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ABSTRACT

The association of host histones with parvoviral DNA is poorly understood. We analyzed the chromatinization and histone acet-
ylation of canine parvovirus DNA during infection by confocal imaging and in situ proximity ligation assay combined with
chromatin immunoprecipitation and high-throughput sequencing. We found that during late infection, parvovirus replication
bodies were rich in histones bearing modifications characteristic of transcriptionally active chromatin, i.e., histone H3 lysine 27
acetylation (H3K27ac). H3K27ac, in particular, was located in close proximity to the viral DNA-binding protein NS1. Impor-
tantly, our results show for the first time that in the chromatinized parvoviral genome, the two viral promoters in particular
were rich in H3K27ac. Histone acetyltransferase (HAT) inhibitors efficiently interfered with the expression of viral proteins and
infection progress. Altogether, our data suggest that the acetylation of histones on parvoviral DNA is essential for viral gene ex-

pression and the completion of the viral life cycle.

IMPORTANCE

Viral DNA introduced into cell nuclei is exposed to cellular responses to foreign DNA, including chromatinization and epige-
netic silencing, both of which determine the outcome of infection. How the incoming parvovirus resists cellular epigenetic
downregulation of its genes is not understood. Here, the critical role of epigenetic modifications in the regulation of parvovirus
infection was demonstrated. We showed for the first time that a successful parvovirus infection is characterized by the deposi-
tion of nucleosomes with active histone acetylation on the viral promoter areas. The results provide new insights into the regula-
tion of parvoviral gene expression, which is an important aspect of the development of parvovirus-based virotherapy.

N uclear chromatin is composed of DNA and histone pro-
teins (1). The histone proteins assemble DNA into nucleo-
somes, the composition and spacing of which contribute to
higher-order chromatin packing. The chromatin is organized
into regions of less-condensed actively transcribed chromatin
(euchromatin) and highly condensed transcriptionally re-
pressed chromatin (heterochromatin). Epigenetic modifica-
tions of histone proteins have been shown to correlate with the
spatial distribution of active and repressed chromatin (2, 3).
The acetylation of lysine 9 or 27 of histone H3 (H3K9ac and
H3K27ac, respectively) and trimethylation of lysine 4 (H3K4me3)
correlate with transcriptional activity, while repressed chromatin
is characterized by, e.g., trimethylation or dimethylation of the
same H3 lysine residues (H3K9me3 and H3K27me3 as well as
H3K9me2 and H3K27me2) (4-8).

Foreign DNA introduced into mammalian cells can be rec-
ognized as a threat by the host cell. The cellular responses to the
foreign DNA, such as viral DNA, include the chromatinization
of the entering DNA, leading to its transcriptional silencing
(9-11). How viruses resist cellular chromatinization and si-
lencing is known for only a few viruses (9, 12, 13). These in-
clude herpes simplex viruses (HSVs) (14—16), polyomaviruses
(17, 18), adenoviruses (19), and cytomegaloviruses (20, 21), all
of which encode proteins that promote transcriptionally acti-
vating histone modifications on chromatinized viral genomes
during lytic infection.

In parvovirus infection, the nuclear entry of viral single-
stranded DNA is followed by the formation of double-stranded
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replicative intermediates, the nuclear accumulation of viral pro-
teins and DNA, and the formation of autonomous parvovirus-
associated replication (APAR) bodies (22-25). Viral gene expres-
sion and DNA replication are dependent on the S phase of the cell
cycle. In infected cells, the transcription of viral nonstructural
protein 1 (NS1) at 4 h postinfection (p.i.) is followed by viral
genome replication (26). Replication continues throughout the
infection and leads to the production of viral capsids and their
nuclear egress at 20 to 24 h p.i. The intranuclear chromatinization
of the parvoviral genome, the modification of the assembled his-
tones, and the effect of these events on viral gene expression are
not well understood. To provide answers to these questions, we
analyzed the infection of an autonomous protoparvovirus, canine
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parvovirus (CPV), by confocal imaging techniques and in situ
proximity ligation assays (PLA) complemented with chromatin
immunoprecipitation coupled with high-throughput sequencing
(ChIP-seq). Our results demonstrated the enrichment of acety-
lated histones (H3K27ac) in close proximity to viral DNA-binding
NS1 in APAR bodies and especially H3K27ac accumulated in the
viral promoters. The inhibition of histone acetyltransferase
(HAT) activity led to the interruption of the viral life cycle. These
results reveal that histone acetylation on chromatinized parvoviral
genomes is necessary for the expression of viral genes and success-
ful progression of infection.

MATERIALS AND METHODS

Cells, viruses, and constructs. Norden Laboratories feline kidney (NLFK;
Quality Control of Pfizer Animal Health, Lincoln, NE) cells were grown in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 10%
fetal bovine serum (Gibco, Paisley, United Kingdom) at 37°C in the pres-
ence of 5% CO,. CPV-2d isolates originated from an infectious plasmid
clone (a gift from C. R. Parrish, Cornell University, Ithaca, NY [27]). The
viruses had been isolated as described by Suikkanen et al. (28). For infec-
tion, the cells were inoculated with CPV (multiplicity of infection [MOI]
of 1 to 2) and kept at 37°C until fixation. In order to synchronize infec-
tions, the cells were incubated on ice at 4°C for 20 min prior to virus
addition. The cells then were inoculated on ice to allow for virus adsorp-
tion to occur for 30 min. The cells next were rinsed at 4°C with phosphate-
buffered saline (PBS) containing 0.3% bovine serum albumin (BSA) fol-
lowed by the addition of 37°C medium. The plasmid encoding fluorescent
H3-enhanced green fluorescent protein (EGFP) was a generous gift from
J. Langowski (German Cancer Research Center, Heidelberg, Germany).
An NLFK cell line stably expressing H3-EGFP was established by trans-
fection (TransIT-LT1 reagent; Thermo Fisher Scientific Inc., Waltham,
MA) with an expression vector at 24 h after seeding. After 2 days, the
DMEM was replaced by DMEM containing 1 mg/ml Geneticin (Sigma-
Aldrich, St. Louis, MO). The cells then were seeded at different intervals
until stable expression was observed by microscopy.

Confocal microscopy. For immunolabeling, cells seeded on round
coverslips were infected with CPV and fixed at 8, 10, 12, 16, and 24 h p.i.
with 4% paraformaldehyde (PFA; 15 min at room temperature). Viral
proteins were detected with an NS1-specific monoclonal antibody (MAb)
(generous gift from Caroline Astell) (29), an intact capsid MAb, and a
polyclonal capsid-protein VP2 antibody (Ab; generous gifts from Colin R.
Parrish) (27), followed by goat anti-mouse or anti-rabbit Alexa-555- or
Alexa-633-conjugated secondary Abs (Molecular Probes, Life technolo-
gies, Grand Island, NY). Modified histones were labeled with rabbit Abs
against H3K9me3 and H3K27ac (Abcam, Cambridge, MA) followed by
goat anti-rabbit Alexa 633-conjugated secondary Abs. For deacetylation
and hyperacetylation studies, cells were either pretreated for 30 min prior
to virus inoculation or treated at 0 to 6 h p.i. with 0.1 mM anacardic acid
prepared in 100% dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St. Louis,
MO). Cell viability was assessed using propidium iodide (Sigma) and
annexin V Alexa 647 (Molecular Probes) staining by following the man-
ufacturer’s instructions (data not shown). All cells were fixed at 24 h p.i.
with 4% PFA and permeabilized with 0.1% Triton X-100 in PBS supple-
mented with 1% BSA and 0.01% sodium azide. Imaging was done with an
Olympus FV-1000 confocal microscope with the UPLSAPO 60X oil-im-
mersion objective (numeric aperture, 1.35). EGFP was excited with a
488-nm argon laser, and fluorescence was collected with a 515/30-nm
band-pass filter. Alexa 555 and the proximity ligation assay (PLA) reagent
with a fluorophore, 594 nm, were excited with a 543-nm He-Ne laser, and
fluorescence was collected with a 570-nm to 620-nm band-pass filter and
a 560IF band-pass filter, respectively. Alexa 633 was excited with a 633-nm
He-Ne laser, and the fluorescence was collected with a 647-nm long-pass
filter. Image size was between 512 by 512 and 1,600 by 1,600 pixels with a
pixel resolution of 66 to 69 nm. Deconvolution was performed with Huy-
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gens Essential software (SVI, Netherlands). The point-spread function
was averaged, the iterative deconvolution was performed with a signal-to-
noise ratio of 5, and the quality threshold was 0.01. Image analysis was
done with Image] (30).

Correlation analysis was done with Image] using the JACoP plugin
(31). Distance analysis of the fixed-cell samples was done first by making
a Euclidian distance map from an image of interest and then plotting the
original image against the distance map. The data from every cell were
combined and arranged to 0.1-pwm-wide bins based on the distance of the
voxels from the nuclear envelope. The average intensity then was plotted
for each bin. Distance maps were done in Image] with the exact Euclidian
distance transform (3D) plugin, and the data analysis was done with an
in-house Java code. Student’s ¢ test (two-tailed, unequal variance) was
used to evaluate statistical significance in the change of the recovery time
point values.

Analysis of protein interactions. For in situ PLA (32), cells were
grown on 8-well chamber slides (Nunc Lab-Tek II chamber slide system;
Nalgene Nunc International, Penfield, NY) to 80 to 90% confluence and
fixed with 4% PFA. PLA was done with a DuolinkII kit (Olink Bioscience,
Uppsala, Sweden) and primary Abs against NS1 and H3K27ac. After la-
beling the cells with the primary Abs, the PLA probes (oligonucleotide-
conjugated secondary anti-mouse and anti-rabbit IgGs diluted in 3% BSA
in PBS) were incubated for 1 h at 37°C in a humidified chamber, followed
by ligation and amplification according to the manufacturer’s instruc-
tions. Samples were embedded in ProLong gold antifade mounting me-
dium with 4’,6-diamidino-2-phenylindole (DAPI). The specificity of the
assay was confirmed using positive, negative, and technical control read-
ings. Positive and negative controls consisted of infected and noninfected
cells, respectively, labeled with anti-VP2 and intact capsid-specific Abs or
anti-NS1 and anti-H3K27ac Abs. For a technical control, noninfected
cells were labeled only with PLA probes. Quantitative analysis was done
with Image] by determining the arithmetic mean of the total number of
signals per cell. The PLA signal was normalized as PLA = NA — NT,
where NA is the total number of nuclear PLA dots in infected and
noninfected cells labeled with H3K27ac Ab and NS1 MAb and NT is
the average number of nuclear PLA dots in the technical control. Stu-
dent’s f test (two-tailed, unequal variance) was used to evaluate statis-
tical significance.

ChIP-seq and qPCR. Cells were fixed with formaldehyde, and nuclei
were isolated, lysed, and sonicated with a Covaris $220 ultrasonicator. The
resulting nuclear extract was incubated overnight at 4°C with Dynal pro-
tein G beads preincubated with 5 pg of H3K27ac (ab4729) or H3 (ab1791)
Abs. Beads were washed and bound complexes eluted, and cross-links
were reversed by heating at 65°C. Immunoprecipitation (IP) and input
DNA then were purified by a treatment with RNase A, proteinase K, and
phenol-chloroform extraction. Before moving forward to ChIP-seq, pre-
cipitated DNA was analyzed by quantitative PCR (qPCR) using primers
specific for gp1, gp2, and gp5 regions. Libraries were constructed from IP
and input DNA by a NEBnext Ultra DNA library preparation kit for
Mlumina. DNA in the range of 150 to 350 bp was gel purified after PCR
amplification. The library was quantified using an Agilent bioanalyzer
and subjected to 50-bp single-end read sequencing with an Illumina
HiSeq 2000 at EMBL Genecore, Heidelberg, Germany. Quality metrics
for sequenced reads were gathered with FastQC (www.bioinformatics
.babraham.ac.uk/projects/fastqc/). Adapter sequences were removed with
cutadapt (33). Reads then were aligned with Bowtie2 (34) to cat (ICGSC
Felis_catus 6.2) and CPV (NCBI reference sequence NC_001539.1) refer-
ence genomes. Sequencing reads of H3K27ac ChIP-seq from infected cells
were normalized to CPV reads per genomic content (RPGC). File conver-
sions to the BAM format were done with SAMtools (35), and visualiza-
tions were done with deepTools (36).

Accession number. The ChIP-seq data reported in this paper have
been deposited in the NCBI Gene Expression Omnibus (GEO) database
under accession number GSE77785.
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RESULTS

Temporal changes in localization of modified histones in infec-
tion. To analyze the chromatinization of the CPV genome at var-
ious times postinfection (p.i.), we used H3-EGFP-expressing cells
to identify the distribution of histone H3 and APAR bodies rep-
resented by NS1. The line profiles showed that at 12 h p.i. H3 was
mostly located distinctly from NS1, whereas at 24 h p.i. increased
colocalization of H3 with NS1 was observed (Fig. 1A and B). Sim-
ilarly, Pearson correlation coefficient (PCC) analysis indicated the
correlation of H3-EGFP with NS1 at 16 h p.i. (0.61 = 0.29; n = 22;
Pvalue [Student’s ¢ test] at 16 and 24 h p.i. compared to results at
10 h p.i., <0.05) and 24 h p.i. (0.77 * 0.21; n = 26; P < 0.01) but
not at earlier times (Fig. 1G). To assess how H3-associated active
and repressed chromatin is distributed in infected cells, we used
H3K27ac and H3K9me3 as markers of active and repressed chro-
matin, respectively. Immunolabeling indicated that at 12 h p.i,,
distinct NS1 foci began to emerge, while H3K27ac and H3K9me3
showed a thorough nuclear distribution. The line profiles of
H3K27ac and H3K9me3 with NSI at 12 h p.i. indicated only a
weak colocalization (Fig. 1C and E). However, at 24 h p..
H3K27ac concentrated in the enlarging APAR bodies (Fig. 1D).
Similarly, PCC of NS1 with H3K27ac was significantly higher at 16
hp.i. (0.83 = 0.22;n = 18; P < 0.01) and at 24 h p.i. (0.87 % 0.08;
n = 23; P <0.01) than at earlier times (Fig. 1G). No correlation of
H3K9me3 with NS1 was observed by the line profile and PCC
analyses (Fig. 1E to G). Colocalization of NS1 with H3 and
H3K27ac correlated time dependently with the enlargement of
APAR bodies. Quantitative 3D distribution analysis of H3K27ac
and H3K9me3 as a function of distance from the nuclear rim
indicated that the H3K27ac signal was located in the nuclear cen-
ter in both infected (24 h p.i.) and noninfected cells (n = 20; 1,000
spots/cell counted) (Fig. 1H). In infected cells, the 0.7-pm-thick
region at the nuclear periphery in particular was enriched in
H3K9me3, and its intensity decreased toward the nuclear center.
In noninfected cells, the H3K9me3 signal was distributed throughout
the nucleus (n = 20; 1,000 spots/cell counted) (Fig. 1I).

In summary, these data showed that in the infected cells both
H3K27ac and H3-EGFP were enriched in APAR bodies. At the
same time, H3K9me3 was found to accumulate in the nuclear
periphery, an area known to harbor the layer of marginalized cel-
lular chromatin. This suggests that the histones associated with
the viral genome in the APAR area bear modifications that are
characteristic of active gene expression.

Time-dependent intranuclear interplay of H3K27ac and
NS1. In order to address the nuclear interaction of H3K27ac with
viral DNA-bound NSI, in situ PLA was performed. PLA is an
immunodetection technique that generates a fluorescent signal
only when two antigens of interest are within 40 nm of each other
(32). To assess the nuclear interactions of H3K27ac and NS1, we
analyzed infected cells by PLA at 8 to 24 h p.i. Noninfected control
cells exhibited only a faint nuclear signal (PLA signal per cell,
1.1 £0.19;n = 111). At 8, 10, 12, and 16 h p.i., a time-dependent
increase in the amount of punctate intranuclear PLA signals was
detected (0.14 £ 0.16, n = 105; 0.81 £ 0.30, n = 92;3.43 = 0.91,
n = 110;19.46 * 3.39, n = 90), with a maximal signal at 24 h p.i.
(36.49 * 3.97, n = 99) (Fig. 2A) in the nuclear interior with low
levels of DAPI (Fig. 2B). The infection-induced compaction of the
host chromatin and its dislocation into the nuclear periphery and
around the nucleolus at 24 h p.i. were visualized with DAPI.
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In summary, these results demonstrated a time-dependent in-
crease in the interaction or close proximity of H3K27ac with NS1
after 10 h p.i., followed by extensive interaction at 24 h p.i. This
finding is consistent with the results of immunofluorescence and
PCC analyses of infected cells, which showed increased colocaliza-
tion and correlation of H3K27ac and NS1 during late stages of
infection.

CPV promoters are rich in acetylated histones. The promi-
nent colocalization and interaction of NS1 with H3K27ac in the
nucleus at 24 h p.i. prompted us to study whether the CPV ge-
nome per se is chromatinized with H3K27ac-enriched nucleo-
somes. To this end, ChIP-seq with H3K27ac Ab for the infected
cells was performed. First, the success of ChIP was assessed with
genome-wide occupancy of H3K27ac in infected cells showing a
typical occupancy of this histone marker at =2 kb around the
transcription start sites (TSSs) of ~35% of the genes (data not
shown). We found that 9.23% of the total reads (2.23 X 107 reads)
were aligned with the viral genome in a unique manner (0.00% in
noninfected cells) (37). The alignment of these reads with the
genome, after normalization to reads per CPV genomic content,
revealed that H3K27ac is mostly enriched in the TSSs of P4 pro-
moter-driven transcriptional units for NS1 and NS2 (gp1 loci)
and P38-driven transcriptional units for VP1 and VP2 (gp2 loci)
(Fig. 3A) (38).

The viral genome was mostly devoid of this histone marker
toward the right end (gp5 loci). The location of gp1 loci was very
similar to that of the P4 promoter of the parvovirus minute virus
of mice (MVM; nucleotides 1 to 260), and the location of gp2 was
similar to that of the CPV P38 promoter (1355 to 2260) (39). The
targeted ChIP-qPCR of H3 with gpl-, gp2-, and gp5-specific
primers showed that the CPV genome is thoroughly chromati-
nized with uniformly distributed H3 (Fig. 3B and data not
shown). Finally, targeted ChIP-qPCR analysis confirmed the oc-
cupancy of H3K27ac in the genome (Fig. 3C).

In conclusion, our data verified that the parvoviral genome is
chromatinized with histones during late stages of infection. Im-
portantly, acetylated histones were observed to be enriched in vi-
ral promoters to allow for the transcriptional activation of the
viral NS and VP genes.

Viral histone acetylation is important for infection progress.
In order to determine the importance of histone acetylation of
parvoviral genomes during early stages of infection, the effect of
the HAT inhibitor anacardic acid on viral protein synthesis was
determined. Treatment with anacardic acid very early during in-
fection (—0.5to 1 h p.i.) resulted in a decrease in the percentage of
cells with nuclear NS1 (~5%) and VP2 (~2%) at 24 h p.i. com-
pared to the level for nontreated infected cells (68.0 and 50.3%,
respectively; n = 250). This suggests that the early inhibition of
histone acetylation induced an almost complete block of infec-
tion. While the early treatment exerted a maximal effect, anac-
ardic acid was able to inhibit the infection progress when intro-
duced later, up to 3 h postinfection (Fig. 4A). Here, we cannot rule
out the possibility that histone acetylation was not the only factor
affecting viral protein production. Cell cycle progression also
could be involved. Of note, the treatment did not affect cell via-
bility (data not shown). Our results suggest that histone acetyla-
tion is required during very early infection for the production of
viral proteins necessary for the efficient progress of infection.

We next studied if the anacardic acid-induced inhibition of
histone acetylation affected late infection. For this, we divided the
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*, P < 0.05; **, P < 0.01). (B) Distribution of PLA signals in DAPI-stained
nuclei at 24 h p.i. Scale bar, 10 pm.

infected cells in four categories based on intracellular localization
of capsids at 24 h p.i. The categories were (i) capsids localized into
cytoplasmic endocytic vesicles due to inhibition of infection or
secondary infection (24), (ii) capsidslocalized in discrete foci scat-
tered throughout the nucleus, (iii) capsids in enlarged APAR bod-
ies enriched with NS1, and (iv) capsids in both APAR bodies and
the cytoplasm (egress initiated) (Fig. 4B). The localization of cap-
sids next was determined at 24 h p.i. in cells exposed to anacardic
acid at 6 h p.i. Studies indicated that levels of category II, III, and
IV cells were reduced in treated cells (4.9%, 12.5%, and 21.2%;
n = 250) compared to the level of the nontreated infected control
cells (7.9%, 26.8%, and 26.8%; n = 250). Moreover, an increase in
category I cells was detected in treated cells (61.1%; n = 250)
compared to the level in control cells (36.6%, 1.9%; n = 250) (Fig.
4B). These results demonstrated that efficient progress of infec-
tion correlates with histone acetylation in APAR areas at late stages
of infection.

Finally, we studied whether the timing of viral histone acetyla-
tion was critical for the progress of late-stage infection. Here, the
distribution of H3K27ac and NS1, positioned on the viral ge-
nome, was analyzed at 24 h p.i. in cells treated with anacardic acid.
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sites and effect on gene expression. (A) Histogram depicts occupancy of
H3K27ac at CPV genome. Sequencing reads of H3K27ac ChIP-seq from in-
fected cells at 24 h p.i. are normalized to RPGC. Bent arrows indicate TSSs of
transcriptional units for NS1 and NS2 (gp1), VP1 and VP2 (gp2), and right-
hand terminal gp5 loci, and red bars depict regions where qPCR primers an-
neal. ChIP-qPCRs for targeted measurements of H3 (B) and H3K27ac (C)
levels at gp1 and gp2 TSSs and the VP2-gp5 interregion is shown as an enrich-
ment of DNA relative to the level for input DNA. Two primer pairs for each of
the three regions were used; columns represent the means = SD from triplicate
wells of two independent ChIP experiments.

The inhibitor treatment at 16 h p.i. resulted in the exclusion of
H3K27ac from the NS1-positive APAR bodies (Fig. 4C). This in-
dicated that the viral genomes produced after drug treatment at 16
h p.i. were not acetylated. However, H3K27ac colocalized with
NS1 after exposure to inhibitor at 20 h p.i. (Fig. 4C). These results
suggested that histone acetylation on the majority of newly syn-
thesized viral DNA occurs until 16 to 20 h p.i.

These inhibition studies provided evidence that the histone
acetylation of intranuclear viral genomes early during infection
plays an essential role in the production of viral proteins. Simi-
larly, the acetylation of histones on newly synthesized viral ge-
nomes during active virus replication is necessary for the efficient
accomplishment of infection. In summary, our findings demon-
strate that viral histone acetylation is essential for both early and
late steps in the parvoviral life cycle.

DISCUSSION

Although much is known about nuclear replication and gene ex-
pression of parvoviruses, little is known about the chromatiniza-
tion of parvoviral genomes and histone modifications and the
effect of these events on the progress of infection. For some DNA

FIG 1 Intranuclear distribution of H3-EGFP, modified histones, and viral NS1 protein. (A and B) Confocal microscopy images of cells stably expressing
H3-EGFP (cyan) at 12 (A) and 24 (B) h p.i. labeled with NS1 (yellow) antibody. (C to F) Infected cells at 12 h p.i. and 24 h p.i. labeled with antibodies for H3K27ac
(cyan) (Cand D), H3K9me3 (cyan) (E and F), and NS1 (yellow). In order to clarify the changes in colocalization, pseudocolor images are shown with intensity
increasing from blue to yellow. Fluorescence line profile analysis of the intensity of H3-EGFP/H3K27ac/H3K9me3 (cyan) and NS1 (yellow) in a single optical
section through the center of the nucleus is shown beside each image. Analysis was performed with Image] and the Plot RGB Profile plugin. Scale bars, 5 pm. (G)
Quantitative colocalization analysis of H3K27ac, H3K9me3, and H3-EGFP with NS1. The mean PCC values and standard deviations (SD) are shown. Statistical
significance of colocalization at 16 and/or 24 h p.i. compared to that at 10 h p.i. is shown (P values [Student’s ¢ test]: ¥, P < 0.05; **, P < 0.01). (H and I) Plots
of intensity of H3K27ac (H) and H3K9me3 (I) in infected cells at 24 h p.i. and in noninfected cells as a function of distance from the nuclear envelope (NE). A.U.,

arbitrary units.
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FIG 4 Importance of acetylation on progress of infection. (A) Percentage of cells showing viral NS1 and VP proteins in the nucleus in the cells exposed to the
HAT inhibitor anacardic acid (0.1 mM). Cells were either pretreated for 30 min with the drugs prior to infection or treated at 0 to 6 h p.i., and the treatment
continued until fixation at 24 h p.i. (B) Effect of anacardic acid treatment on localization of viral capsids. Images of cells representing four type categories based
on the intracellular localization of capsids at 24 h p.i. and percentages of cells showing various types after treatment at 6 or 16 h p.i. The mean values = SD are
shown. (C) Distribution of H3K27ac compared to that of NS1 at 24 h p.i. in cells treated with anacardic acid at 16 or 20 h p.i. Scale bars, 10 pm.

viruses, such as herpesviruses and adenoviruses, epigenetic mech-
anisms, including histone modifications, play an important role in
the regulation of viral gene expression. During herpesvirus lytic
infection, the viral genomes are associated with histones immedi-
ately after injection into the nucleus, and viral proteins are re-
quired to enhance histone acetylation to allow for efficient viral
gene expression (40-44). Moreover, studies of infection by an
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adenovirus have shown that viral proteins mediate the transcrip-
tional activation of viral promoter regions (45—47). In this work,
we first observed that the progress of CPV infection was accom-
panied by the enrichment of H3 histones in the enlarged APAR
body area. This is consistent with earlier studies showing nuclear
chromatinization of adeno-associated parvoviruses, used as gene
therapy vectors, and MVM genomes (48-51). We next addressed
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the existence of histone modifications in the parvoviral APAR bodies
and revealed the accumulation of histones with modifications char-
acteristic of transcriptionally active chromatin (H3K27ac). More-
over, our analysis demonstrated that H3K27ac was located in close
proximity to the viral NS1 protein in the APAR bodies. This interac-
tion likely is caused by the accumulation of NS1 on viral genomes
because of its involvement in transcription and replication (52-54).
NS1 of autonomous parvoviruses not only controls the viral activities
but also regulates host gene expression through histone acetylation in
cancer cells by recruiting innate proteins with HAT activity (55, 56).
To date, evidence for the involvement of NS1 in the regulation of
histone acetylation on parvoviral promoters has not been reported.
Here, our PLA studies revealed that CPV NS1 was located in close
proximity to H3K27ac in the enlarged APAR bodies. Our earlier
studies indicated that CPV NS1 has two distinct binding sites in the
viral genome (53, 54, 57). It is tempting to speculate that NS1 is in-
volved in the histone acetylation of viral P4 and P38 promoters by
recruiting host proteins with acetyltransferase activity. However, the
specific role and interactions of NS1 in viral histone modifications
remain to be determined. Our ChIP-seq analyses demonstrated for
the first time that in the extensively chromatinized parvoviral ge-
nome, H3K27ac accumulated in viral P4 and P38 promoter areas.
This suggests that parvoviral gene expression is regulated by histone
acetylation in promoter areas. The importance of histone acetylation
for the progress of infection was supported by our results showing
that the inhibition of histone acetylation was accompanied by exten-
sive repression of infection. Earlier studies showed that the formation
of parvoviral gene transcription templates and intermediates for ge-
nome replication are temporally phased in infection (58—61). In line
with this, our results suggest that parvoviruses regulate their gene
expression via histone acetylation in a temporal fashion.

In summary, the CPV genome is chromatinized inside the nu-
clei of infected cells, and histone modifications associated with
transcriptional activation are enriched in viral promoters. Our
results highlight a critical role of epigenetic modification in the
progression of the parvoviral life cycle.
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