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The Hippo signaling pathway is a central regulator of organ size in diverse animals from 

insects to mammals.1,2 Genetic perturbation of this pathway in mouse models results in 

massively enlarged organs accompanied by tumor formation.3-5 Given its essential role in 

normal growth control in animal development, one would predict that the Hippo pathway is 

a target of gene mutations in cancer. To date, the evidence supporting this hypothesis has 

been limited. In Journal of Clinical Oncology, Chen et al6 have begun to fill this knowledge 

gap by identifying a missense mutation in YAP (also known as YAP1 or YAP65), a key 

component of the Hippo pathway, as a germline risk allele for lung adenocarcinoma.

The Hippo signaling pathway was initially discovered as a growth-inhibitory mechanism in 

the fruit fly Drosophila melanogaster, a classic model organism for developmental 

biologists.7,8 In Drosophila, this pathway comprises several tumor suppressor proteins, 

including two kinases, Hippo (Hpo) and Warts (Wts), that signal through a core kinase 

cascade to converge on the phosphorylation and inactivation of an oncogene called Yorkie 

(Yki; Fig 1). Yki functions as a transcriptional coactivator for a DNA-binding transcription 

factor called Scalloped to facilitate the transcription of growth-promoting genes such as cell 

cycle regulators and antiapoptotic proteins.9-11 Hippo-mediated phosphorylation of Yki 

inactivates the growth-promoting activity of Yki by excluding the phosphorylated Yki from 

the nucleus.3

The Hippo pathway is conserved in mammals wherein counterpart tumor suppressors 

function through a similar kinase cascade to inactivate YAP and a related protein called 

TAZ, which are the two mammalian counterparts of Yki3,12 (Fig 1). Recent studies suggest 

that the Hippo pathway is regulated by many biologic inputs such as cell polarity, adhesion 

and mechanical forces, and secreted ligands.13,14 Although the exact mechanisms by which 

these biologic inputs are modulated spatially and temporally to precisely terminate organ 

growth at appropriate size during development remain to be determined, it is known that 

developmental regulation of Hippo signaling in both Drosophila and mammals requires an 
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upstream regulator called Merlin, a “4.1, ezrin, radixin, moesin” domain-containing adaptor 

protein localized to the cell cortex15-17 (Fig 1).

In both Drosophila and mice, inactivation of Hippo pathway tumor suppressors, or 

activation of the oncogene Yki/YAP, leads to tremendous tissue hyperplasia characterized 

by excessive cell proliferation and diminished apoptosis, two hallmarks of cancer. Indeed, in 

several mouse tissues, these genetic manipulations also result in tumorigenesis.3-5 In 

contrast to the spectacular phenotypes in animal studies, mutations in Mstl/2 and Latsl/2, the 

human counterparts of Hpo and Wts, respectively, are extremely rare in human cancers. 

Instead, these genes were reported to be silenced by hypermethylation in certain 

cancers.18-20 The only tumor suppressor related to the Hippo pathway that has been 

consistently linked to human cancer is the upstream regulator Merlin. Merlin, also called 

NF2, was discovered two decades ago as a tumor suppressor gene whose mutations cause 

neurofibromatosis 2, an inherited autosomal dominant disorder characterized by the 

development of schwannomas and meningiomas affecting the nervous system.21,22 Somatic 

mutations of NF2 are also frequently found in mesotheliomas.23 It is not immediately clear 

why mutations of the core components of the Hippo pathway have not been more frequently 

detected in human cancers. This could simply be a matter of statistical improbability. Unlike 

Drosophila, humans encode two homologues of Hpo (Mstl and Mst2) and Wts (Latsl and 

Lats2). Thus a human cell has to encounter four instead of two hits at the relevant genetic 

loci to abolish Hpo or Wts activity. In contrast, NF2 is the sole Merlin homolog in humans.

Although genetic redundancy may in principle account for the dearth of mutations in tumor 

suppressor genes of the Hippo pathway, gain-of-function mutations in the oncogenes of the 

pathway should not be subjected to the same constraints. Supporting this view, the YAP gene 

locus on human chromosome 11q22 is amplified in various tumors such as lung, pancreas, 

oral, esophagus, liver, and ovarian carcinomas.24-29 However, the frequency of YAP 

amplification in these tumors is relatively low (5% to 10%). To complicate matters further, 

the YAP gene locus was also reported to undergo frequent loss of heterozygosity in breast 

cancer.30 Indeed, although the prevailing view holds that YAP functions as a growth-

promoting oncogene, YAP has also been proposed to function as a tumor suppressor gene in 

some contexts.30,31

Against this backdrop, the identification by Chen et al6 of an R331W missense mutation in 

YAP as a germline risk allele for lung adenocarcinoma is notable for several reasons. First 

and foremost, this information can be immensely valuable for early detection and disease 

prevention of lung adenocarcinoma. As beautifully illustrated by the authors, even though 

the R331W mutation is a rare allele, the high penetrance of mutant carriers to have lung 

adenocarcinoma and related lung lesions warrants the use of low-dose computed 

tomography scans as a preventive measure to this high-risk subpopulation.6 This practice 

allowed the authors to diagnose a stage I adenocarcinoma in one carrier who would 

otherwise become aware of the disease only at a much later stage. In addition, it provides 

unbiased clinical evidence that further implicate the Hippo signaling pathway as a cancer-

relevant pathway. Finally, the dominant nature of the R331W mutation in increasing lung 

cancer risk and its gain-of-function activity in cellular assays provides further evidence 

supporting YAP as a bona fide oncogene and further validates the widespread interest of 
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developing small-molecule inhibitors of YAP. Indeed, recent studies have demonstrated the 

proof of principle that YAP inhibitors can be successfully developed by identifying small 

molecules that disrupt the physical interaction between YAP and its transcription factor 

partner.8a Thus, YAP may be a promising and pharmacologically viable target for lung 

cancer prevention and treatment.

Like many good studies, the work of Chen et al6 raises interesting questions that warrant 

further investigation. Although the authors showed that the R331W missense mutation 

increases the colony formation ability and invasion potential of a lung cancer cell line in 

culture, the precise mechanism by which the R331W mutation confers predisposition to lung 

cancer remains unknown. Does the mutation increase the transcriptional activity, nuclear 

localization, or protein abundance of YAP? It is noteworthy that two patients who had lung 

cancer with the R331W allele in the Chen et al6 study also had breast cancer. A more 

systematic survey of the R331W carriers will be required to better appreciate the tissue-

specific effect, or the lack thereof, of this allele in cancer predisposition. If the R331W allele 

predisposes patients to only lung adenocarcinoma but not other cancers, it will be extremely 

interesting to investigate how this mutation has such a selective effect on lung cancer 

development It was shown recently that YAP plays a critical role in the self-renewal of 

airway stem cells.32,33 Perhaps a better understanding of how the Hippo-YAP pathway is 

uniquely regulated in the lung progenitor cells may provide some insights into this question. 

We have now come full circle, in as much as developmental biology has informed cancer 

biology, our understanding of cancer genome landscapes presents a rich opportunity for 

deeper exploration of basic developmental processes.
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Fig 1. 
The diagrams of the Hippo signaling pathway in (A) Drosophila melanogaster and (B) 

mammals highlight the core kinase cascade and upstream regulatory signals. For simplicity, 

most of the regulatory proteins upstream of the kinase cascade are not included in the 

diagram, except for Merlin (Mer), a membrane- and cytoskeleton-interacting protein that 

plays a conserved role in regulating Hippo signaling in both Drosophila and mammals. The 

illustration includes verteporfin (VP), a small-molecule inhibitor of Yki and YAP that 

disrupts the Yki-Sd (Drosophila) or YAP-TEAD (mammals) complex.8a In Drosophila, the 

core kinase cascade involves a kinase complex between Hippo (Hpo) and its partner 

Salvador (Sav), which phosphorylates and activates another kinase complex containing 

Warts (Wts) and its partner Mob as tumor suppressor (Mats). The activated Wts-Mats 

complex, in turn, phosphorylates and inactivates Yki. Only unphosphorylated Yki can enter 

the nucleus, where it partners with Scalloped (Sd) to activate the transcription of progrowth 

target genes. Loss of Hpo, Sav, Wts, or Mats results in constitutive nuclear localization of 

Yki, elevated expression of progrowth target genes, and tissue overgrowth. In mammals, the 

core kinase cascade comprises Mst1/2 (Hpo homologs), Sav1 (Sav homolog), Lats1/2 (Wts 

homolog), and Mob1 A/B (Mats homolog), which converge on the phosphorylation of 

YAP/TAZ (Yki homolog). Only unphosphorylated YAP/TAZ can enter the nucleus and 

partner with TEAD1/2/3/4 (Sd homolog) to activate the transcription of progrowth genes. 

Small-molecule inhibitors of YAP such as VP may be useful for the treatment of the 

subpopulation of patients with lung cancer who carry the R331W allele. GPCR, G protein-

coupled receptor; P, phosphorylation.
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