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Abstract

Knowing the determinants of conformational specificity is essential for understanding protein 

structure, stability, and fold evolution. To address this issue, a novel statistical measure of 

energetic compatibility between sequence and structure was developed, using an experimentally 

validated model of the energetics of the native state ensemble. This approach successfully 

matched sequences from a diverse subset of the human proteome to their respective folds. 

Unexpectedly, significant energetic compatibility between ostensibly unrelated sequences and 

structures was also observed. Interrogation of these matches revealed a general framework for 

understanding the origins of conformational specificity within a proteome: specificity is a complex 

function of both the ability of a sequence to adopt folds other than the native, and ability of a fold 

to accommodate sequences other than the native. The regional variation in energetic compatibility 

indicates that the compatibility is dominated by incompatibility of sequence for alternative fold 

segments, suggesting that evolution of protein sequences has involved substantial negative 

selection, with certain segments serving as “gatekeepers” that presumably prevent alternative 

structures. Beyond these global trends, a size dependence exists in the degree to which the 

energetic compatibility is determined from negative selection, with smaller proteins displaying 

more negative selection. This partially explains how short sequences can adopt unique folds, 

despite the higher probability in shorter proteins for small numbers of mutations to increase 

compatibility with other folds. In providing evolutionary ground rules for the thermodynamic 

relationship between sequence and fold, this framework imparts valuable insight for rational 

design of unique folds or fold switches.
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Introduction

Why does an amino acid sequence adopt one particular unique fold and not one of the few 

thousands of alternatives? How do new folds arise and change during evolution of the 

proteome? Insight into these essential biological questions will be obtained by understanding 

the determinants of conformational specificity, the well-known ability of structured proteins 

to retain a finite population of native fold even under destabilizing conditions. One 

particularly interesting aspect of this problem is revealed by the repeated observation of 

“chameleon sequences” [1–4], which can adopt different folds, and the emerging discovery 

of “metamorphic proteins” [5, 6], which change fold as part of their function. Such extremes 

of conformational specificity, which have already been shown to be amenable to protein 

engineering [7–11], may prove to be an evolutionarily important mechanism for both fold 

change [9, 12–15] and functional versatility (as a prominent sub-class of “moonlighting 

proteins” [16, 17]). However, current bioinformatics tools and molecular dynamics 

simulations, using sequence or structure information, fail to reliably identify chameleon or 

metamorphic proteins [8, 18–20]. Novel information, not entirely based on either sequence 

or structure alone, may facilitate development of a more effective compatibility 

measurement between sequence and structure.

Our approach to addressing the problem is rooted in the ensemble nature of proteins [21], 

leveraging the long-standing realization that fold stability and conformational specificity are 

both thermodynamic in origin, and partially separable [22, 23]. Proteins in solution sample 

myriad conformations according to a Boltzmann distribution. Even when a single folded 

conformation is dominant, alternative structures could be transiently populated, albeit at 

vanishingly small amounts. Indeed, if protein sequences do obey Boltzmann statistics, each 

sequence has some probability of adopting every fold. Thus, the question of conformational 

specificity may be more tractable if rephrased: what is the difference in stability between 

one sequence adopting each of two alternative folds? Answering this question requires 

knowledge of the energetics of the compatibility between amino acid sequence and protein 

structure.

In this work, conformational specificity [22] is addressed from such a thermodynamic 

standpoint by development of a statistical framework for measurement of the compatibility 

between sequence and structure. An ensemble-based description of protein thermodynamics 

[24] is applied to a diverse database of protein folds, for which the positional 

thermodynamic stability of every residue is estimated. Importantly, this computational 

stability has been experimentally demonstrated [21, 24–28] to largely capture the 

cooperativity imparted by both local and global interactions, and from both enthalpic and 

entropic contributions. Thus, every residue in a protein can be described, not by residue 

letter or structural type, but instead by a so-called “thermodynamic environment” [29, 30].

Using a previously validated threading algorithm [30, 31], the energetic compatibility of 

amino acid sequence fragments adopting varied thermodynamic environment contexts was 

exhaustively computed, exploring general principles for conformational specificity and the 

organization of protein fold space. The results indicate that there is substantial energetic 

compatibility between ostensibly unrelated proteins, composed of energetically compatible 
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and incompatible contributions that are heterogeneously distributed throughout the 

sequence. We find that conformational specificity, operationally defined as the high 

energetic compatibility of one sequence with one fold, is a function of both sequence and 

fold, and that evolution of one fold from another may not be energetically improbable.

Furthermore, because energetic compatibility is correlated with the number of incompatible 

contributions, negative design appears to be important for conformational specificity, 

particularly for small, single domain proteins. This finding suggests that negative selection 

could be an evolutionary strategy to minimize the effects of metamorphic structure, as small 

proteins are expected to be more susceptible to fold-switching [11].

Materials and Methods

Ensemble-Based Thermodynamic Database of Diverse Human Proteins

This database has been described and used in previous analyses, of note is the presence of 

diverse secondary structural classes and fold types as curated by the SCOP database [32]. 

Briefly, 122 H. sapiens proteins of known structure (Table S1) were taken from the Protein 

Data Bank (PDB) [33] and native state Boltzmann-weighted thermodynamic ensembles 

were generated using the COREX/BEST algorithm [21, 34]. A summary of the 

computational procedure used to generate this database is given in Figure 4, below. When 

present in the PDB coordinates, selenomethionine residues were manually edited to 

methionine to permit execution of the algorithm. Parameters for the algorithm were: window 

size of 5 residues, minimum window size of 4 residues, simulated temperature of 25 °C, 

entropy weighting of 0.5, Monte Carlo sampling of at least 10,000 microstates per partition. 

Clustering of the COREX/BEST thermodynamic parameters ΔG, ΔHap, ΔHpol, TΔSconf to 

obtain eight thermodynamic environments was performed by partitioning-around-medoids, 

implemented in S-PLUS 6 (Insightful Corporation, Seattle, WA), as previously described 

[30, 31]. Thermodynamic parameters for the 17,801 residues in this database are given in 

Table S2. Log-odds scores (Figure 1), quantifying the observed to expected ratios of amino 

acids in thermodynamic environments, were computed from this database as previously 

described [29–31]. Secondary structure elements were assigned to each residue using 

STRIDE [35] and are listed in Table S2.

Exhaustive Gapless Scoring Between Sequence and Thermodynamic Environments

All amino acid sequences in the database were quantitatively compared with all proteins’ 

thermodynamic environments. This was performed twice, first using complete sequence 

strings compared with complete environment strings, and second after dividing complete 

strings into overlapping 13 residue fragments starting at all possible registers. The second 

procedure was deliberately chosen for three reasons: to reveal regional contributions to 

energetic compatibility, to avoid possible length-dependent artifacts, and to keep the total 

amount of computations tractable. (Fragments of lengths 6 and 25 were also explored, with 

little qualitative change in results, data not shown.) Each comparison of sequence to 

environments used gapless scoring, popularly referred to as gapless “threading” [36] of an 

amino acid string against an environment string. A comparison was simply defined as a sum 

of the log-odds scores given by each residue/environment pair in Figure 1, using custom 
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scripts written in Mathematica 9.0 (Wolfram Research, Champaign, IL). For example, the 

13 residue amino acid sequence fragment starting at position 155 in the PDB coordinate file 

1BYQ is NDDEQYAWESSAG. The threading score of this sequence fragment compared 

with the 13 residue thermodynamic environments fragment from the PDB file 1GP0 starting 

at position 1538, i.e. 5742211111248, is calculated as the sum of all 13 log-odds scores 

corresponding to each amino acid/environment pair, as listed in Figure 1. For this example, 

the sum would be 0.07 − 0.61 − 0.42 − 0.07 − 0.25 − 0.93 + 0.45 − 0.90 − 0.37 − 0.03 + 

0.05 + 0.02 − 1.28 = −4.27. These computations were repeated until all sequence fragments 

were scored against all environments fragments. For comparisons of full-length proteins, the 

shorter protein was matched in all possible registers against the longer protein, such that the 

number of terms in the sum for each register was identical to the length of the shorter 

protein. Then, the maximum score over all registers was taken to be the single final score for 

that protein pair.

Parameterization of Probability Distributions: Significance of Energetic Compatibility

To assess the quality of these raw summed scores, a mathematical model was developed to 

estimate the expected chance occurrence of any particular raw score. Proteins of random 

composition and varying length were created by randomly choosing amino acids according 

to background frequencies in the Table S1 database (which were similar to background 

frequencies of amino acids seen in large sequence databases). These random sequences of 

amino acids were compared to identical length random sequences of similarly chosen 

thermodynamic environments and the total raw scores computed as described above. 

120,000 such random proteins were scored at each chain length to obtain the reported 

histograms and curve fits (Fig. S1). Random protein creation, scoring, curve and distribution 

fitting were performed in Mathematica using custom scripts.

Empirical distributions of random gapless summed scores between amino acid sequences 

and thermodynamic environments were discovered to be statistically Gaussian for all lengths 

tested (Fig. S1). This result allowed the parameterization of a useful probability model for a 

gapless match of any length protein (Fig. S1b). In this model, as the length of a gapless 

match increased, it became progressively less likely to obtain a positive log-odds score (Fig. 

S1a); in other words, a randomly chosen sequence was expected to be energetically 

incompatible with a randomly chosen structure. In contrast, an extremely high positive score 

is uncommon in the model, and thus a significantly high score would be consistent with an 

empirical observation of “conformational specificity”: defined here as the extreme case 

where one amino acid sequence is energetically compatible with only one unique structure 

(Fig. S1a).

Computing Compatibility Index of Significant Matches and Principal Components Analysis

The 122 database proteins were exploded into 16,337 overlapping fragments of length 13 

residues. Exhaustive all-vs-all comparisons of these 16,337 fragments resulted in greater 

than 266 million raw scores. Each raw score was then treated as a limit of integration in the 

length 13 Gaussian random score distribution, and the probability of obtaining a score of at 

most the observed raw score was computed using custom scripts. This list of p-values was 

filtered such that the best (most positive) and worst (most negative) of all comparisons, 
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defined as those exhibiting p < 0.01 or p > 0.99, were retained. The resulting filtered 

comparisons were then mapped back on to the positions of amino acid sequence or 

thermodynamic environments in the full-length proteins from which they originally came. 

Counts at each position were tabulated to produce a density of significant best, or worst, 

comparisons with regard to either sequence or structure. Thus, this analysis resulted in a 

total of four new attributes measured at every position in every protein: most significant 

matches of amino acid sequence against all other thermodynamic environments, least 

significant matches of amino acid sequence against all other thermodynamic environments, 

most significant matches of thermodynamic environments against all other amino acid 

sequences, and least significant matches of thermodynamic environments against all other 

amino acid sequences. These four attributes were, respectively, named “positive 

compatibility index (PCI with respect to sequence)”, “negative compatibility index (NCI 

with respect to sequence)”, “positive compatibility index (PCI with respect to structure)”, 

and “negative compatibility index (NCI with respect to structure)” throughout the rest of this 

paper. To minimize possible end effects, the N-terminal 12 and C-terminal 13 values for 

each protein were ignored, resulting in a total of 14,751 residue positions, with four density 

counts at each position. These data were treated as a four-dimensional space and were 

subjected to standard eigenvalue decomposition [37] using an in-house C program (Figure 

2). “Aggregate Negative Compatibility Indices” with respect to sequence or structure of an 

individual protein were defined as the integrated area along the entire protein of these 

respective densities (i.e. the area under the blue curves in Figs. 7a and 7b, respectively).

Provisional Classification of Energetic Compatibility: Susceptibility to Fold Switch

The median PCI and NCI within each protein was used to classify residue positions 

according to the following definitions. Figure 3 is a visual representation of this 

classification that may be referenced when the various categories are discussed later in the 

text. “Gatekeeper” positions exhibited an NCI greater than median and a PCI less than 

median; the term “Gatekeeper” was meant to capture the intuitive notion of a protein 

fragment being energetically unlikely to adopt any known conformation. “Permissive” 

positions exhibited an NCI less than median and a PCI greater than median; the term 

“Permissive” was meant to capture the intuitive notion of a protein fragment being 

energetically likely to adopt many conformations. “Selective” positions exhibited NCI and 

PCI both greater than median; the term “Selective” was meant to capture the intuitive notion 

of a protein fragment being energetically likely to adopt multiple conformations but 

simultaneously being unlikely to adopt others. In other words, “Selective” positions could 

indicate regions of a protein more susceptible to fold switching. “Inactive” positions 

exhibited NCI and PCI both less than median; the term “Inactive” was meant to capture the 

intuitive notion of no strong conformational preference. Since NCI and PCI were separate 

attributes of both sequence and structure, each residue position was assigned two 

classifications, one in terms of sequence and one in terms of structure. These classifications 

are listed in Table S2 for the proteins analyzed in this work.
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Results

Proteins Represented in Energetic Terms

Previous work has established that proteins can be represented in energetic rather than in 

structural terms [30]. The conceptual basis of this energetic representation is that the 

positional thermodynamic stability of a folded protein can be computationally estimated, by 

treating the protein as a Boltzmann-weighted ensemble of partially folded microstates [24]. 

This process, algorithmically named COREX/BEST [34], can be summarized as follows 

(Figure 4). The experimental coordinates (i.e. crystallographic or NMR structure) are the 

input for COREX/BEST (Fig. 4, Step 1). A large number, typically millions, of partially 

folded microstates involving all regions of the protein are generated based on the input (Fig. 

4, Step 2); a key simplification here are the assumptions that any folded conformation is 

native-like and any unfolded conformation is expressed by average amounts of newly 

exposed polar and apolar surface area, relative to the PDB structure. [21, 24, 38] Each 

microstate is assigned a Gibbs free energy from a surface-area based function, and statistical 

weights and populations are calculated for every microstate in the ensemble (Fig. 4, Steps 2 

& 3). For every residue position j in the protein, the entire ensemble is partitioned into sub-

ensembles in which the position is either in a folded conformation or an unfolded 

conformation (Fig. 4, Step 4), thus defining a position-specific equilibrium constant, κf,j, 

between folded and unfolded. This equilibrium constant can be converted (Fig. 4, Step 5) to 

a position-specific stability, ΔGj, which quantitatively matches experimental position-

specific stabilities measured from hydrogen exchange (Fig. 4, Step 6). Statistical analysis of 

the COREX/BEST output from a large number of diverse proteins results in a meaningful 

simplification of all position-specific stabilities into a small number (i.e. eight [30]) of 

clusters that share similar average values of stability.

Using our structure-based model of the native state ensemble (i.e. COREX/BEST) [21], it 

has been shown that these eight different “thermodynamic environments” [29] exist within 

any protein [30]. Furthermore, the propensities of amino acids to appear in these 

environments could be used as the basis of a fold recognition algorithm, much in the same 

way that helical sequences can be predicted from known helix propensities. Figure 5 shows 

an example protein color-coded according to the ensemble-based thermodynamic 

description of proteins, which is represented as eight color-coded environments [30]. Each 

energetic environment has a characteristic average stability resulting from enthalpic and 

entropic contributions associated with the computed change in solvent accessible polar and 

apolar surface upon locally unfolding each segment (Fig. 5, bottom) [21]. Importantly, these 

environments report on the energetics observed at a particular position rather than the 

contribution of the individual amino acid occupying that position, thus revealing how 

homologous proteins with marginal sequence identity can nonetheless share common 

thermodynamic signatures, and thus identical folds [29, 39]. As demonstrated, this 

representation has recapitulated numerous experimental observations that ground-state 

structures of proteins have regions of relatively high and low thermodynamic stability, and 

that these regions are not always intuitive upon visual inspection of the structure [28, 40].
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As noted previously, several key features of this representation are exemplified in the Hsp90 

protein (Fig. 5). First, the most stable regions are often in the core of the protein, which is 

true of this Hsp90. Second, elements of secondary structure, even those located in the core, 

are not uniformly stable: it is often observed that the middle residue positions of elements 

are more stable than the termini [41]. Third, although the most unstable regions are loops 

and turns, not all loops and turns are necessarily unstable, a counterintuitive result that has 

been borne out by experiment [42]. Although there are at least two low stability turns in this 

example (purple or blue), there is a prominent higher stability (orange) turn between strands 

4 and 5 (upper left, Fig. 5), and the apparently coil-like linker (dark red) between strand 3 

and helix 3 is among the highest stability regions of any protein in the database.

This energetic representation of proteins alone has formed the basis of an effective fold 

recognition algorithm, whereby sequences could be matched with their respective folds [29–

31], even if the secondary structure information of the fold was not present in the training set 

[43]. This last result, that the energetic information of entirely alpha-helical proteins 

permitted recognition of entirely beta sheet proteins, compellingly established the 

universality of this energetic representation with regard to protein structure classification 

[44].

Quantifying Energetic Compatibility between Homologous and Non-Homologous Proteins

To test whether structured full-length proteins exhibit significant energetic compatibility 

with their respective sequences using the probability model described in Methods, we 

applied the model to the scores of all amino acid sequences in the database against all sets of 

thermodynamic environments (Fig. 6). Because the log-odds scores (Fig. 1) are dependent 

on both amino acid and thermodynamic environment, an all-vs.-all plot is necessarily 

separated into scoring of sequences against a structure (rows in Fig. 6), and structures 

against a sequence (columns in Fig. 6). Unlike scoring derived from symmetric amino acid 

substitution matrices, this analysis is not symmetric and thus may reveal differential scoring 

contributions from either a sequence or a structure perspective.

There are several noteworthy observations in Fig 6. First, the diagonal of this plot, 

representing “self” matches of an amino acid sequence to its known correct fold, was clearly 

populated by substantial and significant scores, indicating that the algorithm works. These 

correct matches were highly specific: except for known homologous proteins (as classified 

in the SCOP database), no non-self match exhibited a p-value more significant than 

approximately 0.001. Although expected conformational specificities were thus 

recapitulated by the significant energetic compatibilities, no obvious relationship was 

observed that differentiated conformational specificity with respect to sequence or 

environments (the median correlation coefficients between rows and columns of Fig. 6 was r 

= + 0.5, data not shown). Also not observed was any general pattern between fold type (e.g. 

all-alpha or all-beta, Fig. 6 braces) and energetic compatibility. For example, the mixed 

alpha + beta proteins 1BYQ and 1MWP did not exhibit increased energetic compatibility to 

other mixed alpha + beta proteins (boxed vertical columns in Fig. 6).

Unexpectedly, however, there was a large amount of marginal, yet significant, energetic 

compatibility between otherwise unrelated proteins: more than half of the non-self matches 
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were significant at the 0.01 < p < 0.001 level (blue dots in Fig. 6). To investigate the source 

of this unexpected observation, the energetic compatibility between regions of individual 

proteins and the rest of the sequence or fold space was quantified.

Negative Contributions Dominate Energetic Compatibility between Sequence and 
Structure

The most statistically significant best and worst matches of 13 residue fragments were 

mapped to their locations on the full-length protein, and the densities of the matches were 

tabulated, as described in Methods. These densities were recorded in two ways: 1) mapping 

structure fragments to the full-length sequence, and 2) mapping sequence fragments to full-

length structure. Thus, the highs and lows of density approximated the average energetic 

compatibility of a protein’s sequence or structure with a representative sample of the entire 

sequence or structure space. Since these densities were composed of the most extreme 

energetically compatible and incompatible matches between arbitrary sequences and 

arbitrary structures of globular proteins, they are referred to as “positive” and “negative” 

compatibility indices, respectively. In short, the fragment matches revealed regions of full-

length proteins likely (or unlikely) to exhibit non-self conformational specificity, due to 

energetic characteristics shared between other globular proteins.

One example of these compatibility indices is displayed from the perspective of sequence 

(i.e. how a sequence scored in other fold fragments - Fig. 7a) and from the perspective of 

structure (i.e., how other sequence fragments scored in its fold – Fig. 7b). The variability of 

indices within an individual protein suggests that energetic compatibility is not uniformly 

distributed. Also clear is that sequence and structural compatibility indices are asymmetric. 

In other words, at a given position within an individual protein, the amino acid sequence at 

that position could have a very different compatibility for other environments than does the 

environments at that position for other sequences. For example, in labeled regions A, B, and 

C (Fig. 7), the negative compatibility index between the 1BYQ structure and all other 

sequences was relatively high, while the negative compatibility index between the sequence 

at this position and all other structures was low. This means that while the structure at that 

position does not accommodate many sequences, the sequence that is there, is compatible 

with many folds. A third observation is that the magnitude of the negative compatibility 

index is, in general, much greater than the magnitude of the positive compatibility index. In 

other words, the blue curves in Fig. 7, and in most other proteins, are larger in magnitude 

than the red curves, consistent with the higher likelihood of obtaining negative random 

scores in the probability model. No obvious relations between fold type, secondary structure 

type, location of secondary structure, and the compatibility indices were seen.

It was hypothesized that these indices contained detailed information about energetic 

compatibility with multiple structures, and thus would provide insight into conformational 

specificity. To explore this hypothesis, eigenvalue decomposition (principal components 

analysis) was used to simplify these four-dimensional compatibility indices (Fig. 2). As 

expected, the first two principal components of the decomposition were dominated by the 

sequence and structure negative compatibility indices (red circles in Fig. 2), and constituted 

almost the entire information content (60% + 35% = 95%). Unexpectedly, the 
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decomposition also revealed a secondary, but substantial, correlation in the patterns of 

positive and negative compatibility indices, as the coefficients of these quantities are of the 

same sign and order of magnitude (Fig. 2). Thus, the locations of the largest negative 

compatibility indices with respect to structure are also often the locations of the largest 

positive compatibility indices with respect to structure. Examples of this phenomenon can be 

seen in Fig. 7b, boxes A and B, where the peaks and valleys of both red and blue curves 

(positive and negative indices, respectively) roughly track each other. In summary, 95% of 

the information about positive and negative energetic compatibility could be retained by 

considering only the first two principal components, which are largely due to negative 

compatibility. Therefore, despite the necessity of a high positive score for one sequence to 

be conformationally specific for one structure, thermodynamically incompatible regions of 

sequence and structure largely organize the energetic compatibility, and thus possibly the 

conformational specificity, of this representative sample of protein fold space.

The trends in Figure 7 were used as the basis for provisionally classifying the susceptibility 

of a sequence to switch fold (Fig. 7a) or the ability of a fold to accommodate other 

sequences. (Fig. 7b). Four types of sequence segments were defined (Fig. 3); “permissive”, 

“selective”, “inactive”, and “gatekeeper” (Fig. 7 a&b – upper bar). Permissive sequence, 

which accounts for 15% of the total sequence space, is so named because it is highly 

compatible with other folds, but rarely is it highly incompatible with other folds. In other 

words, these sequence segments may contribute to stabilizing a fold, but do little to select 

against other folds. Selective sequences, which at 35% of sequence space, constitutes one of 

the highest fractions, are those that score very highly in, and are thus highly compatible 

with, many folds, but are also highly incompatible with other folds. These sequence 

segments contribute to stabilizing the native fold, but also significantly select against other 

folds. Inactive sequences are those that appear to not contribute significantly to determining 

any particular fold and do little to select against any fold. Finally, there are so-called 

“gatekeeper” sequences that are not compatible with most other folds, and indeed 

significantly select against many folds, these comprise approximately 15% of sequence 

space. A similar analysis was performed to categorize the compatibility of fold segments; 

fractions of gatekeeper and permissive structure were each found to be approximately 11% 

and fractions of inactive and selective structure were each found to be approximately 39%.

Importantly, all proteins in this representative subset of the human proteome contained 

variable sized segments of each type of sequence (Fig. 7c) and fold (Fig. 7d) revealing an 

overall architecture, which indicates that sequence and fold contributions to energetic 

compatibility are heterogeneously distributed throughout individual proteins. Indeed, the 

relatively large fractions of inactive sequence and fold segments suggests that the specific 

folds, which some sequence segments adopt, may be context dependent, lacking significant 

intrinsic propensity. Ideas such as context dependent sequence propensities have been 

discussed for the particular case of beta strands, [7] although for these proteins we find no 

significant correlation between beta sheet and inactive sequence (data not shown).
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Protein Size Dependence of Negative Energetic Compatibility

Although the magnitudes of negative (i.e. incompatible) and positive (i.e. compatible) 

scoring sequences were comparable, the amount of the incompatibilities was observed to be 

significantly higher than the amount of compatibilities. The dominance of energetic 

incompatibility is consistent with the idea of “negative selection” [23, 45–48], i.e. that 

through evolution most other competing folds become thermodynamically incompatible 

with a particular amino acid sequence. It was hypothesized that the total amount of negative 

energetic compatibility (i.e. the integrated area of the blue curves in Fig. 7) exhibited by a 

protein, from either sequence or structure, could be related to the widespread non-self 

energetic compatibility seen in Fig. 6. In other words, does the amount of negative selection 

scale with the overall ability of a sequence to adopt other folds? To address this question, the 

p-value of the optimal non-self scores in Fig. 6 were plotted against the aggregate energetic 

incompatibility of each protein (Fig. 8). Significant, though modest, correlations were 

indeed observed between aggregate negative compatibility and the energetic compatibility 

between sequence and structure, suggesting that negative selection exerts a significant 

influence on conformational specificity.

However, an unexpected pattern was observed in these correlations: the relationship 

between aggregate negative compatibility and energetic compatibility changed sign as a 

function of protein size (Fig. 9). Longer proteins, such as the 228-residue Hsp90 1BYQ, 

exhibited a negative correlation between negative compatibility and energetic compatibility 

(Fig. 8a), while shorter proteins, such as the 96-residue N-terminal domain of amyloid 

precursor protein 1MWP, exhibited a positive correlation (Fig. 8b). In other words, shorter 

proteins exhibited increased conformational specificity towards an alternative fold when that 

alternative fold exhibited increased energetic incompatibility with fragments from all other 

proteins. The positive correlation reached a maximum value at a protein size of 

approximately 100 residues (Fig. 9). The fact that the correlation changed sign indicates that 

both compatibility and incompatibility influence the specificity of proteins of all sizes, but 

that the relative contribution of incompatibility monotonically decreases with protein length. 

In other words, the requirement for negative selection appears to be released as sequence 

length increases.

Discussion

Energetic Incompatibility Influences Protein Conformational Specificity

Two significant insights emerge from these studies, accepting the hypothesis that energetic 

compatibility is a measure of the degree of conformational specificity. First, conformational 

specificity of a representative sample of the human proteome, and presumably the entire 

protein fold space, appears to be organized by energetic incompatibility. This key insight 

could not be obtained by inspection of the amino acid sequences or ground state structures. 

Second, protein conformational specificity is a complex function of both the sequence and 

the fold, with both positive and negative contributions. Just as not all sequence and structure 

segments contribute equally to protein stability, neither do they contribute equally to 

conformational specificity. Importantly, although a weak trend exists for more stable regions 

to exhibit higher negative compatibility index with respect to structure, there is imperfect 
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correlation between stability and specificity; the most stable regions are not always the most 

specific nor are the least stable regions always the least specific. Thus, gatekeeper residues 

located in high-stability regions may be informative determinants of conformational 

specificity and potential targets for fold-switch engineering. Conversely, mutation or 

removal of permissive residues may permit increased specificity for a desired fold.

For all proteins, regardless of size, “designing-in” favorable interactions is important for 

adopting stable structure, a conclusion that can be drawn directly from the highly significant 

diagonal scores in Fig. 6. Indeed, structure-guided protein engineering has repeatedly 

employed this idea of “positive design” with much success [49–51]. However, the present 

analysis suggests that in natural proteins extremely unfavorable interactions in alternative 

folds (energetic incompatibility) dominate conformational specificity. Furthermore, the 

intriguing sign switch observed in Fig. 9 reveals that negative selection has an even more 

pronounced influence for proteins of small size.

Local Structure and Sequence Contributions to Negative Selection

The regions of highest NCI are enriched in proline (Pro) and glycine (Gly) residues (with 

respect to sequence, Fig. S2a) and are enriched in high-stability (with respect to structure, 

Fig. S2c). These enrichments suggest that the mechanisms for negative selection can be 

localized to individual positions of a protein’s structure and sequence: high stability 

environments, and the amino acids Gly and Pro. Examples include Box A of Fig. 7b, which 

is a high stability region of 1BYQ that exhibits high NCI with respect to structure, and Box 

D of Fig. 7a, a region enriched in Gly and Pro that exhibits high NCI with respect to 

sequence. Conformational restriction and freedom afforded by Pro and Gly side chains, 

respectively, are likely to be two physical mechanisms for mediating negative selection [52].

Localization of negative selection could guide protein engineering efforts to promote 

desired, or alternative, structure using targeted Pro or Gly substitutions [53] and core 

destabilization. The similarity in environmental propensities of negative compatibility and 

gatekeeper positions (Fig. S2c&d) suggests co-localization of gatekeeper positions, high 

structural stability, and negative selection. Bearing in mind that mutational effects of 

sequence and stability changes could be opposing (e.g. Fig. 1 indicates that a Pro 

substitution in a high stability region, intentioned to increase NCI with respect to sequence, 

is unfavorable and could be destabilizing with respect to structure), such changes might 

afford a crude tool to introduce or remove specificity. In any event, the analysis presented 

here provides the locations on each protein where such efforts should be targeted to increase 

chances for success.

Negative Selection Mediates Protein Domain Evolution

The average domain size of structured proteins is approximately 100 residues [54], and 90% 

of all known domains are less than 200 residues [55], spanning the size range of proteins 

sampled here. One implication for protein evolution is that single domain proteins, usually 

thought of as modular “building blocks” in the organization of larger proteins [56], might be 

particularly susceptible to sampling alternative structures. Fold-switching is expected to be 

more prevalent in smaller size proteins [11] and is expected to be less prevalent in larger 
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size proteins [15]. These expectations are supported by strong positive correlations between 

experimental thermodynamic stability and size [38, 57], as well as from lattice models that 

exhibit a larger fraction of alternative minimum energy compact structures as the chain 

length decreases [58, 59]. Thus, increased negative design would be important for small 

proteins to preserve structure and function when faced with the constraints of small stability 

and large numbers of alternative folds.

Consistent with this conjecture is the SCOP classification of “small proteins”, whose 

membership consists of proteins that explicitly require disulfide bonds or metal ions for 

increased stability [32]. In this scenario, primordial small proteins would have had the 

tendency for metamorphic behavior, thus negative evolutionary selection would have been a 

necessary adaptation for dependable metabolic processes mediated by such molecules. 

Figure 9 suggests that as proteins increase in length they gradually lose the requirement for 

negative selection. Perhaps this implies the conformational space for a large protein is so 

vast that preservation of fold is energetically “easier”, as long as aggregation is avoided 

[60]. Alternatively, larger proteins, which are sometimes composed of several smaller 

domains, contain functionally important intra-domain interfaces that alter the energetic 

landscape relative to the individual domains. The role of negative design in larger multi-

domain proteins remains to be investigated.

Protein Design Strategy Based on Negative Selection

Aside from effects of negative selection for small proteins, we believe that thermodynamic 

environments data (Fig. 5) could be practically used as a template for fold design. The log-

odds scores (Fig. 1) may be used to generate reasonable amino acid choices for site directed 

mutagenesis and/or de novo design of full-length proteins. A possible advantage of using 

thermodynamic environments as a design template, as opposed to structural coordinates, is 

that environments avoid the difficulty of a “frozen approximation” of the backbone [51]. 

Instead, thermodynamic environments intrinsically incorporate a range of small 

conformational adjustments that are approximately isoenergetic within the average stability, 

enthalpy, and entropy of the environment. One possible design strategy, leveraging both the 

theory and techniques in this paper, would be to simultaneously maximize the positive score 

of sequence choices for a desired fold target using the log-odds scores while maximizing the 

negative score of the same sequence against a large library of alternative folds. This strategy 

could mimic the “energy gap” between desired and alternative structures that has been 

demonstrated to be useful in protein design [61]. Such a strategy would be computationally 

fast to implement using the thermodynamics environment data in Table S2. The pursuit of 

such avenues is currently under way [62].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Log-odds compatibility scores relating amino acids to native state ensemble-based 
thermodynamic environments
These scores were computed as previously described [29–31] using the amino acids and 

thermodynamic environments data given in Table S2. A positive value indicates that the 

amino acid is found more often than expected in a particular thermodynamic environment 

within globular proteins, while a negative value indicates occurrence less often than 

expected. Colors are identical to those used in Figures 4 and 5, i.e. violet, blue, green are 

lower predicted stability and yellow, orange red are higher stability.
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Figure 2. Principal components analysis of positive and negative energetic compatibilities 
demonstrates the dominance of incompatibility in a representative sample of globular proteins
Values in the last four columns of Table S2 were subjected to standard eigenvalue 

decomposition. [37] The vast majority of the information content of the four-dimensional 

data can be described by the first two principal components, dominated by energetically 

incompatible sequence and structure indices, respectively, interpreted as effects of negative 

selection in the organization of protein fold space. Red circles indicate the indices 

contributing the most to the information content.
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Figure 3. Provisional classification scheme for energetic compatibility indices within proteins
The scheme is a simple contingency table wherein categories are defined based on the 

median Positive Compatibility Index (PCI) and median Negative Compatibility Index (NCI) 

for an individual protein. Attributes for the category labels are described in Methods, and the 

colors correspond to those in Figure 6.
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Figure 4. Conceptual basis for native state ensemble-based thermodynamic environments
The human superoxide dismutase (SOD) protein (Step 1) is used as an example for the 

COREX/BEST algorithm, briefly explained in the main text. An experimentally validated 

positional thermodynamic stability ΔGj measured at a residue position j in the protein (Steps 

4 and 6), is obtained from the Boltzmann-weighted ensemble of partially folded microstates 

(Steps 2 and 3). Clustering of a large number of positional stabilities from diverse proteins, 

with respect to the relative contributions of enthalpy and entropy to those stabilities, results 

in eight colored “thermodynamic environments”. These colors correspond to the average 

Gibbs free energy of the position: purple/blue colors are less stable and orange/red colors are 

more stable (as displayed in Figure 5). Black regions of the molecular cartoon represent 

folded, native-like conformations in a greatly simplified COREX ensemble, and gray 

represents regions of unfolded conformations. Experimental data was obtained from Liu, et 

al. [28]. Abbreviations: ASA = solvent accessible surface area, ap = apolar surface area, pol 

= polar surface area, conf = conformational, PF = hydrogen exchange protection factor, 

DHXMS = deuterium – hydrogen exchange mass spectrometry. The thermodynamic 

environments for this protein are listed in Table S2.
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Figure 5. Representation of protein structure in terms of native state ensemble-based 
thermodynamic environments
Example protein Hsp90 1BYQ from the thermodynamic environments database (top). 

Residue cartoon color coding corresponds to the average thermodynamic quantities in the 

environments table (bottom). Values in the table are in units of kcal/mol under simulated 

folding conditions: 25 °C, pH = 7.0. Rainbow coloring follows the order of average 

thermodynamic stability: purple, blue, green exhibit lowest stability (least negative ΔG), 

yellow, orange, red exhibit highest stability (most negative ΔG). The beta-strand core of this 

protein contains most (but not all) of the highest stability regions, while some (but not all) of 

the loops and turns are lower in stability.
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Figure 6. Parameterized random model recapitulates expected sequence-structure 
conformational specificity as statistically significant
122 H. sapiens proteins are listed on each axis in the order given in Table S1. SCOP 

secondary structure classes [32] of each protein are indicated by braces. Dots represent 

significance levels of either sequence-environment or environment-sequence energetic 

compatibilities of full length proteins of p < 0.01. Rainbow coloring indicates the statistical 

significance of the energetic scores, with dark blue corresponding to p ~ 0.01 and red 

corresponding to p ~ 10−15. The most significant scores are located along the diagonal, 

corresponding to sequences that are conformationally specific for known structures. 

Homologous proteins, displayed as squares, also display significant sequence-environment 

scores. Gray areas, largely off-diagonal, indicate insignificant scores of p > 0.01. 

Unexpectedly, approximately one-half of the off-diagonal points are significant to at least p 

= 0.01. The column locations of two proteins discussed in the text, 1BYQ and 1MWP, are 

indicated by vertical boxes: the values within these column vectors are plotted as the x-axes 

in Figs. 8a and 8b.
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Figure 7. Energetic scoring varies with sequence and structure position, as energetically 
“compatible” and “incompatible” regions ubiquitous within the proteome
The y-axes in panels a) and b) indicate the number of times any 13-residue fragment from 

any other protein was significantly compatible with the 1BYQ protein at the residue 

positions located on the x-axes. Panel a) displays compatible structure fragments with 1BYQ 

sequence, and panel b) displays compatible sequence fragments with 1BYQ structure. 

“Significantly” was defined as exhibiting an energetic compatibility of at least p < 0.01 (red 

open squares) or p > 0.99 (blue filled squares). For most proteins analyzed, the density of 

incompatible matches dominated the most compatible matches, suggesting the importance of 

energetic incompatibility in conformational specificity. Horizontal colored bar above the 

chart indicates regions of compatibility defined in the text and in Figure 3: “gatekeeper” 

(blue), “permissive” (red), “selective” (gray), and “inactive” (white); these regions are 

colored on the molecular cartoon. Labeled vertical boxes A – D denote regions of interest 

discussed in the text. Panels c) and d) summarize the energetic compatibilities of a 

representative subset of 122 human proteome amino acid sequences and structures, 

respectively. Colors are identical to those in panels a) and b) and the locations of the data for 

the protein displayed in panels a) and b) are indicated by asterisks in panels c) and d), 

respectively. Panels c) and d) indicate that, for both sequence and structure, total amounts of 

gatekeeper and permissive regions are less than amounts of inactive and selective regions. 

Within the sequence and structure of any particular protein, gatekeeper and permissive 

regions, thought to be important for conformational specificity, are located at different 

positions.
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Figure 8. Aggregate negative energetic compatibility of a structure correlates with energetic 
compatibility of a sequence for that structure
Two protein sequences, 1BYQ (Fig. 8a) and 1MWP (Fig. 8b), are compared with each of 

122 structures, the latter represented as native state ensemble-based thermodynamic 

environments. The p-value of the optimal gapless match, computed by the random model 

described in Fig. S1, is displayed as a log value on the x-axis, negated so that increased 

energetic compatibility between sequence and structure is represented by a more positive 

value. The y-axis represents the aggregate negative compatibility of a second protein, 

examples of which are displayed by the blue curves in Fig. 7. For many proteins studied, 

modest but significant correlations are observed (Pearson correlation coefficient r shown 
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[37]). Across the entire database of studied proteins, these correlations trend with length: 

length inversely varies with correlation coefficient: longer proteins such as 1BYQ exhibit 

negative correlations (Fig. 8a) while shorter proteins such as 1MWP exhibit positive 

correlations (Fig. 8b). This trend, displayed in Fig. 9, is interpreted as increased importance 

of negative selection in the conformational specificity of smaller, single-domain proteins.
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Figure 9. Relationship between energetic compatibility and negative compatibility depends on 
protein size
Small, single domain proteins exhibit a positive Pearson correlation [37] between negative 

energetic compatibility and energetic compatibility of sequence with structure. This 

relationship is interpreted as evidence of the effect of negative selection on conformational 

specificity. Examples of such correlations are shown in Fig. 8. Open circles indicate 

aggregate negative compatibility index with respect to structure (as displayed in Fig. 7b), 

and filled circles indicate aggregate negative compatibility index with respect to amino acid 

sequence (as displayed in Fig. 7a). The solid dark curve is to guide the eye, a window size 

11 moving average over all the data. Energetic compatibilities are expressed as negative log 

p-value, as shown on the x-axes of Fig. 8. The correlation coefficients for proteins 1BYQ 

and 1MWP shown in Fig. 8 are labeled for reference.
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