-loop-directed GB40 MAbs; the dashed
lines in the top left graph show MAb binding curves to endo H-treated gp120.
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bnAbs. Nevertheless, the “narrow” CD4bs-directed MAbs with
autologous neutralizing activity may be important in shaping env
evolution in vivo, as implied in a study (25) showing cooperation
of two autologous neutralizing MAb lineages in driving env evo-
lution and guiding the maturation of bnAbs. Moreover, their
presence suggests that the levels of steric hindrance posed by the
Env trimer to shield CD4bs vary among HIV-1 strains and/or
between early and late Env variants within an infected individual.
As these MAbs do not bind to RSC3 or cannot be distinguished by
RSC3/�RSC3 binding, the D368R and W479A gp120 probes de-
scribed here will be useful in identifying them.

The GB40 MAbs recovered from dual staining of gp120
W479A� D368R� B cells showed only tier 1 (GB40_b1 to
GB40_b9) or no (GB40_b10 to GB40_b13) neutralizing activity,
indicating that this dual staining with gp120s was not specific
enough to select bnAbs from this macaque. Nonetheless, these
rhesus gp120-reactive MAbs provided insights into the similarity
in antibody responses between HIV-1 and SHIV infections. For
example, 8 out of the 13 isolated GB40 MAbs are directed to the V3
loop. This is similar to the V3 immunodominance observed in
HIV-1 infection (61, 62). Moreover, the macaque anti-V3 clone
GB40_b1 uses the rhesus VH5.46 gene (Table 2), which resembles
the human IGVH5-51 gene used preferentially to encode human
anti-V3 MAbs (57). The MAb GB40_b10 cross-competed with the
human MAb A32. Since A32 has been shown to mediate antibody-
dependent cellular cytotoxicity (ADCC) (63), it would be of inter-
est to determine whether GB40_b10 also mediates similar ADCC
activity. Other GB40 MAbs (GB40_b11 to GB40_b13) mapped to
the C5 region of gp120 may also be useful to replace D7324 to
capture gp120 or gp140 for ELISA or Env immunogen purifica-
tions (51, 64–66), in particular GB40_b13, which has the highest
binding affinity to gp120.

In summary, we have focused on identifying broadly neutral-
izing plasma samples from individuals with acute and early HIV-1
infection and from SHIVSF162P3N-infected rhesus macaques. We
were able to identify broadly neutralizing human and rhesus
plasma samples with specificities directed to monomeric gp120,
but they are infrequent, and the B-cell staining with gp120 probes
was not specific enough to isolate the corresponding bnAbs.
Nonetheless, characterization and sequencing of the rhesus
gp120-reactive MAbs provided insights into the similarity to their
human counterparts. A better understanding of bnAb develop-
ment as a function of time in SHIV-infected rhesus macaques and
identification of sequential Env clones that are more efficient in
driving bnAb responses should improve the use of this model for
HIV-1 vaccine discovery. As neutralizing activity in most broadly
neutralizing plasma samples does not appear to be directed to
monomeric gp120, it remains to be determined if Env trimer
probes would be more successful in isolating bnAbs from these
human and rhesus subjects.
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