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Abstract

Background

In the absence of randomized clinical trials, meta-analysis of individual patient data (IPD)

from observational studies may provide the most accurate effect estimates for an interven-

tion. However, confounding by indication remains an important concern that can be

addressed by incorporating individual patient covariates in different ways. We compared dif-

ferent analytic approaches to account for confounding in IPD from patients treated for multi-

drug resistant tuberculosis (MDR-TB).

Methods

Two antibiotic classes were evaluated, fluoroquinolones—considered the cornerstone of

effective MDR-TB treatment—and macrolides, which are known to be safe, yet are ineffec-

tive in vitro. The primary outcome was treatment success against treatment failure, relapse

or death. Effect estimates were obtained using multivariable and propensity-score based

approaches.

Results

Fluoroquinolone antibiotics were used in 28 included studies, within which 6,612 patients

received a fluoroquinolone and 723 patients did not. Macrolides were used in 15 included

studies, within which 459 patients received this class of antibiotics and 3,670 did not. Both

standard multivariable regression and propensity score-based methods resulted in similar

effect estimates for early and late generation fluoroquinolones, while macrolide antibiotics

use was associated with reduced treatment success.

PLOS ONE | DOI:10.1371/journal.pone.0151724 March 29, 2016 1 / 19

OPEN ACCESS

Citation: Fox GJ, Benedetti A, Mitnick CD, Pai M,
Menzies D, The Collaborative Group for Meta-
Analysis of Individual Patient Data in MDR-TB (2016)
Propensity Score-Based Approaches to Confounding
by Indication in Individual Patient Data Meta-Analysis:
Non-Standardized Treatment for Multidrug Resistant
Tuberculosis. PLoS ONE 11(3): e0151724.
doi:10.1371/journal.pone.0151724

Editor: Guy N Brock, Ohio State University College
of Medicine, UNITED STATES

Received: November 13, 2015

Accepted: March 3, 2016

Published: March 29, 2016

Copyright: © 2016 Fox et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Due to ethical
restrictions, data are available upon request from
Dick Menzies (dick.menzies@mcgill.ca).

Funding: GJF was supported by NHMRC CJ Martin
Early Career Fellowship 375 (APP ID 513 1054107).

Competing Interests: The authors have declared
that no competing interests exist.

Abbreviations: aOR, adjusted odds ratio; CI,
confidence intervals; FEV1, forced expiratory volume

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0151724&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Conclusions

In this individual patient data meta-analysis, standard multivariable and propensity-score

based methods of adjusting for individual patient covariates for observational studies yielded

produced similar effect estimates. Even when adjustment is made for potential confounding,

interpretation of adjusted estimates must still consider the potential for residual bias.

Introduction
In the absence of randomized clinical trials, data from non-experimental observational studies
may provide the only data to evaluate complex medical interventions. Data from these observa-
tional studies can be pooled to provide an estimate of effect that may be more precise than that
obtained by a single study [1, 2].

However traditional aggregate data meta-analyses, especially of observational studies, have
limited capacity to adequately account for factors which confound the association between
treatment and outcome [3]. In contrast, individual patient data (IPD) meta-analysis incorpo-
rates individual patient characteristics in the analysis, permitting adjustment for the same set
of covariates across multiple studies [4, 5].

Traditionally, multivariable regression is used to account for differences in measured covari-
ates between subjects. However, this method may not fully adjust for confounding by indica-
tion occurring if the health status of patients affects treatment allocation. Alternative analytic
approaches based upon propensity scores have been proposed that may provide more precise
estimates of the treatment effect in observational studies in which confounding by indication
may occur [6]. Defined as the predicted probability (propensity) of being given treatment, this
method can incorporate the measured covariates of individuals in a variety of ways [6–8]. Pro-
pensity score-based analytic methods have been widely used in individual studies. However,
this method has not yet been operationalized for IPD meta-analyses.

Recommended combination antibiotic therapy for multi-drug resistant tuberculosis
(MDR-TB) includes at least five antibiotics, and is given for at least 18 months [9]. Current
international treatment recommendations are based entirely on analysis of observational stud-
ies, as there have been no randomized phase 3 trials of MDR-TB treatment [10]. Consequently,
the selection of treatment of MDR-TB treatment is particularly challenging, with little evidence
to guide decision-making. Medical treatment for MDR-TB is highly individualized, with clini-
cians selecting drug regimens based upon the severity of disease, antibiotic resistance patterns
of the causative bacteria and their own local clinical experience. As a result, the baseline patient
characteristics are likely to strongly influence treatment allocation.

Here we apply a number of methods to adjust for confounding by indication using a large
IPD dataset of patients treated with combination antibiotic therapy for MDR-TB. In order to
better evaluate how effective our analytic methods were in controlling confounding we selected
two antibiotic classes believed to have very different efficacy in TB treatment: fluoroquinolone
(FQN) and macrolide antibiotics.

Randomized trials have shown that FQN antibiotics are effective in the treatment of drug
susceptible TB, as a part of combination antibiotic therapy [11–13]. Given that its mechanism
is the same regardless of the resistance to most other antibiotics, FQNs are also considered
effective in treating MDR-TB—with just 17% of patients with MDR-TB worldwide having
FQN resistance [14]. As a result, FQNs have become well-established as the cornerstone of
MDR-TB treatment in national [15, 16] and international guidelines [17].
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As a counterpoint, the macrolide class of antibiotics is inactive against M. tuberculosis in
vitro [18] with inconsistent evidence supporting their clinical effect [17]. Consequently, macro-
lides are considered a “Group 5” antibiotic, recommended only for subjects with advanced
drug resistance and few treatment options.

Drawing upon these two contrasting antibiotics of differing effectiveness, we aimed to
explore confounding by indication in the context of IPD meta-analysis.

Material and Methods
This project was approved by the Research Ethics Board of the Montreal Chest Institute,
McGill University Health Centre, and when deemed necessary by local ethics boards of origi-
nally approved studies.

Description of Individual Patient Data Set
Study methods are reported according to PRISMA criteria (S1 Table). Data for this individual
patient data meta-analysis were collected from 31 observational studies, published after 1970,
selected from three prior meta-analyses evaluating MDR-TB treatment, in preparation for an
expert committee revising the World Health Organization (WHO) MDR-TB treatment guide-
lines (Figs 1 and 2) [19–21]. The method of contacting authors, collecting and extracting data,
individual study characteristics and outcomes for each individual study have been reported
[19]. Data were evaluated completeness, and additional information sought if required. Addi-
tional criteria for including studies were: the study authors could be contacted and were willing
to share their data, the cohort included at least 25 subjects and the outcome of treatment suc-
cess was reported. All included studies were retrospective or prospective observational studies,
and therefore of low quality. The quality of included studies is summarized in S2 Table. No
problems with data integrity were identified. Only patients with microbiologically confirmed
MDR-TB were included. Individual patients with extensively drug resistant tuberculosis
(XDR-TB, defined as MDR-TB plus resistance to any FQN and at least one second-line
injectable antibiotic), only extrapulmonary TB or missing treatment information were
excluded. Individual subject data included demographic characteristics, HIV status, the extent
of disease, history of prior treatment, phenotypic drug susceptibility testing and treatment regi-
men. Extensive disease was defined as pulmonary TB with positive sputum smear and / or cavi-
tation on chest radiograph. Studies where the selected antibiotic class was not used were
excluded from the analyses of that class. For FQNs the comparison was between group F and
group NF1 (Fig 1), and for macrolides between group M and group NM1 (Fig 2).

The main analyses assessed the association of either FQN antibiotics or macrolide antibiot-
ics with treatment success (cure or treatment completion) against a combined primary out-
come of treatment failure, relapse or death. A secondary comparison was success vs. fail or
relapse (without death) for each drug class. Loss to follow-up was excluded as an outcome
from both comparisons. Patients taking the antibiotic of interest were described as ‘exposed’,
and those not taking the antibiotic as ‘unexposed’.

Description of the Exposure
We hypothesized that after adequately controlling for confounding, the adjusted effect esti-
mates should show a positive association between FQN use and the primary outcome, while
there should be no evidence of an association for macrolide antibiotics.

Fluoroquinolone antibiotics. Until recently, later generation (newer) FQNs were sub-
stantially more expensive and may have been reserved for patients with more severe disease
[22, 23] or those failing first-line MDR-TB therapy [24]. Consequently, confounding by
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indication may attenuate the apparent effectiveness of later generation FQNs. For this reason,
separate analyses of the two classes of FQN antibiotics were performed, comprising either (a)
later generation FQN antibiotics (including moxifloxacin, gatifloxacin, levofloxacin) against no
FQN use, or (b) earlier generation FQN antibiotic (ofloxacin) against no FQN use. Patients tak-
ing ciprofloxacin (an earlier generation FQN) were excluded from the analyses, since it is

Fig 1. Consort diagram showing patient selection for an individual patient data meta-analysis of the effectiveness of fluoroquinolone antibiotics to
treat multi-drug resistant tuberculosis.Group allocation was independent of which other antibiotics were concurrently used. *Some patients were
excluded on the basis of more than one criterion.

doi:10.1371/journal.pone.0151724.g001
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Fig 2. Consort diagram for an individual patient data meta-analysis of the effectiveness of macrolide antibiotics to treat multi-drug resistant
tuberculosis.Group allocation was independent of which other antibiotics were concurrently used. *Some patients were excluded on the basis of more than
one criterion.

doi:10.1371/journal.pone.0151724.g002
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considered largely ineffective in the clinical treatment of TB [21, 25], having only a minimal
effect in vitro [26], and hence no longer recommended [17].

Macrolide antibiotics. The separate comparison was performed between a separate class
of antibiotics, macrolides, and those taking no macrolides. As highlighted above, we did not
expect macrolides to truly make patients better. At worst they are clinically ineffective, and not
harmful, given that the drug class has an excellent safety record. Hence, there is no reason a pri-
ori to expect patient outcomes to be adversely affected by this class of antibiotics. Treatment
outcomes with and without macrolide antibiotics were examined independently of whether
FQN antibiotics were also used.

Analytical Approaches
We evaluated different methods to control confounding for each of the three antibiotic groups
(earlier generation FQNs, later generation FQNs or macrolides), and treatment success for
MDR-TB [21]. Effects were estimated using generalized linear mixed models (GLMMs) (i.e.
random effects logistic regression models) estimated via adaptive quadrature (QUAD).

To identify the most important potential confounders in our dataset, we constructed a
Directed Acyclic Graph (Fig 3). Analytic methods used to account for confounding included
traditional multivariable methods and four different methods of adjustment using the propen-
sity score: regression adjustment for propensity score quintiles or for the propensity score, pro-
pensity score-based matching and inverse probability of treatment weighting (IPTW).

In contrast to regression-based models, which give a conditional (unit specific) effect esti-
mate, propensity score based models can estimate the marginal (population-average) effect of

Fig 3. Directed Acyclic Graph describing the covariates affecting treatment outcomes for multi-drug resistant tuberculosis. Legend:
U = Unmeasured confounder; HIV = Human immunodeficiency virus.

doi:10.1371/journal.pone.0151724.g003
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an intervention [27]. A propensity score is the probability of allocation to treatment given the
measured covariates (6). If the dichotomous outcome variable Z represents treatment, and X is
the vector of available baseline pre-treatment covariates, then the propensity score is defined as
the conditional probability of being treated, given the measured covariates Pr(Z = 1 | X). Pro-
pensity scores for each individual were estimated using logistic regression (Proc Logistic, SAS
v9.3) (21), including the covariates that were available across all datasets. (22) These included
baseline clinical characteristics (age, extent of disease, prior TB history, prior MDR-TB history
and HIV status) and treatment factors (total duration of therapy and number of drugs in the
intensive phase). Propensity score model specification was evaluated based on the comparison
of covariates between matched subjects.

To estimate the associations between the antibiotics of interest and the outcomes, the fol-
lowing analytic approaches were taken:

i) Crude analysis
An unadjusted mixed logistic regression was estimated, allowing intercepts and the effect of
the antibiotic to vary across studies.

ii) Multivariable logistic regression
A multivariable mixed logistic regression was performed including covariates chosen to
account for likely causal relationships between potential confounders, with study and the
effect of the antibiotic as random effects.

iii) Conditional analysis using propensity score
The conditional propensity score model applied a GLMM with propensity score as a contin-
uous variable, with study and the effect of the antibiotic as a random effect.

iv) Stratification by propensity score quintile
Patients were ranked according to propensity score, and stratified into propensity score
quintiles, an approach that has been estimated to remove 90% of bias in measured covariates
[28]. Stratified analysis was performed using a GLMM with study and the effect of the anti-
biotic as a random effect.

v) Inverse probability of treatment weighting using propensity score
In an inverse probability of treatment weighted (IPTW) model, individual observations in
the regression were weighted by the reciprocal of the predicted probability of being in the
treatment group (derived from the propensity score), normalized to the sample mean. Anal-
ysis was performed using a GLMMwith study and the effect of the antibiotic as random
effect, using normalized weights based upon the propensity score, adjusting for chosen
covariates to account for potential confounders.

vi) Matching within and vii) matching across studies using propensity score
Patients receiving the drug of interest (exposed) were matched with patients that did not
receive this drug (unexposed) according to their propensity scores [29]. Two matching
approaches were explored: 1) matching was restricted to within individual studies; and 2)
matches to could be made across all studies, with the propensity score being calculated
within or across studies, respectively. Matching was performed using three alternate
approaches: one-to-one matching without replacement, one-to-one matching with replace-
ment or (up to) four-to-one matching.

Each matching algorithm used nearest neighbor matching to identify pairs of treated and
untreated subjects [30], whose propensity scores differed by no more than a specified amount
(the caliper distance) which was fixed at 0.2 times the standard deviation of the logit of
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propensity score [31]. For matching with replacement, exposed subjects matched to a specified
patient were returned to the pool of unexposed subjects and were eligible for subsequent selec-
tion. Treatment outcomes between groups were evaluated using a GLMM, with study, treat-
ment and match as random effects, propensity score as a model covariate [32].

Optimal matching was defined as the strategy that achieved the closest covariate balance.
This was calculated as the standardized difference of the covariates and of the logit of the pro-
pensity score between exposed and unexposed groups [33, 34], defined according to published
methods [7].

Small differences in the average values of covariates between intervention and control
groups after propensity score matching (<10%) implied an adequate balance had been
achieved between the measured characteristics of matched subjects [35].

When a model did not converge, effects were estimated via penalized quasi likelihood (Proc
Glimmix, SAS v9.3) [36]. Patients were clustered at the level of the study and intercepts and
slopes of estimates of effect were allowed to vary across studies. The precision and size of effect
estimates for FQNs and macrolides, expressed as odds ratios with 95% confidence intervals,
were compared. We assumed missing observations were missing at random, with missing val-
ues of included covariates imputed using Markov Chain Monte Carlo methods.

Meta-Analysis of Outcomes
A random effects meta-analysis of outcomes for each antibiotic was performed using the Der
Simonean Laird method, with heterogeneity of intervention effect estimates evaluated using
the I2 statistic and associated 95% confidence intervals [37].

In all models, if a hierarchical model could not be fitted, a fixed effects model was used. All
analyses were performed in SAS, version 9.3 (SAS Institute, Cary, NC).

Results

Description of Study Population
FQN antibiotics were used by one patient or more in 28 of the 31 observational studies for
which data was available (Fig 1). Among these studies, 6,612 patients received any FQN and
723 did not. Among those taking quinolones, 6,007 (90.8%) received an earlier generation
FQN and 748 (11.3%) received a later generation FQN, including 148 who received both classes
of drugs. As shown in Table 1, patients taking FQNs were slightly younger, less likely to have
disease with lung cavitation, had lower rates of advanced drug resistance, and received a longer
total duration of therapy.

Macrolides were used in 15 included studies, within which 459 patients received macrolides
and 3,670 did not (Fig 2).

Outcomes of FQN Treatment
Table 2 shows the pooled estimates of FQN treatment outcome, stratified by FQN generation.
Treatment success was similar regardless of whether an earlier or a later generation FQN was
used. Default rates were lower among patients given later generation FQNs, when compared to
those who did not receive FQNs. Mortality among those who did not take FQNs was higher
than for than those taking FQNs.

Results of Different Analytic Methods to Adjust for Confounding
Crude and multivariable analyses. Crude (unadjusted) estimate showed that both early

generation FQNs (odds ratio (OR) 3.2, 95% CI: 2.5, 4.2) and later generation FQNs (OR 3.2,
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95% CI: 2.1, 5.0) were associated with treatment success. Multivariable analysis showed a simi-
lar effect for earlier and later generation FQNs.

Regression analysis using propensity score as a covariate. Analysis using propensity
score quintile gave similar effect estimates as multivariable analysis. Regression with propensity
score as a continuous covariate produced slightly smaller effect estimates than with propensity
score quintiles.

Propensity score matching. Propensity scores could not be calculated within studies
where outcomes or treatment allocation was homogenous (that is, the same outcome occurred
in all patients in that study). Hence, 18 studies could be included for FQN analyses with match-
ing within studies, and 15 studies included for macrolide analyses with matching within stud-
ies. Optimal covariate matching was achieved using one-to-one matching of subjects for
propensity scores allocated across studies with replacement, based upon standardized differ-
ence for the propensity score and for individual covariates. Using this method, the standard-
ized differences between the logit of the propensity scores between treated and untreated

Table 1. Characteristics of study participants, according to whether fluoroquinolone antibiotics were used.

Fluoroquinolones used Fluoroquinolones not used

Variable n (%) n (%) p-value

Total 6612 723

Male gender 4546 (68.8%) 481 (66.5%) 0.221

Mean age, yrs (sd) 39.2 (13.5) 42.8 (15.4) <0.001

Extent of disease

Smear positive 4028 (73.3%) 481 (76.8%) 0.062

Extensive disease 4712 (72.6%) 520 (74.2%) 0.396

Pulmonary TB only 6247 (100%) 689 (100%) 0.905

Bilateral disease 904 (71%) 141 (66.8%) 0.223

Cavitary disease 3507 (66.9%) 261 (57.9%) <0.001

Antibiotic therapy

Number of drugs (median, iqr)

In intensive phase 5 (5, 6) 4 (0, 5) <0.001

In continuation phase 4 (3, 5) 3 (0, 4) <0.001

Duration of therapy (median, iqr)

Months total therapy 18 (16, 19) 9 (1, 19) <0.001

Months intensive phase 3 (3, 6) 6 (3, 7) <0.001

Months continuation phase 15 (8, 15) 0.2 (0, 5) <0.001

Degree of antibiotic resistance

MDR-TB only 4288 (76.7%) 253 (60.4%) <0.001

MDR-TB+ FQN resistance 297 (5.3%) 110 (26.3%) <0.001

MDR-TB + injectable resistance 1005 (18%) 56 (13.4%) 0.017

Quinolone antibiotic used

Early generation quinolone+ 6007 (90.8%) — —

Later generation quinolone*** 748 (11.3%) — —

*XDR-TB is defined as MDR-TB with additional resistance to a FQN and an injectable antibiotic. The denominators used to calculate percentages differ

slightly between each variable, in light of missing values.

**Some patients used more than one FQN class.
+Participants taking ciprofloxacin were excluded.

*** Later generation quinolones include levofloxacin, moxifloxacin and gatifloxacin. iqr = interquartile range

doi:10.1371/journal.pone.0151724.t001
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groups was less than 1% for all antibiotics (Table 3). The covariate balance achieved with each
matching technique is shown in Tables 4, 5 and 6.

Inverse probability of treatment weighting. IPTW analysis yielded marginal effect esti-
mates that were non-significant for earlier generation FQNs, but significant for later generation
FQNs (OR 4.0, 95 CI: 1.5, 10.5).

Outcomes of Macrolide Antibiotic Treatment
Applying the same analytic strategies to macrolide antibiotics, the odds ratio was consistently
less than one for all analytic methods, as shown in Table 2. The effect estimate was closest to
the null using the method of propensity score matching across studies with replacement (OR
0.7, 95% CI: 0.4, 1.1).

Table 2. Pooled treatment outcomes by fluoroquinolone use, with pooled Der Simonian and Laird random effects estimates.

Group Events n (%) (95% CI) I2 (%) (95% CI I2) τ2

Treatment success

No quinolones 208 723 51% (40, 63%) 95% (93, 96%) 0.065

Earlier generation FQNs 3282 6007 61% (53, 68%) 97% (96, 97%) 0.032

Later generation FQNs 504 748 69% (60, 79%) 88% (82, 92%) 0.028

Treatment failure or relapse

No quinolones 51 723 3% (0, 6%) 59% (35, 74%) 0.004

Earlier generation FQNs 487 6007 3% (2, 4%) 40% (4, 62%) 0.000

Later generation FQNs 79 748 7% (3, 11%) 74% (56, 84%) 0.004

Default

No quinolones 239 723 21% (11, 31%) 89% (84, 92%) 0.048

Earlier generation FQNs 1505 6007 19% (13, 24%) 96% (95, 97%) 0.020

Later generation FQNs 97 748 10% (5, 16%) 82% (72, 89%) 0.009

Death

No quinolones 225 723 17% (3, 30%) 96% (95, 97%) 0.102

Earlier generation FQNs 733 6007 9% (6, 12%) 94% (92, 95%) 0.005

Later generation FQNs 68 748 5% (2, 8%) 65% (39, 80%) 0.003

Patients taking ciprofloxacin were excluded from the analysis, Some patients received both earlier and a later generation fluoroquinolone antibiotic, in

which case they were included in both analyses. CI = Confidence Interval. FQN = fluoroquinolone.

doi:10.1371/journal.pone.0151724.t002

Table 3. Comparison of covariate balance before and after one to onematching across studies, with or without replacement, for each drug group,
based upon standardized difference (%) of the logit of propensity score between groups.

Matching within studies Matching across studies

Exposure Before matching Matching without
replacement

Matching with
replacement

Matching without
replacement

Matching with
replacement

Std dif # (%) p-value+ Std dif (%) p-value+ Std dif (%) p-value Std dif (%) p-value+ Std dif (%) p-value+

Earlier generation FQN -18.74 <0.0001 -23.58 <0.001 -2.90 <0.001 -14.61 <0.001 0.05 0.022

Later generation FQN -13.35 <0.0001 -26.53 <0.001 -17.44 <0.001 -12.79 <0.001 0.13 0.14

Macrolide -26.45 <0.0001 12.48 0.06 9.01 <0.001 -6.37 0.118 -0.03 0.542

# Std dif = Standardized difference of logit of propensity score in unexposed relative to exposed. FQN = fluoroquinolone.
+The differences in propensity score between exposed and unexposed individuals receiving were tested for significance using a paired t-test [34]

doi:10.1371/journal.pone.0151724.t003
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Table 4. Balancing achieved by different propensity score-based matching strategies for earlier generation fluoroquinolone use.

Covariate Ofloxacin No
ofloxacin

Before matching Matching within
studyes, without
replacement*

Matching within
studies, with
replacement*

Matching across
studies without
replacement*

Matching across
studies with
replacement*

Mean (sd) Mean (sd) Std dif #

(%)
p-
value+

Std dif
(%)

p-
value+

Std dif
(%)

p-value Std dif
(%)

p-
value+

Std dif
(%)

p-
value+

Age 39.06
(13.25)

40.91
(15.44)

4.54 0.0004 1.81 0.555 -7.54 <0.001 4.46 0.102 5.33 <0.001

Male gender 0.69 (0.46) 0.63 (0.48) 12.1 0.001 -2.43 0.4367 -10.45 <.0001 -1.70 0.5439 -2.51 0.0005

Extensive disease 0.72 (0.45) 0.8 (0.4) -18 0 0.00 1.0000 1.54 0.1095 3.34 0.2172 3.29 <.0001

Prior TB 0.74 (0.44) 0.47 (0.5) 57.4 0 -3.84 0.1742 -8.53 <.0001 -6.69 0.0148 -1.87 0.0077

Prior MDR-TB 0.07 (0.26) 0.15 (0.36) -24.3 0 4.59 0.1390 17.56 <.0001 4.22 0.1275 3.79 <.0001

Known HIV co-
infection

0.15 (0.36) 0.16 (0.37) -2.7 0.442 3.29 0.1824 -0.63 0.3608 -9.03 0.0018 -9.61 <.0001

No. drugs
(intensive)

5.36 (0.98) 4.47 (2.41) -17.1 <0.0001 -14.64 <0.001 3.67 <0.001 -12.24 <0.001 3.71 <0.001

Total therapy
(months)

17.7 (6.66) 18.96
(15.83)

3.69 0.0129 -9.08 0.002 2.21 0.012 -4.77 0.074 -2.17 0.002

Logit of predicted
PS

3.09 (0.91) 2.17 (2.29) -18.74 <0.0001 -23.58 <0.001 -2.90 <0.001 -14.61 <0.001 0.05 0.022

* 1:1 matching.
# Std Diff = Standardized difference for unexposed relative to exposed. The differences in characteristics between exposed and unexposed individuals

receiving were tested for significance using a paired t-test for continuous variables and McNemar’s test for dichotomous variables [34]. PS = Propensity

score. FQN = fluoroquinolone. MDR-TB = multi-drug resistant tuberculosis. TB = tuberculosis. HIV = human immunodeficiency virus.

doi:10.1371/journal.pone.0151724.t004

Table 5. Balancing achieved by different propensity score-based matching strategies for later generation fluoroquinolone use.

Covariate Later
generation
FQN

No later
generation FQN

Before matching Matching within
studyes, without
replacement*

Matching within
studies, with
replacement*

Matching across
studies without
replacement*

Matching across
studies with
replacement*

Mean (sd) Mean (sd) Std dif #

(%)
p-
value+

Std dif
(%)

p-
value+

Std dif
(%)

p-value Std dif
(%)

p-
value+

Std dif
(%)

p-
value+

Age 37.71 (14.75) 39.63 (13.53) 4.79 0.0017* 10.50 0.104 3.35 0.123 2.24 0.736 2.83 0.147

Male gender 0.59 (0.49) 0.69 (0.46) -20.7 0 3.20 0.6698 13.50 <.0001 -2.84 0.6949 3.46 0.0817

Extensive disease 0.8 (0.4) 0.72 (0.45) 18.2 0 1.76 0.7815 1.31 0.5529 0.00 1.0000 -3.79 0.0480

Prior TB 0.53 (0.5) 0.71 (0.45) -38.4 0 -1.52 0.7815 2.20 0.3508 -8.49 0.2008 13.55 <.0001

Prior MDR-TB 0.23 (0.42) 0.07 (0.26) 45.3 0 4.90 0.3173 -0.99 0.6858 -5.37 0.4054 -11.14 <.0001

Known HIV co-
infection

0.02 (0.15) 0.17 (0.38) -51.5 0 6.18 0.1573 3.44 0.0578 22.64 0.0039 8.28 <.0001

No. drugs (intensive) 5.73 (1.58) 5.13 (1.36) -14.37 <0.0001 1.84 0.746 2.65 0.226 -10.53 <0.001 0.54 0.453

Total therapy
(months)

26.07 (16.2) 16.84 (6.94) -26.2 <0.0001 -6.86 0.053 -6.52 <0.001 -14.70 0.016 -16.61 <0.001

Logit of predicted
propensity score

3.39 (1.48) 2.86 (1.29) -13.35 <0.0001 -26.53 <0.001 -17.44 <0.001 -12.79 <0.001 0.13 0.14

*One to one matching.
# Std dif = standardized difference for unexposed relative to exposed. FQN = fluoroquinolone. The differences in characteristics between exposed and

unexposed individuals receiving were tested for significance using a paired t-test for continuous variables and McNemar’s test for dichotomous variables

[34]. MDR-TB = multi-drug resistant tuberculosis. TB = tuberculosis. HIV = human immunodeficiency virus.

doi:10.1371/journal.pone.0151724.t005
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Table 7 compares the effect estimates produced using each analytic approach. Matching
within studies produced generally smaller effect estimates than other multivariable approaches.
Matching with replacement resulted in effect estimates that were closer to the null for matched
analyses of FQN antibiotics (with propensity score allocated within or across studies) than for
multivariable approaches. This was also observed for macrolide antibiotics, when matching
within macrolide studies. However, for matching across macrolide studies, there was no sub-
stantial change in effect estimate when replacement was used. Stratification by propensity
score quintiles found that odds ratios were similar across strata (Table 8).

Modeling of Secondary Outcomes
Using the secondary outcome treatment success versus treatment failure or relapse (excluding
death and default, i.e. a smaller dataset), effect estimates were smaller and less precise, but in
the same direction those obtained using the main comparison (success versus death, failure or
relapse) (Table 8).

The numbers of individuals included from each study are shown in Table 9. Analyses for each
generation of FQN, stratified according to propensity score quintiles, are shown in Table 10.

The overall quality assessment for the primary and secondary measures was ‘very low’
according to GRADE criteria [38], on account of moderate to serious inconsistency between
study outcomes and a serious risk of bias as all included data were from observational studies
(S2 Table). A total of 6.3% of covariate values were imputed for the fluoroquinolone analyses,
and 6.1% of covariate values were imputed for the macrolide analyses.

Discussion
Meta-analysis of IPD from multiple observational studies can provide the best available source
of evidence for an intervention, in the absence of randomized controlled trials, if the included

Table 6. Balancing achieved by different propensity score-based matching strategies for macrolide use.

Covariate Macrolide No
macrolide

Before matching Matching within
studyes, without
replacement*

Matching within
studies, with
replacement*

Matching across
studies without
replacement*

Matching across
studies with
replacement*

Mean (sd) Mean (sd) Std dif #

(%)
p-
value+

Std dif
(%)

p-
value+

Std dif
(%)

p-value Std dif
(%)

p-
value+

Std dif
(%)

p-
value+

Age 38.75
(13.11)

39.13
(13.45)

1.02 0.6192 -3.57 0.628 -8.11 <0.001 -7.28 0.31 -7.68 <0.001

Male gender 0.64 (0.48) 0.68 (0.47) -8.7 0.127 0.00 1.0000 8.64 <.0001 -1.56 0.8273 4.72 0.0021

Extensive disease 0.79 (0.41) 0.72 (0.45) 15.8 0.008 6.64 0.4054 -3.93 0.0174 -18.03 0.0116 -0.42 0.7973

Prior TB 0.57 (0.5) 0.7 (0.46) -26 0 7.40 0.3458 -11.72 <.0001 7.72 0.2752 16.47 <.0001

Prior MDR-TB 0.26 (0.44) 0.08 (0.27) 47.8 0 -11.00 0.1573 -2.44 0.1159 -7.87 0.2850 -9.11 <.0001

Known HIV co-infection 0.04 (0.19) 0.17 (0.38) -44.7 0 -4.73 0.3173 0.24 0.7389 18.08 0.0196 6.29 0.0002

No. drugs (intensive) 6.44 (1.69) 5.12 (1.33) -30.55 <0.0001 -12.91 0.059 -31.10 <0.001 -10.03 0.028 -5.89 <0.001

Total therapy (months) 24.38
(16.32)

17.55 (8.28) -18.68 <0.0001 -3.49 0.337 -7.70 0.337 -14.69 0.04 -5.53 <0.001

Logit of predicted
propensity score

3.95 (1.6) 2.86 (1.28) -26.45 <0.0001 12.48 0.06 9.01 <0.001 -6.37 0.118 -0.03 0.542

*1:1 matching.
# Std dif = Standardized difference for unexposed relative to exposed. The differences in characteristics between exposed and unexposed individuals

receiving were tested for significance using a paired t-test for continuous variables and McNemar’s test for dichotomous variables [34].

MDR-TB = multi-drug resistant tuberculosis. TB = tuberculosis. HIV = human immunodeficiency virus.

doi:10.1371/journal.pone.0151724.t006
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data are representative of all available studies. However, analytic approaches must appropri-
ately address bias due to confounding. In our meta-analysis of 31 observational studies of anti-
biotic therapy for MDR-TB, we accounted for confounding using a number of different
analytic strategies that incorporated individual patient covariates, for two different drug classes.
Propensity score matching achieved adequate covariate balance between exposed and unex-
posed individuals—the closest when one to one propensity score matching with replacement
was used. Other propensity-score based approaches yielded more conservative effect estimates
than using a traditional multivariable approach.

The importance of confounding by indication in observational studies is well-recognized
[7]. However, it is often difficult to determine the optimal adjustment approach without
knowledge of the unbiased effect estimate (i.e. the ‘truth’). In our study, substantial differences
were seen between the baseline covariates of individual patients in exposed and unexposed
groups for both drug classes tested, prior to adjustment. This supports the importance of
adjustment of confounding by indication in these studies. Most analytic approaches generally
brought the effect estimate closer to the null, in comparison to the unadjusted analysis.

Our findings are consistent with the presence of confounding by indication, an important
source of bias which must be considered when interpreting observational studies. Furthermore,
the propensity score-based methods gave outcomes that were broadly consistent with

Table 7. The relationship between antibiotic use and successful treatment of tuberculosis (versus death, relapse or failure), applying different ana-
lytic methods to account for confounding.

Method of adjustment Early generation
FQN versus no
FQN a

Later generation
FQN versus no FQN
a

Macrolide
antibiotics b

OR 95% CI OR 95% CI OR 95% CI

Conventional approaches

Unadjusted estimate 3.2 (2.5, 4.2) 3.2 (2.1, 5.0) 0.5 (0.4, 0.6)

Multivariable analysis 2.3 (1.7, 3.2) 3.2 (2.0, 5.2) 0.4 (0.3, 0.6)

Unmatched Propensity Score-based methods

Regression with PS quintile as covariate 2.7 (2.1, 3.6) 3.3 (2.1, 5.2) 0.5 (0.4, 0.6)

Regression with continuous PS as covariate 2.0 (1.5, 2.7) 2.3 (1.5, 3.6) 0.5 (0.4, 0.6)

Propensity Score matching within studies

1:1 matching¶ no replacement 1.9 (1.1, 3.3) 0.9 (0.2, 4.8) 0.5 (0.4, 0.8)

1:1 matching with replacement 0.9 (0.3, 2.7) 0.8 (0.2, 3.6) 0.7 (0.4, 1.1)

1:4 matchingΔ na na 0.5 (0.3, 0.7)

Propensity Score matching across studies

1:1 matching+ no replacement 2.4 (1.3, 4.3) 2.5 (1.4, 4.3) 0.5 (0.3, 0.8)

1:1 matching¶ with replacement 1.4 (0.5, 3.9) 1.5 (0.4, 5.4) 0.5 (0.3, 0.8)

1:4 matchingΔ na na 0.5 (0.4, 0.7)

Inverse probability of treatment weighting based on propensity score 1.9 (0.8, 4.7) 4.0 (1.5, 10.5) 0.5 (0.3, 0.9)

The comparisons presented in this table exclude individuals lost to follow-up.
a Comparison between those taking fluoroquinolones and those not taking fluoroquinolones, in studies where fluoroquinolones were used.
b Comparison between those taking macrolides and those not taking macrolides, in studies where macrolides were used.
¶ Propensity scores calculated within individual studies. Ten studies were excluded owing to insufficient numbers of patients to perform analysis.
+ Matching by propensity score calculated across all studies. PS = Propensity score. OR = odds ratios. 95% CI = 95% confidence intervals. Bolded text

indicates p <0.05. Macrolides includes azithromycin, clarithromycin and roxithromycin.
Δ Up to four unexposed subjects for each subject taking active treatment. This analysis was only performed for macrolides, as a large number of

unexposed subjects were available. na = not applicable, as insufficient unexposed subjects available to perform four to one matching.

doi:10.1371/journal.pone.0151724.t007
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laboratory studies and published randomized trials of FQNs in drug susceptible TB. Our find-
ings also aligned with current consensus guidelines for the treatment of both FQNs and
macrolides.

Our findings do not support our initial hypothesis that later generation FQNs would be
given more often in more advanced disease. The degree of improvement in covariate balance
achieved using propensity score matching, as represented by the logit of the predicted propen-
sity score, was similar for both classes of FQN antibiotics. However, analysis of early generation
FQNs produced consistently lower estimates of effect than later generation FQNs, in line with
expert opinion, and clinical guidelines [39]. Confidence intervals (CIs) for new generation
FQNs were wider than for early generation FQNs, on account of the smaller number of patients
taking this treatment.

For those taking macrolide antibiotics, which are considered to be safe clinically, yet ineffec-
tive in the laboratory setting, treatment outcomes were consistently worse for exposed than for
unexposed individuals. This would be consistent with confounding by indication, since we do
not expect macrolides—a widely used class of drug that is well-tolerated—to truly worsen out-
comes. Traditional multivariable approaches did not fully correct for this potential bias. We
found that propensity score methods did improve covariate balance, bringing the effect esti-
mate closer to the null. Residual confounding is a more likely explanation than drug toxicity, in
light of the favorable safety profile of macrolide antibiotics [40], however the latter cannot be
excluded. This suggests that while propensity score matching can correct for some

Table 8. The relationship between antibiotic use and successful treatment of tuberculosis (versus death or failure—excluding relapse and loss to
follow-up) applying different analytic methods to account for confounding.

Method of adjustment Earlier generation
FQN a

Later generation FQNs
a

Macrolide antibiotics
b

OR 95% CI OR 95% CI OR 95% CI

Conventional approaches

Unadjusted estimate 2.3 (1.5, 3.3) 1.5 (0.9, 2.7) 0.3 (0.2, 0.5)

Multivariable analysis 2.1 (1.4, 3.2) 2.0 (1.1, 3.6) 0.3 (0.2, 0.5)

Unmatched PS based methods

Regression with PS quintile as covariate 2.1 (1.4, 3.0) 1.8 (1.0, 3.1) 0.3 (0.2, 0.5)

Regression with continuous PS as covariate 1.9 (1.2, 2.8) 1.5 (0.9, 2.7) 0.4 (0.3, 0.5)

Inverse probability of treatment weighting 1.8 (0.7–4.3) 1.1 (0.2, 5.4) 0.4 (0.3, 0.6)

PS matching within studies

1:1 matching,¶ no replacement 1.5 (0.5, 4.3) 0.7 (0.1, 4.8) 0.5 (0.3, 0.9)

1:1 matching with replacement 0.5 (0.1, 2.2) 0.2 (0.0, 2.1) 0.5 (0.3, 0.8)

1:4 matchingΔ na na 0.4 (0.3, 0.7)

PS matching across studies

1:1 matching+ no replacement 2.4 (0.8, 7.6) 2.0 (0.3, 12.3) 0.4 (0.2, 0.7)

1:1 matching¶ with replacement 0.5 (0.1, 2.2) 0.4 (0.1, 1.9) 0.4 (0.2, 0.8)

1:4 matchingΔ na na 0.4 (0.2, 0.6)

a Comparison between those taking fluoroquinolones and those not taking fluoroquinolones, in studies where fluoroquinolones were used.
b Comparison between those taking macrolides and those not taking macrolides, in studies where macrolides were used.
¶ Propensity scores calculated within individual studies. Ten studies were excluded owing to insufficient numbers of patients to perform analysis.
+ Matching by propensity score calculated across all studies. PS = Propensity score. OR = odds ratios. 95% CI = 95% confidence intervals. Bolded text

indicates p <0.05. Macrolides includes azithromycin, clarithromycin and roxithromycin. na = not applicable, as insufficient unexposed subjects available to

perform four to one matching. FQN = fluoroquinolone. These analyses excluded individuals with relapse or loss-to follow-up.

doi:10.1371/journal.pone.0151724.t008
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confounding by indication, interpretation of the outcome must allow for possible residual bias,
if confounding by indication is substantial.

This study has potential clinical implications. First, our findings indicate that macrolides
have limited benefit treatment of MDR-TB. This is in keeping with current WHO guidelines
that assign the drugs to ‘Group 5’–i.e. those drugs of unproven effectiveness [9]. Second, most
analytic approaches yielded a similar benefit for both early and late generation FQNs. This sug-
gests that ofloxacin should be retained as an effective treatment option for MDR-TB patients.
Furthermore, a high mortality was seen among those without FQNs. Together, these findings
support the continuing use of FQN antibiotics as a part of standard MDR-TB therapy.

A potential limitation in this study was the absence of data for other clinically important
covariates, which may influence treatment allocation or outcomes. While our models incorpo-
rated all relevant covariates for which data was available, it is possible other unmeasured con-
founders were unavailable in the combined individual patient dataset—leading to residual
confounding [8]. Additionally, treatment group assignment was not allowed to vary over time

Table 9. Subjects by study, stratified by fluoroquinolone andmacrolide use.

Study Fluoroquinolone
antibiotic used

Macrolide antibiotic
used

Total

n (%) n (%) n

Avendano 66 (93%) 8 (11%) 71

Burgos 24 (64.9%) - - 37

Chan 101 (71.1%) 12 (6.2%) 142

Chiang 122 (97.6%) - 125

Cox 77 (100%) - 77

Geerligs 35 (89.7%) 1 (2.3%) 39

Granich/Banerj 27 (31.8%) - - 85

Holtz 2174 (100%) - - 2174

Kim/Shim 1102 (85.6%) 25 (1.9%) 1288

Kim/Yim 156 (85.7%) 46 (25.3%) 182

Kwon 123 (96.1%) 33 (25.6%) 128

Leimane 926 (98%) 79 (8.4%) 945

Lockman 208 (95.4%) 30 (13.8%) 218

Masjedi 27 (100%) - - 27

Migliori 76 (91.6%) 13 (15.7%) 83

Mitnick 147 (98.7%) 103 (15.7%) 149

Munsiff/Li 131 (40.6%) - 323

Narita 44 (67.7%) 2 (3%) 65

O’Riordan 16 (84.2%) 9 (32.1%) 19

Perez-Guzman 7 (43.8%) 19 (57.6%) 16

Palmero 78 (70.9%) - - 110

Park 131 (100%) - - 131

Schaaf 33 (91.7%) - - 36

Shin 477 (89.2%) - - 535

Shiraishi 51 (92.7%) - - 55

Tupasi 121 (89.6%) 75 (49%) 135

Uffredi 33 (80.5%) 4 (9.8%) 41

Yew 99 (100%) - - 99

Total 6612 459 7335

doi:10.1371/journal.pone.0151724.t009
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in our model, despite the possibility that individualized regimens may be adjusted several times
during the course of treatment. Additional confounding by indication by time-varying covari-
ates may be introduced, as subsequent treatment decisions reflect changes in baseline charac-
teristics. This limitation is challenging to overcome in pooled individual patient datasets,
where only variables that are common to all studies can be analyzed. Of course, randomized
studies would best address this concern, since on average balance will be achieved in measured
and unmeasured characteristics. However, as no randomized trials of MDR-TB therapies have
been published to date, IPD meta-analysis remains the best available source of data from which
causal inference may be drawn.

We have applied a number of alternative statistical approaches to our dataset, however the
‘optimal’ statistical method remains unclear. Propensity score matching across studies with
replacement achieved the closest covariate balance, leading to effect estimates that were closer to
the null. This may indicate that residual confounding was of a greater magnitude when the
other matching strategies were employed. However, as the true effect of the drugs is unknown
this cannot be verified. A next step in evaluating the analytic approaches to IPD will be to per-
form simulation using precisely defined datasets with known bias. In particular, the effect of
propensity-score based adjustment in the presence of varying degrees of unmeasured confound-
ing needs to be explored further. Simulated datasets can be designed such that a ‘true’ treatment
effect is known under a variety of conditions [41], allowing the effect of different approaches to
be explored. In addition, application of these methods within the context of future randomized
clinical studies, where unmeasured confounding is unlikely, may also be used to test how pro-
pensity score-based methods influence effect estimates in a clinical context.

Conclusions
In this individual patient data meta-analysis, different methods of adjusting for individual
patient covariates for observational studies yielded comparable results. Our analyses produced
treatment effects that were generally reliable in direction and magnitude. This consistency is
reassuring, and suggests that either multivariable or propensity score based methods could be

Table 10. Stratification by propensity score quintiles, using propensity score as a model covariate.

Stratum OR (95% CI)

Early generation FQN vs. no FQNa

Stratum 1 2.3 (1.4, 3.7)

Stratum 2 1.3 (0.5, 3.4)

Stratum 3 1.3 (0.3, 5.2)

Stratum 4 2.3 (0.5, 11.2)

Stratum 5 3.2 (1.4, 7.5)

Later generation FQN vs. no FQNa

Stratum 1 2.5 (1.0, 6.5)

Stratum 2 1.9 (0.5, 7.6)

Stratum 3 3.0 (0.4, 24.9)

Stratum 4 1.1 (0.2, 7.3)

Stratum 5 1.7 (0.8, 3.9)

a Comparison between those taking fluoroquinolones and those not taking fluoroquinolones, in studies

where fluoroquinolones were used.

FQN = Fluoroquinolones. OR = odds ratio. CI = confidence intervals.

doi:10.1371/journal.pone.0151724.t010
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used to account for measured confounding in this population. IPD meta-analysis offer consid-
erable advantages, in accounting for confounding by indication more effectively than conven-
tional ‘two step’meta-analytic approaches. Wherever possible, a number of alternative
methods to reduce bias should be used in evaluation of IPD meta-analysis of observational
studies. However, when these methods are used, interpretation of adjusted estimates must still
consider the potential for residual bias. Further simulation studies are warranted in order to
explore the effect of residual confounding the estimates obtained with these analytic methods.
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