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The human cytomegalovirus glycoprotein gp68 functions as an Fc receptor for host IgGs and can form antibody bipolar bridging
(ABB) complexes in which gp68 binds the Fc region of an antigen-bound IgG. Here we show that gp68-mediated endocytosis
transports ABB complexes into endosomes, after which the complex is routed to lysosomes, presumably for degradation. These
results suggest gp68 contributes to evasion of IgG-mediated immune responses by mediating destruction of host IgG and viral
antigens.

The betaherpesvirus human cytomegalovirus (HCMV) affects
50 to 98% of people, causing severe symptoms in newborns

and a lifetime latent infection that can be lethal in immunocom-
promised individuals (1). HCMV can also establish recurrent sec-
ondary infections after reactivation from latency (2). Immune
evasion strategies of herpesviruses include expression of viral Fc
receptors (Fc�Rs) that bind host IgG to evade immune responses
mediated by host Fc�Rs (3–6). Viral Fc�Rs can participate in anti-
body bipolar bridging (ABB), whereby an antibody simultane-
ously binds antigen via its fragment antigen-binding (Fab) arms
and an Fc receptor using its Fc (7–9). While there is likely a large
excess of nonviral IgG compared with antiviral IgG, the proximity
of viral Fc�Rs to Fc regions from IgGs bound to viral antigens on
an infected cell could allow viral Fc�Rs to preferentially bind
antiviral IgGs. ABB protects virally infected cells from antibody-
and complement-dependent neutralization (10), antibody-de-
pendent cell-mediated cytotoxicity (11), and granulocyte at-
tachment (12). The HCMV glycoproteins gp68, gp34, Toll-like
receptor 12 (TLR12), and TLR13 act as Fc�Rs to bind human
IgG (3, 6, 13, 14). Recent studies reported formation of ABB
complexes with gp68 and with gp34 and demonstrated their
functional importance by showing that cells infected with
HCMV lacking gp68 and/or gp34 triggered stronger activation
of the host Fc�Rs and NK cells than cells infected with wild-
type HCMV (15).

In previous studies of ABB, we used cells expressing gE-gI, a
herpes simplex virus 1 (HSV-1) Fc�R, and gD, an HSV-1 cell
surface antigen, to show that anti-gD IgGs formed ABB complexes
with gE-gI and gD and that anti-gD IgG and gD were internalized
in a gE-gI-dependent process, resulting in lysosomal localization
of IgG and gD, but not gE-gI (8) (Fig. 1). Since gE-gI binds Fc at
neutral/basic, but not acidic, pH (8, 16), these results were
consistent with dissociation of IgG-antigen complexes from
gE-gI upon trafficking to acidic intracellular vesicles. In con-
trast, the gp68-Fc interaction is broadly stable across acidic and
basic pHs (17), suggesting a potentially different intracellular
trafficking pathway if gp68, like gE-gI, can internalize ABB
complexes.

To investigate ABB mediated by HCMV gp68, we adapted the
model system used to characterize gE-gI-mediated ABB (8). In the
gE-gI studies, we transiently expressed gE-gI and gD in HeLa cells
and then investigated the trafficking of gE-gI and gD under ABB

and non-ABB conditions (8). We chose gD as the model antigen
because it is a cell surface glycoprotein found on virions and in-
fected cells (18), and fusion of its cytoplasmic tail to a fluorescent
protein did not affect cellular distribution or transport (19). We
showed that a gD-Dendra2 fusion protein localized primarily to
the cell surface in the presence or absence of an anti-gD antibody
under non-ABB conditions (8); thus, we could use this protein
to investigate the fate of a cell surface antigen under ABB con-
ditions. We used an anti-gD IgG antibody (20) with a human
Fc (anti-gDhFc) that can bind to gE-gI and to gD to create ABB
complexes and two types of control IgGs to create non-ABB
complexes: the anti-gD antibody fused with a mouse Fc (anti-
gDmFc), which binds gD, but not gE-gI; and a human IgG
against an unrelated antigen (IgGhFc), which binds gE-gI, but
not gD (Fig. 1). These IgGs were expressed in mammalian cells
as described previously (8). We found that gD expressed in
gE-gI-positive cells was internalized together with anti-gDhFc,
but it remained at the cell surface when cells were incubated
with anti-gDmFc or IgGhFc (8).

For the gp68 ABB system, we expressed gp68 together with the
gD-Dendra2 fusion protein using a previously described bicis-
tronic construct (8). For control experiments, we also expressed
untagged gp68 alone and as a gp68-Dendra2 fusion protein.
Three-dimensional (3D) imaging of fixed cells expressing un-
tagged gp68 or gp68-Dendra2 showed comparable levels and
localization of both proteins in experiments using labeled anti-
gDhFc (Fig. 2A) and gp68-Dendra2 colocalized with IgGhFc in
intracellular compartments (Fig. 3A); thus, the introduction of
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the C-terminal tag did not detectably affect Fc binding or the
gp68 cellular distribution. Cells expressing gp68-Dendra2 bound
anti-gDhFc and IgGhFc, but not anti-gDmFc (Fig. 2B), consistent
with previous reports that cells infected with wild-type HCMV
bind human, but not mouse, IgG (21). Together with previous
demonstrations that both anti-gDhFc and anti-gDmFc bind gD (8),
these results showed that the three forms of IgG could be used to
create ABB or non-ABB conditions when gp68 was coexpressed
with gD.

We next conducted internalization experiments using cells co-
expressing gp68 and gD under ABB and non-ABB conditions (Fig.
1). Cells transiently expressing gp68 and gD-Dendra2 were incu-

bated with fluorescently labeled IgGs (anti-gDhFc, anti-gDmFc, or
IgGhFc) and then stained with CellMask, a plasma membrane
marker. As expected, the gp68-binding IgGs anti-gDhFc and
IgGhFc were internalized after incubation with the cells, whereas
anti-gDmFc remained at the cell surface, where it colocalized with
gD and the membrane marker (Fig. 2C). gD remained at the cell
surface when cells were incubated with either anti-gDmFc or
IgGhFc, as demonstrated by colocalization with CellMask at the
plasma membrane, but was internalized when cells were incu-
bated with anti-gDhFc (Fig. 2C and D). Thus, as previously found
for the gE-gI studies (8), gD was internalized through indirect
interactions with the receptor as an IgG-antigen complex un-
der ABB conditions, whereas when the IgG bound only to gD
(anti-gDmFc) or the viral Fc�R (IgGhFc), gD remained at the cell
surface.

We performed live-cell four-dimensional (4D) confocal imag-
ing to follow the intracellular trafficking of ABB complex compo-
nents using labeled epidermal growth factor (EGF) as a lysosomal
marker. EGF binds its cell surface receptor prior to being internal-
ized and transported through the acidic environment of early en-
dosomes, multivesicular bodies/late endosomes, and lysosomes
(22–25). HeLa cells expressing gp68 and gD-Dendra2 were coin-
cubated with fluorescently labeled EGF and a labeled version of
either anti-gDhFc, IgGhFc, or anti-gDmFc. At early time points in
samples incubated with anti-gDhFc, gD, and EGF, anti-gDhFc fluo-
rescence was primarily localized at the cell surface, and the small
amount of intracellular gD and anti-gDhFc fluorescence was not
found in EGF-positive compartments. At later time points, in-
creasing numbers of triple-positive intracellular vesicles staining
for EGF, gD, and anti-gDhFc were observed (Fig. 3B to D; see
Movie S1 in the supplemental material). These results are consis-
tent with a model in which gp68 –anti-gDhFc– gD ABB complexes
are internalized into endosomes and remain associated at low pH
such that they traffic together into EGF-positive lysosomes (Fig.
1). Under non-ABB conditions, gD fluorescence remained pre-
dominantly at the cell surface at all time points in gp68/gD-posi-
tive cells treated with either IgGhFc or anti-gDmFc (Fig. 3B to D; see
Movies S2 and S3 in the supplemental material). Internalized
IgGhFc fluorescence was found mainly in EGF-negative compart-
ments at early time points (10 min) and then in EGF-positive
compartments at later time points (60 min). Statistical analyses of
pairwise 3D colocalization as a function of time (Fig. 3C) demon-
strated colocalization of gD with the two anti-gD antibodies, but
not with IgGhFc, at time points after 10 min, as expected since only
the anti-gD antibodies bind to gD throughout the experiment
(Fig. 3C and D). When incubated with anti-gDhFc, gD became
increasingly more colocalized with EGF and anti-gDhFc, whereas
when incubated with IgGhFc, EGF colocalized with IgGhFc, but not
gD, at later time points. When incubated with anti-gDmFc, gD did
not colocalize with EGF. These results demonstrated that cell sur-
face gD was exclusively internalized and targeted into EGF-posi-
tive lysosomes under ABB conditions, consistent with a model in
which gp68 –anti-gDhFc– gD ABB complexes and gp68-IgGhFc

complexes are internalized into endosomal vesicles and remain
associated at low pH such that they traffic together into EGF-
positive lysosomes, whereas anti-gDmFc remained attached to cell
surface gD because it did not bind to gp68. We repeated the inter-
nalization experiments in fixed cells using LAMP2A as a lysosomal
marker (26). Cells expressing gp68 and gD-Dendra2 were incu-
bated for 2 h with labeled anti-gDhFc, IgGhFc, or anti-gDmFc,

FIG 1 Schematic diagrams of ABB and non-ABB complexes at a cell surface
and comparison of intracellular trafficking of gE-gI- and gp68-mediated ABB
complexes. (Top) ABB complex containing gp68, anti-gDhFc, and gD (left) and
non-ABB complexes containing IgGhFc bound to gp68, but not gD (middle),
and anti-gDmFc bound to gD, but not gp68 (right). (Bottom) Proposed path-
ways for intracellular trafficking of ABB complexes. Cell surface ABB com-
plexes are internalized through endocytosis into early endosomes and sorting
endosomes. Upon acidification, the Fabs remain bound to gD, and the Fc
region of anti-gDhFc dissociates from HSV1-gE-gI, but not from HCMV gp68.
The IgG-gD complex internalized with gE-gI, and the IgG-gD-gp68 complex
then traffics to degradative lysosomes, allowing free gE-gI, but not gp68, to be
recycled back to the cell surface.
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immunostained with anti-LAMP2A, and 3D confocal imaging
and statistical analyses of pairwise colocalizations were per-
formed. Consistent with lysosomal routing of ABB complexes,
cells incubated with anti-gDhFc showed three pairwise colocal-
izations (gD with anti-gDhFc, gD with LAMP2A, and anti-gDhFc

with LAMP2A), cells incubated with IgGhFc showed single co-
localization (IgGhFc with LAMP2A), and cells incubated with
anti-gDmFc also showed single colocalization (gD with anti-
gDmFc) (Fig. 4).

Here we investigated the fate of HCMV gp68-mediated ABB
complexes using techniques developed for studying ABB medi-
ated by HSV-1 gE-gI (8). We found that, like gE-gI, gp68 formed
ABB complexes with anti-gDhFc and gD, resulting in internaliza-
tion of gD. The internalization required gp68-mediated ABB,
since it occurred only in the presence of the IgG that could bind to
both gp68 and gD, but not in the presence of the anti-gDmFc and
IgGhFc control antibodies. However, the ABB complexes formed
with gp68, IgG, and gD apparently did not dissociate after endo-

cytosis; instead all three components were trafficked to lysosomes,
where they were presumably degraded (Fig. 1). Extrapolation of
these results to virally infected cells provides a mechanism by
which infected cells can sequester both host antiviral antibodies
and their viral antigen targets from the host immune system by
targeting them for degradation in lysosomes. In the case of HCMV
gp68, the cotrafficking of the viral Fc�R to lysosomes together
with the IgG-antigen complex should also result in degradation of
the receptor, whereas dissociation of gE-gI from the IgG-antigen
complex prior to entering lysosomes would allow gE-gI to be re-
cycled back to the cell surface. The postulated differences in traf-
ficking resulting in degradation of gp68, but not gE-gI, may
reflect the fact that HCMV expresses at least three different IgG
Fc binding proteins (3, 13, 14), compared with HSV-1, which
expresses only one known Fc�R (5, 11). For both viruses, in-
ternalization of ABB complexes and consequent degradation
would enable clearance of membrane proteins that serve as
antigenic targets and selective removal of antiviral antibodies,

FIG 2 Characterization of components of the ABB model system. Scale bars, 10 �m. (A) Demonstration that gp68 and gp68-Dendra2 localize similarly
in transfected cells. HeLa cells transiently expressing gp68 or gp68 tagged with Dendra2 fluorescent protein (gp68-Dendra2) were fixed in 4% parafor-
maldehyde (PFA) and incubated with AF647-labeled anti-gDhFc. IgGs were labeled to similar degrees using the Alexa Fluor 647 protein labeling kit
following the instructions in the manufacturer’s protocol (https://tools.thermofisher.com/content/sfs/manuals/mp20173.pdf). The localizations of gp68
and gp68-Dendra2 were similar, suggesting that both bound human Fc and fusion of Dendra2 to the gp68 cytoplasmic tail did not alter trafficking. (B)
Demonstration that gp68 binds human IgG Fc (top and middle panels), but not mouse IgG Fc (bottom). HeLa cells transiently expressing gp68-Dendra2
were incubated with AF647-labeled anti-gDhFc, IgGhFc, or anti-gDmFc for 30 min at 37°C under a 5% CO2 atmosphere and fixed as described for panel A.
(C and D) Internalization of gD and IgG under ABB-permissive and nonpermissive conditions. HeLa cells coexpressing gp68 (nontagged) and gD-
Dendra2 (green) were pulsed with AF647-labeled IgGs (blue) for 60 min and then treated with AF555-labeled CellMask (red), a plasma membrane
marker, for 5 min at 37°C under a 5% CO2 atmosphere. Samples were rinsed to remove excess dye, and 3D imaging (0.5- to 1-�m section thickness and
up to 16-�m total depth) was performed using a 63� objective (�Plan-ApoChromat 1.45 oil differential inference contrast [DIC]) and an electron-
multiplying charge-coupled device camera (Hamamatsu Photonics) guided by Volocity software on a Perkin-Elmer spinning-disk confocal microscope.
(C) Representative confocal slices from cells treated with anti-gDhFc, IgGhFc, or anti-gDmFc. Regions of gD-IgG colocalization appear cyan, regions of
CellMask-gD colocalization appear yellow, regions of CellMask-IgG colocalization appear magenta, and regions of triple colocalization (CellMask-gD-
IgG) appear white. Experiments were repeated at least three times with analyses of �30 cells. (D) 3D thresholded Pearson correlation coefficient analyses
for data from �30 cells. Correlation coefficients are presented as the mean and standard deviation from experiments repeated at least three times.
Asterisks indicate a significant difference of colocalization compared to other members in the same category (P � 0.01).
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FIG 3 Colocalization of gD and IgG with EGF under ABB-permissive and nonpermissive conditions. (A) Demonstration in fixed cells that gp68-Dendra2/IgGhFc

complexes traffic into lysosomes under non-ABB conditions. HeLa cells expressing gp68-Dendra2 (green) were incubated at 37°C under a 5% CO2 atmosphere with
AF568-labeled EGF (red) for 30 min and then with AF647-labeled IgGhFc (blue). Confocal z-stacks were captured with a 63�, NA 1.4 objective on a PerkinElmer
spinning-disk confocal microscope after 30 min. Regions of gp68/IgGhFc colocalization appear cyan, and regions of EGF/gp68-Dendra2/IgGhFc triple colocalization
appear white. Histograms show the 3D thresholded Pearson correlation coefficient analyses for data from �30 cells that showed positive colocalization levels between
gp68-Dendra2, IgGhFc and EGF above a background level of 2%. (B to D) For live cell imaging experiments, HeLa cells coexpressing gp68 and gD-Dendra2 (green) were
incubated for 30 min with 50 nM AF568-conjugated EGF (red) in L15 medium at 37°C and a 5% CO2 atmosphere. Samples in coverglass bottom dishes (Thermo
Scientific/Nunc) were rinsed to remove excess dye. After imaging an initial z-stack (as described in Fig. 2), AF647-conjugated anti-gDmFc, anti-gDhFc, or IgGhFc (blue) was
added to a final concentration of 2 �g/ml, and multichannel z-stacks were captured approximately every 1 to 3 min for at least 1 h. (B) Representative confocal slices from
early (10-min) and late (60-min) time points. Regions of gD-IgG colocalization appear cyan, regions of EGF-IgG colocalization appear magenta, and regions of triple
colocalization appear white. Three independent experiments were performed, each with analysis of �5 live cells. Scale bar, 10 �m. (C) 4D thresholded Pearson
correlation coefficient analyses (presented for each condition as the mean and standard deviation) for data from �5 live cells in three independent experiments. HeLa
cells expressing gp68 and gD-Dendra2 were incubated with AF568-labeled EGF and either AF647-labeled anti-gDhFc (top panel), IgGhFc (middle panel), or anti-gDmFc

(bottom panel). Correlation coefficients are shown for gD versus IgG (cyan curve, open squares), gD versus EGF (orange curve, open circles), and EGF versus IgG
(magenta curve, open triangles). (D) Histograms comparing correlations at 10 min (left) and 60 min (right) time points. Asterisks indicate a significant difference of
colocalization compared to other members in the same category (P � 0.05).
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thereby allowing these viruses to evade IgG-mediated immune
effector functions.
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