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Many studies have reported that methanol toxicity to primates is mainly associated with its metabolites, formaldehyde (FA) and
formic acid. While methanol metabolism and toxicology have been best studied in peripheral organs, little study has focused on
the brain and no study has reported experimental evidence that demonstrates transformation of methanol into FA in the primate
brain. In this study, three rhesus macaques were given a single intracerebroventricular injection of methanol to investigate whether
a metabolic process of methanol to FA occurs in nonhuman primate brain. Levels of FA in cerebrospinal fluid (CSF) were then
assessed at different time points. A significant increase of FA levels was found at the 18th hour following a methanol injection.
Moreover, the FA level returned to a normal physiological level at the 30th hour after the injection. These findings provide direct
evidence that methanol is oxidized to FA in nonhuman primate brain and that a portion of the FA generated is released out of the
brain cells. This study suggests that FA is produced from methanol metabolic processes in the nonhuman primate brain and that
FA may play a significant role in methanol neurotoxicology.

1. Introduction Methanol metabolism and mechanisms responsible for
its toxic actions in primates have been extensively investi-
gated in the periphery. Typically, with respect to methanol

metabolism in primates, there are three steps involved. The

Methanol, a single carbon alcohol, is an important pub-
lic health and environmental concern because it leads to

metabolic acidosis, visual impairment, central nervous sys-
tem dysfunction, neurodegenerative conditions, and death
[1-5]. Elevated methanol in the body can occur after acci-
dental or intentional consumption and/or exposure to other
exogenous methanol sources. Elevated methanol levels can
also occur as a result of increased endogenous methanol pro-
duction, such as in the generation of methanol through the
hydrolysis of protein carboxymethyl esters, catalyzed either
by methylesterases or through spontaneous nonenzymatic
reactions [6].

first step in the metabolic pathway is oxidation of methanol
to formaldehyde (FA). An alcohol dehydrogenase (ADH) is
primarily responsible for the initial step [7, 8]. The second
step is the oxidation of FA to formic acid. A glutathione-
dependent formaldehyde dehydrogenase specific for FA cat-
alyzes the conversion of FA to formic acid [1]. Another
formaldehyde dehydrogenase, which is NAD dependent,
catalyzes this conversion in human erythrocytes [7, 8] and
a high-activity aldehyde dehydrogenase is responsible for
this conversion in liver mitochondria [9]. The third step is


http://dx.doi.org/10.1155/2016/4598454

the oxidation of formic acid to carbon dioxide. 10-formyl-
THF dehydrogenase, a ubiquitous enzyme in mammalian
tissues, catalyzes this step [1, 10]. Notably, the rate of the final
step is far lower in primates than it is in rodents [1, 11]. With
respect to methanol toxicity, many studies have demonstrated
that formic acid is primarily responsible for methanol’s
toxicity. For example, formic acid has been found to be
responsible for the metabolic acidosis witnessed in methanol-
intoxicated humans [12, 13] and nonhuman primates [14,
15] and the ocular toxicity observed in methanol-poisoned
humans [12, 16] and nonhuman primates [17, 18].

Moreover, the toxic actions of methanol have also been
reported in the brain of primates [2-4, 11, 19]. Given the
fact that methanol is nonreactive [20] and less toxic than its
metabolites [21], FA, the metabolic intermediate of methanol,
was considered responsible for these effects because there
is compelling evidence that suggests FA is related to AD
pathology, both in vivo and in vitro [22-26].

While methanol metabolic processes in the brain of
primates remains inexplicit, it is likely that the brain will use
similar enzymatic pathways to metabolize methanol, as found
in liver. While catalase has been reported to be expressed in
human brain [27], the expression of ADHI in primate brain
hasbeen controversial [7]. The expression of catalase provides
a potential for the oxidation of methanol to FA in the primate
brain, but no study has demonstrated this metabolic process
through the direct evaluation of intracranial FA levels after
injection of methanol into the brain of primates

In this study, direct injections of methanol into the lateral
ventricles of rhesus monkeys were carried out to directly
investigate whether metabolic process of methanol to FA
occurs in the brain of rhesus macaques. This approach
allowed the direct investigation of methanol metabolic pro-
cesses under precise control of dose to the animals’ brain.
The FA levels in CSF were then assessed at the different time
points following a single methanol injection.

2. Materials and Methods

2.1. Animals and Treatment. All animal care and treatment in
this study were performed in accordance with the guidelines
for the national care and use of animals approved by the
national animal research authority (China). All animal exper-
iments were carried out after approval by the Institutional
Animal Care and Use Committee (IACUC) of the Kunming
Institute of Zoology.

Three 12-year-old male rhesus monkeys (Macaca
mulatta) were recruited in this study. The body weights of
the monkeys were as follows: Monkey #110.8 kg, Monkey #2
10.3 kg, and Monkey #3 11.4 kg. Each monkey was individually
housed under standard laboratory conditions [28]. In order
to provide the precise location of the right lateral ventricle
and avoid interference caused by surgical operation in the
results, as well as allowing animals to recover to stabilized
FA levels, a surgical operation to implant a stainless steel
tube into the right lateral ventricle was performed on each
rhesus macaque prior to the experiment. Each animal
was anesthetized with intramuscular atropine (20 mg/kg),
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ketamine (10 mg/kg), and sodium pentobarbital (20 mg/kg).
The head of the animal was fixed in a stereotaxic instrument
and the skull over the parietal lobe was exposed under
aseptic conditions by a longitudinal skin incision followed
by removal of the connective tissue. A small hole on the
skull (<2mm in diameter) was created with an electric
drill at the following coordinates: anterioposterior (AP):
interaural: 17 mm; mediolateral (ML): —2 mm. Then stainless
steel tubing with a length of 40 mm (21-gauge, New England
Small Tube Corporation, USA) was inserted into the right
lateral ventricle (dorsoventral (DV) depth ranged from 18 to
22mm). A successful puncture was judged by observing the
cerebrospinal fluid (CSF) flowing out or CSF pulsations at
the orifice. The outer portion of the stainless steel tube was
then fixed on the skull with composite dental cement fixed
to titanium nails screwed into the skull. After the operation,
each monkey was intramuscularly injected with penicillin
(1600 K Unit, Harbin Pharmaceutical Group Sixth Pharm
Factory, Harbin, China) for at least seven days. All animals
were allowed to recover after the surgery for more than two
weeks.

Each monkey received a single injection of 200 uL vol-
umes of 5% (v/v) methanol in 0.9% (w/v) saline into lateral
ventricle over a 15-minute period. After the injection, the
needle was held in the place for 5 minutes. The methanol was
purchased from Sigma (USA).

2.2. CSF Collection. In order to determine whether the
level of FA in CSF was elevated following single intracere-
broventricular (i.c.v.) methanol injections, the CSF from the
methanol injected animals was collected at 0, 3, 6, 12, 18, 24,
and 30 hours after the administration. The 0 hr refers to the
point before methanol injection. Animals were anesthetized
with ketamine (10 mg/kg) and approximately 0.5 mL of CSF
was withdrawn through a lumbar puncture using a 22-gauge
needle. Then the CSF samples were immediately frozen in
liquid nitrogen and later transferred and stored in a —80°C
freezer until analysis.

2.3. CSF Formaldehyde Measurements. Formaldehyde levels
in the CSF following a single methanol injection were mea-
sured with the DFOR-100 formaldehyde detection kit as per
the manufacturer’s instructions (BioAssay Systems, Hayward,
CA, USA). Briefly, CSF samples were deproteinated and neu-
tralized prior to assaying. To deproteinate the CSF samples,
50 uL of 10% TCA was added into each 100 yL sample. Each
sample was then vortexed and centrifuged at 14000 rpm for
5min; 100 uL of clear supernatant was transferred to a clean
tube and mixed with 25 uL of Neutralizer. Samples (50 L)
were mixed with the DFOR reagent for 30 min and then
assayed in a FlexStation 3 Multi-Mode Microplate Reader:
Aexe = 370nm; A, = 470 nm.

2.4. Statistics. All statistical analyses were carried out with
the GraphPad Prism 5 software. The levels of formaldehyde in
the CSF were analyzed by analysis of variance with repeated
measures followed by Tukey’s test for intergroup difference.
The level of significance was set at p < 0.05.
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FIGURE 1: Formaldehyde (FA) levels in CSF samples following an
i.c.v. injection of methanol in rhesus monkeys. FA levels in the CSF
were measured at different time points. “0h” refers to the point
prior to the methanol injection. There was no significant difference
until 18th hour after the methanol injection, albeit an increasing
trend began after the 3rd hour. Data points represent the average
CSF formaldehyde levels of the monkeys at each time point. All
values are represented as the mean + SEM. “p < 0.05; **p < 0.01;
P < 0.001.

3. Results

In order to investigate elevated levels of intracranial FA
following methanol injections, CSF samples from monkeys
given a single methanol injection were taken before admin-
istration (noted as “0” point) and at 3, 6, 12, 18, 24, and
30 hours after the injection. FA levels were then measured
using a formaldehyde measurement kit. FA levels in the
CSF following methanol treatments displayed an increasing
trend and reached prominent differences compared to the “0”
time point as a baseline at 18 and 24 hrs after the injection,
respectively (Figure 1). The elevated FA levels returned to
normal physiological levels at 30 hours (Figure1). These
findings indicated that endogenous methanol metabolism led
to elevated intracranial FA levels in the brain of monkeys
treated with methanol.

4. Discussion

Methanol is a natural chemical that poses dangers to human
health. It can be found in cigarette smoke, canned fruits
and vegetables, and aspartame-sweetened food products
[20], as well as in beverages where drinking alcohol is
inadvertently or criminally substituted with methanol [8].
Although methanol has been found to induce central nervous
system dysfunction [4, 11] and neurodegenerative conditions
[2, 3, 19], the mechanisms underlying its toxicity to the brain
remain inexplicit in primates. The present study demon-
strated that methanol could be oxidized to FA in primate
brain and that a portion of the FA generated leaked out of the
cells in which it was produced. This suggests that FA produced
from methanol not only affects the cell in which methanol is
metabolized but also may affect the surrounding tissue. It is
noteworthy that formaldehyde levels in CSF present a gradual

increasing trend which began at 3 hours following direct i.c.v.
injection of methanol, although a significant elevation in FA
levels only occurred after 18 hours. The time lapse of the
first significant elevation in FA levels was dependent on (a)
numbers of samples; (b) diffusion velocity of methanol into
brain tissues; (c) metabolic capacity and speed of brain tissues
to oxidize methanol to FA; (d) reactivity of produced FA
to surrounding molecules; (e) diffusion velocity of FA from
produced sites to CSE. Moreover, these results are consistent
with formic acid data measured in primates, which suggests
that methanol metabolism in the primate brain undergoes
oxidation from methanol, via FA, to formic acid and carbon
dioxide. FA is a significant consideration for human health
because its toxicity is due to its high reactivity. FA readily
attaches to proteins forming adducts or causes protein cross-
linking by forming methylene bridges between amino groups
[29, 30] and has the ability to damage DNA [31]. Elevated
FA has been implicated in some neurodegenerative diseases.
For example, elevated FA levels have been found in brains
of patients suffering from neurodegenerative diseases like
Alzheimer’s disease (AD) or multiple sclerosis (MS) [22-
24], where FA is known to cross-link proteins like tau (in
AD) or myelin basic protein (MBP, in MS), which in turn
results in the proteins losing their normal function and elicits
an immune response that is characteristic of the diseases
[20, 24]. It is noteworthy that some human subjects suffering
from methanol poisoning develop symptoms of MS, which
may be related to methanol oxidation to FA in brain that leads
to MBP structure and function modification by the reactive
FA [19].

Although FA is, without doubt, produced following
methanol administration, it is not considered to be a toxic
metabolite of methanol in the periphery. This is mainly due
to FA being undetectable in the blood following methanol
administration. This limited detection is likely due to its rapid
metabolism to formic acid in the liver [32] and the blood
[1] and because FA has a half-life of approximately 1.5 min
in the blood of monkeys following its intravenous infusion
[21]. This suggests that methanol metabolism through FA
to formic acid in the periphery is rapid and that methanol
toxicity might possess different mechanisms in the periphery
and brain. The findings that methanol is converted to FA
in the brain and found in the CSF after 18 hrs suggest that
methanol toxicity may have deleterious effects in the CNS via
FA.

5. Conclusion

In summary, elevated levels of intracranial FA were found
in this study following a single methanol injection, which
is the first demonstration of methanol oxidation to FA in
the nonhuman primate brain. This study links the toxicity
of methanol to its metabolites, FA and/or formic acid, in the
brain.
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