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Autism (AS) and autism spectrum 

disorders (ASD) represent a group 

of neurodevelopmental disorders of 

acute clinical and pathomechanistic 

heterogeneity. The serious impact of 

AS/ASD in families1, 2 and the alarming 

growth of AS/ASD in the developed 

world3, 4 have highlighted the pressing 

need both to develop new early 

diagnostic tools and to understand 

causality as a means of developing 

new therapeutic paradigms. In 

this issue of Pediatrics, Wong et al5 

studied mitochondrial (mt) copy 

number (mtCN) and the incidence of 

mt deletions in parents and children 

with autism (refs 6–8 and review in 

ref 9). They report an increased mtCN 

in patients with AS compared with 

matched control children, as well as an 

increase in the number of mt deletions, 

although there was no evidence of 

excessive mt gene loss between these 

2 groups.

In addition, they found that fathers of 

AS children had a higher incidence of 

mitochondrial DNA (mtDNA) deletions 

(but not mtCN) compared with 

fathers of control children, with the 

converse being observed in mothers 

of AS children. Of note, increased 

maternal or paternal age did not seem 

to have an effect on the magnitude 

of this difference. Finally, because 

of the contributory role of p53 in 

mediating mtCN and possibly mtDNA 

integrity, the authors studied the p53 

locus, where they found an increased 

incidence of microdeletions in both the 

children diagnosed with AS and their 

parents.

These studies touch on 2 important 

areas of autism research. First, it is 

known that several genes causing AS/

ASD, such as PTEN, CHD8,  and CUL3, 

are regulators of p53.10–13 However, 

given that each of these proteins has 

multiple functions, the implication of 

p53 directly might help us focus on a 

subset of their activities with regard 

to AS-relevant pathways. Second, 

these studies, performed in peripheral 

blood monocytes, have the potential to 

contribute to the keenly needed search 

for reliable biomarkers. As such, it is 

tantalizing to speculate that counts of 

quantitative analyses, such as mtCN, 

together with genomics and early-

infantile behavioral characteristics, 
14–16 might generate matrices of 

diagnostic and prognostic value.

At the same time, several key questions 

remain. First, observational studies of 

heterogeneous neurodevelopmental 

traits, such as autism, have been 

notorious for generating false 

positives. Thus, replication of these 

data in a significantly larger cohort is 

mandated, not only for confirmation 

but also for a more accurate 

assessment of relative risk. This is 

particularly important in order to 

enable the community to assess the 

possibility that the mtCN/deletion 

phenotype might be independent of 

paternal age, in sharp contrast to the 

current thought about the mechanisms 

of de novo mutations (novel genetic 

lesion due to an error of copying of the 

genetic material in the germ cell of 1 

of the parents or in the fertilized egg 

itself) in the nuclear genome.13, 17, 18

Second, the question of cause and 

effect remains. The observation that mt 

deletions did not appear to affect gene 

numbers argues that the observed mt 
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phenotypes might be outcomes or 

other processes, not drivers. This 

does not belittle the value of these 

data, but focuses their utility as a 

marker as opposed to an AS driver. 

The authors highlight, appropriately, 

the known roles of p53 in regulating 

both mtCN and mtDNA integrity.19–21 

At the same time, p53 negatively 

regulates the proliferation and 

survival of adult neuronal stem cells, 

without affecting their differentiation 

potential.22 In its absence (mouse 

p53-null, in which p53 is no longer 

functional), neuronal stem cell 

self-renewal and the number of 

differentiated neurons increases. 

Furthermore, in the absence of both 

p53 and the autism-associated gene 

Pten (mouse mutant model lacking 

both genes), neuronal stem cells 

have a higher renewal and neuronal 

differentiation potential.23

As such, it is possible that the 

observed mtDNA defects are a 

mechanistically unrelated surrogate 

of p53-mediated defects in the central 

nervous system that are potent 

drivers of neurodevelopmental 

circuitry anomalies. This is a testable 

hypothesis; the identification of 

numerous AS-associated genes from 

exome studies (high-throughput 

sequencing of all the exons of known 

coding genes in the human genome) 

is potentiating the generation of a 

host of new mouse models. It will 

be interesting to ask whether such 

models exhibit mtDNA number and 

content pathologies and whether 

these pathologies extend to the 

developing nervous system. At the 

same time, studies of mt function 

in both animal models and in AS 

patients might provide further 

illumination.

ABBREVIATIONS

AS:  autism

ASD:  autism spectrum disorder

mt:  mitochondrial, mtCN, 

mitochondrial copy number

mtDNA:  mitochondrial DNA
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