
Structural Evolution of the Emerging 2014-2015 GII.17 Noroviruses

Bishal Kumar Singh,a,b Anna Koromyslova,a,b Lisa Hefele,a,b Clara Gürth,a,b Grant S. Hansmana,b

Schaller Research Group, University of Heidelberg and DKFZ, Heidelberg, Germanya; Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg,
Germanyb

Recent reports suggest that human genogroup II genotype 17 (GII.17) noroviruses are increasing in prevalence. We analyzed the
evolutionary changes of three GII.17 capsid protruding (P) domains. We found that the GII.17 P domains had little cross-reac-
tivity with antisera raised against the dominant GII.4 strains. X-ray structural analysis of GII.17 P domains from 2002 to 2014
and 2015 suggested that surface-exposed substitutions on the uppermost part of the P domain might have generated a novel
2014-2015 GII.17 variant.

Human noroviruses are the dominant cause of outbreaks of
acute gastroenteritis. In the past decade, genogroup II geno-

type 4 (GII.4) norovirus strains were those mostly responsible for
epidemic outbreaks (1–3). However, a GII.17 variant norovirus
was found recently to cause an alarming number of outbreaks in
certain parts of Asia in 2014 to 2015 (4–8). Before this time, the
GII.17 norovirus was only a minor cause of infections, although it
was first described in 1978 (9). Researchers are now reporting that
the GII.17 variant is emerging in other parts of the world, and
molecular epidemiologists have warned that the GII.17 norovirus
might replace the predominant GII.4 norovirus (10).

Noroviruses have a single-stranded, positive-sense RNA ge-
nome of 7.5 to 7.7 kb. The genome contains three open reading
frames (ORFs). The first ORF (ORF1) encodes nonstructural pro-
teins, including the RNA-dependent RNA polymerase (RdRp),
ORF2 encodes capsid protein (VP1), and ORF3 encodes a minor
capsid protein (VP2) (11). The X-ray crystal structure of the pro-
totype (GI.1) virus-like particles (VLPs) identified two domains,
the shell (S) domain and the protruding (P) domain, which can be
further subdivided into P1 and P2 subdomains (12). The S do-
main surrounds the viral RNA, whereas the P domain contains the
determinants for cell attachment and antigenicity. Human noro-
viruses are known to bind histo-blood group antigens (HBGAs),
and the interaction is thought to be important for infection (13–
16). Two recent reports indicated that, similarly to other GII no-
roviruses, the recent GII.17 strains bind a panel of different HBGA
types (4, 8).

Human noroviruses are believed to evolve in a manner similar
to that seen with influenza viruses, where new norovirus genotype
variants emerge every other year. Evolving strains with an �5%
amino acid change can reinfect the same individual (17). Data on
short- and long-term immunity to human norovirus are still un-
clear, although vaccines are currently been tested in clinical trials
(18, 19). Unfortunately, the vaccines, which can include VLPs or P
domains (20, 21), may not protect from antigenically divergent
strains (18–21). Here, we report the first X-ray crystal structure of
GII.17 norovirus P domains and describe the cross-reactivities
with antibodies (Abs) raised against GII.4 strains, which are tar-
geted by the current vaccines in clinical trials.

Three different GII.17 norovirus strains were selected for anti-
body binding and structural analysis: a nonprevalent 2002 strain
(Saitama/T87; GenBank accession number KJ196286), a preva-
lent 2014 variant strain (Kawasaki323; AB983218), and a preva-
lent 2015 variant strain (Kawasaki308; LC037415) (Fig. 1A). The

GII.17 P domains (Fig. 1A) were expressed and purified as previ-
ously described (22). An antigen enzyme-linked immunosorbent
assay (ELISA) was used to determine the cross-reactivities of
GII.17 P domains with eight different monoclonal antibodies
(MAbs) and one polyclonal antibody (PAb) raised against GII.4
strains using an established method (23). The titer was expressed
as the reciprocal of the highest dilution of antiserum giving an
absorbance value at 490 nm (OD490) of �0.15, which was three
times the blank value (Fig. 1B). The antibodies reacted to the GII.4
P domains at high titers (�12,800 dilution). Seven of nine anti-
bodies (numbers 1 to 7) showed no cross-reactivity against the
GII.17 P domains. Two antibodies (numbers 8 and 9) weakly
cross-reacted to the GII.17 P domains, i.e., at about 400 to 800
dilutions. The weak cross-reactivities with the two antibodies in-
dicated that the GII.4 and GII.17 P domains are antigenically dis-
tinct. Considering that GII.4 and GII.17 P domains had �60%
amino acid identity, this result is similar to those of an earlier
cross-reactivity study that showed that most GII genotypes were
antigenically distinct (23). Based on these findings, it is likely that
the current vaccines might not provide protection for the GII.17
strains.

To characterize the structural changes among the three GII.17
strains, we determined the X-ray crystal structures of the P do-
mains. All three P domains formed rectangular plate-like crystals
by a hanging-drop diffusion method in a crystallization solution
containing 0.2 M MgCl2, 20% (wt/vol) polyethylene glycol (PEG
8000), and 0.1 M Tris-HCl (pH 8.5). Diffraction data were pro-
cessed as previously described (24). Briefly, diffraction data were
processed and scaled using XDS (25). Molecular replacement was
performed in PHASER (26). The search model used for molecular
replacement was a homology model of the GII.17 P domain gen-
erated by homology modeling server SWISS-MODEL (27) using
norovirus GII.10 (PDB accession code 3ONU), which shared 70%
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FIG 1 An amino acid alignment of norovirus GII.17 and GII.4 P domains and antigen ELISA of GII.4 and GII.17 P domains. (A) The P domain amino acid sequences
of three GII.17 variants (isolated in 2002, 2014, and 2015) and GII.4 Sydney2012 were aligned using Clustal Omega. Among the GII.17 P domains, the P1 subdomain
(ruby bar) was more conserved than the P2 subdomain (pale green bar). The GII.4 main-chain (magenta) and side-chain (orange) residues interacting with the fucose
moiety of HBGAs were mostly conserved in the GII.17 P domains. (B) Plates were coated with 10 �g/ml of Saitama/T87, Kawasaki323, Kawasaki308, or Sydney2012
(University of New South Wales [UNSW]) (24) P domains, and detection was performed with serially diluted antibodies. The antibodies used in this study were as
follows: 1 (MAb 2H2, raised against Minerva GII.4 VLPs; starting concentration, 2.4 mg/ml), 2 (MAb 4933, raised against Minerva GII.4 VLPs; 3.4 mg/ml), 3 (MAb 564,
raised against Minerva GII.4 VLPs; 2.6 mg/ml), 4 (MAb 10E2, raised against Minerva GII.4 VLPs; 2.4 mg/ml), 5 (MAb 6C10, raised against Minerva GII.4 VLPs; 2.0
mg/ml), 6 (MAb SM875 antigen, raised against Sydney2012 P domain; 1.4 mg/ml), 7 (MAb SM875 antigen, raised against Sydney2012 P domain; 0.6 mg/ml), 8 (MAb
SM874-CM355, raised against 2006 Saga GII.4 P domain; 1.0 mg/ml), and 9 (PAb, raised against 2012 NSW VLPs; 2.0 mg/ml) (24). All experiments were performed in
triplicate (error bars shown), and the cutoff was at an optical density at 490 nm (OD490) of �0.15 (dashed line; i.e., 3 times the value of �0.05 for the average blank) (23).
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sequence identity. The structure was refined in PHENIX (28) with
multiple rounds of manual model building in COOT (29) and
validated with Molprobity (30) and PDBePISA (31).

The P domain of Saitama/T87 crystallized as a monomer per
asymmetric unit in space group C2221, whereas Kawasaki323 and
Kawasaki308 crystallized as a dimer in space groups P43212 and
P212121, respectively. All three GII.17 P domains had well-defined
electron density. Data collection and refinement statistics are pro-
vided in Table 1. The overall secondary structure of the GII.17 P
domains was equivalent to those of other human norovirus P
domains (Fig. 2A). For example, the P1 subdomain comprised
�-sheets and one �-helix, while the P2 subdomain contained six
antiparallel �-strands that formed a barrel-like structure. The P1-
interface loop, which interacts with HBGAs (24), was also identi-
cal in size and orientation to those of the epidemic GII.4 strains.

Structural evolution of the three GII.17 P domains from 2002
to 2014 and 2015 indicated that most amino acid substitutions
occurred in P2 subdomain, while the P1 subdomain remained
relatively conserved (Fig. 2B). Furthermore, all insertions and de-
letions were located in the uppermost part of the P2 subdomain
(Fig. 2A). Of significance, an insertion in the GII.4 P2 subdomain
after 1998 likely resulted in the emergence of current epidemic
GII.4 variant strains (1–3). Interestingly, in the case of these GII.17
P domains, there were three deletions and one insertion from 2002
to 2014 and two insertions from 2014 to 2015. These results sug-
gested that the GII.17 P domains might have evolved from a non-
prevalent 2002 strain into a prevalent 2014-2015 GII.17 variant

strain. Furthermore, a recent study estimated that the number
GII.17 capsid nucleotide substitutions per site per year was 1 order
of magnitude higher than the GII.4 rate, possibly allowing their
rapid emergence (8).

Four of five GII.4 residues that commonly interact with the
fucose moiety of the HBGAs, i.e., Gly443/441/443, Thr349/348/
348, Arg350/349/349, and Asp378/377/378, in Saitama/T87, Ka-
wasaki323, and Kawasaki308, respectively (24), were highly con-
served in these GII.17 P domains. Superposition of an HBGA
A-trisaccharide onto the GII.17 P domain structures indicated
that these four residues were well positioned to interact with the
fucose (Fig. 3). Interestingly, Kawasaki308 had an insertion on the
loop hosting Asp378, and yet the orientation of the Asp378 side
chain was maintained as seen in the other GII.17 P domains (Fig.
3). The one exception to the common set of residues interacting
with fucose was Val444 in Saitama/T87, which was Tyr442 in Ka-
wasaki323, Tyr444 in Kawasaki308, and Tyr444 in GII.4. Our pre-
vious study showed that Tyr444 provided a hydrophobic interac-
tion to the fucose methyl group in GII.4 and GII.10 (Tyr452) (22,
24). Mutagenesis of the Tyr to Ala was shown to block HBGA
binding (32). These results suggested that Tyr444 in Kawasaki323
and Kawasaki308 might also be critical for HBGA binding. Two
reports have suggested that, prior to the emergence of the 2014-
2015 GII.17 strains, the earlier GII.17 strains may not have inter-
acted HBGAs (4, 8). Therefore, a larger portion of the population
might be more susceptible to 2014-2015 GII.17 strains (4, 8). Un-
fortunately, our cocrystallization and soaking experiments with

TABLE 1 Data collection and refinement statistics of GII.17 P domainsa

Parameter

Result(s)b

Saitama/T87 (5F4J) Kawasaki323 (5F4M) Kawasaki308 (5F4O)

Data collection
Space group C2221 P43212 P212121

Cell dimensions
a, b, c (Å) 73.30, 100.75, 83.37 121.51, 121.51, 156.6 75.72, 86.97, 97.35
�, �, � (°) 90, 90, 90 90, 90, 90 90, 90, 90

Resolution range (Å) 48.31–1.93 (2.00–1.93) 19.61–2.24 (2.32–2.24) 43.48–1.58 (1.64–1.58)
Rmerge 9.73 (77.49) 16.55 (86.52) 6.70 (68.69)
I/�I 11.32 (1.92) 11.05 (2.50) 11.75 (1.71)
Completeness (%) 99.18 (96.80) 99.17 (91.61) 96.57 (96.33)
Redundancy 4.6 (4.6) 8.8 (8.1) 3.9 (3.7)

Refinement
Resolution range (Å) 48.31–1.93 19.61–2.27 43.48–1.59
No. of reflections 23,273 56,183 85,678
Rwork/Rfree 16.62/19.75 15.94/18.64 15.14/17.40
No. of atoms

Total 2,528 5,145 5,414
Protein 2,327 4,793 4,813
Ligand/ion 8 8 38
Water 193 344 563

Avg B factors (Å2)
Protein 32.60 38.90 21.20
Ligand/ion 33.80 35.80 29.10
Water 34.10 38.30 28.30

RMSD
Bond length (Å) 0.006 0.007 0.008
Bond angle (°) 0.99 1.08 1.19

a The data set was collected from single crystal. RMSD, root mean square deviation.
b Values in parentheses are for highest-resolution shell.
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FIG 2 X-ray crystal structures of GII.17 P domains. (A) Cartoon representation of the GII.17 P dimers. The 2002 Saitama/T87 P domain contained one
monomer per asymmetric unit (dimer shown) and was subdivided into P1 (chain A, dark ruby; chain B, dark olive) and P2 (chain A, dark lime green; chain B,
dark magenta); the 2014 Kawasaki323 P domain apo structure was subdivided into P1 (chain A, ruby; chain B, olive) and P2 (chain A, lime green; chain B,
magenta); and the 2015 Kawasaki308 P domain apo structure was subdivided into P1 (chain A, light ruby; chain B, light olive) and P2 (chain A, light lime green;
chain B, pink). Insertions (blue arrows) and deletions (red arrows) were located in the uppermost part of the P dimer. The P1 interface loop (marked with a
five-pointed star) was identical in size to those of the GII.4 P domains. (B) Amino acid substitutions are highlighted on GII.17 P dimers (side view [top panel] and
top view [bottom panel]), showing changes from 2002 to 2014 (red); changes from 2014 to 2015 (blue); and conformations from 2002 that reappeared (green).
The circles represent the equivalent GII.4 HBGA binding pocket (24) on the GII.17 P domains.

X-Ray Crystal Structures of GII.17 Norovirus P Domains
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GII.17 P domains and HBGAs were unsuccessful and the exact
HBGA binding site remains unknown.

In summary, our structural evolutionary data showed that the
GII.17 noroviruses have undergone a large number of surface-ex-
posed substitutions from 2002 to 2014 and 2015. A possible explana-
tion for the increase in prevalence might be related to a change in the
herd immunity, comparable to the evolving GII.4 strains (33). Also,
the HBGA binding profile of GII.17 may have changed with the
emergence of the 2014-2015 GII.17 variants. Currently, many of
the norovirus vaccines in clinical trials are directed against
GII.4 strains (20, 21). Therefore, antigenicity and structural
information provided in this study could be critical for future
norovirus vaccine development, considering that the GII.17
strains showed little or no cross-reactivity to GII.4 antisera.

Protein structure accession numbers. Atomic coordinates and
the structure factor of GII.17 P domains were deposited in the Protein
Databank under PDB accession codes 5F4J, 5F4M, and 5F4O.
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