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Abstract
Clinical studies have identified hypoadiponectinemia as an independent hypertension risk

factor. It is known that adiponectin (APN) can directly cause vasodilation, but the doses

required exceed physiologic levels several fold. In the current study, we determine the effect

of physiologically relevant APN concentrations upon vascular tone, and investigate the

mechanism(s) responsible. Physiologic APN concentrations alone induced no significant

vasorelaxation. Interestingly, pretreatment of wild type mouse aortae with physiologic APN

levels significantly enhanced acetylcholine (ACh)-induced vasorelaxation (P<0.01), an

endothelium-dependent and nitric oxide (NO)-mediated process. Knockout of adiponectin

receptor 1 (AdipoR1) or caveolin-1 (Cav-1, a cell signaling facilitating molecule), but not adi-

ponectin receptor 2 (AdipoR2) abolished APN-enhanced ACh-induced vasorelaxation.

Immunoblot assay revealed APN promoted the AdipoR1/Cav1 signaling complex in human

endothelial cells. Treatment of HUVECs with physiologic APN concentrations caused signif-

icant eNOS phosphorylation and nitric oxide (NO) production (P<0.01), an effect abolished

in knockdown of either AdipoR1 or Cav-1. Taken together, these data demonstrate for the

first time physiologic APN levels enhance the vasorelaxative response to ACh by inducing

NO production through AdipoR1/Cav-1 mediated signaling. In physiologic conditions, APN

plays an important function of maintaining vascular tone.

Introduction
Hypertension, a major risk factor of vascular dysfunction, is a significant cause of morbidity
and mortality [1, 2]. Virtually every organ system of the body receiving circulatory flow is at
risk for complications stemming from hypertension[3]. Despite extensive research in the past
several decades, hypertension-related mortality continues to increase worldwide.
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The vascular endothelium critically regulates circulatory function. Maintenance of endothe-
lial homeostasis is essential for the prevention of vascular pathology, including hypertension
[4]. Endothelial dysfunction refers to impairment of endothelium-dependent vasodilation,
thereby disrupting endothelial homeostasis, leading to the pervasive clinical hypertensive phe-
notype. Complete comprehension of the underlying molecular mechanisms influencing
impaired vascular relaxation, ultimately causing the endothelial dysfunction responsible for
hypertension, may yield novel effective therapeutic targets.

It is well known that adiponectin (APN), an adipocyte-derived cytokine, protects the cardio-
vascular system against inflammation and improves endothelium-dependent vasodilation [5,
6]. Hypoadiponectinemia is an independent hypertension risk factor [7, 8]. Adiponectin
knockout (APN-/-) mice manifest vascular endothelial dysfunction and increased blood pres-
sure, reversed by APN administration [9, 10]. Previously, it has been demonstrated adiponectin
can cause direct vasodilation [11, 12]. However, the adiponectin dose required to elicit such
vasodilatory effects exceed physiologic concentrations at least by ten-fold. Heretofore, the role
of physiologic APN levels in vascular hemostasis remains unclear.

We and others have previously demonstrated the vasculoprotective effects of adiponectin
[9, 13]]. While supra-physiologic concentrations of APN have a direct vasodilatory effect, it is
possible that physiologic APN concentrations may have a permissive “priming” effect upon
endothelial cells to the vasodilatory effects of other agents. Therefore, the aims of the present
study were 1) to determine the effect of physiologic APN concentrations upon vascular endo-
thelial function, and 2) to investigate the molecular mechanisms responsible for any permissive
vasodilatory effect observed of APN during concomitant administration with acetylcholine.

Materials and Methods

Mice
All experiments were performed on adult (8–10 week old) male AdipoR1 knockout mice (Adi-
poR1KO), AdipoR2 knockout mice (AdipoR2KO), Cav-1 knockout mice (Cav-1KO), or male
wild type littermate controls (WT). The WTmouse strain was C57BL/6J, and AdipoR1KO
mice were purchased from the Mutant Mouse Regional Resource Center (Chapel Hill, NC). All
other mouse lines were purchased from Jackson Laboratory (Bar Harbor, Maine). Animals
were housed at 22°C with a 12-hour light/12-hour dark cycle with free access to water and stan-
dard chow. Animals were euthanized under isoflurane anesthesia. All experiments were per-
formed in adherence with the National Institutes of Health Guidelines on the use of
Laboratory Animals, and were approved by the Thomas Jefferson University Committee on
Animal Care.

Aortic ring preparation and apparatus for assessment of vasorelaxation
Vessel chamber experiments were performed as previously described [9, 13]. Briefly, adult
male WT, AdipoR1KO, AdipoR2KO, and Cav-1KO mice were anesthetized with 3% isoflur-
ane. Descending aortic segments were isolated. Vascular segments were placed into ice-cold
Krebs–Henseleit (K–H) buffer consisting of (mM): NaCl (118), KCl (4.75), CaCl2.2H20 (2.54),
KH2PO4 (1.19), MgSO4.7H2O (1.19), NaHCO3 (25.0), and glucose (10.0). Aortic segments
were carefully cleaned of fat and loose connective tissue. Segments were sectioned into rings
(2–3 mm length), and mounted upon stainless steel hooks, aerated at 37°C in a 95% O2/5%
CO2 mixture. Suspended in 1 ml of K-H tissue buffer, the aortic rings were mounted onto a
Multi Mire Myograph System (620M, DMT-USA, Inc, Ann Arbor, MI) and vasculature con-
striction/dilation was recorder. The rings were stretched to an optimum preload of 0.4 g force
(determined in preliminary experiments), and allowed to equilibrate for 60 minutes. During
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this period, the K–H buffer in the tissue bath was replaced every 15 minutes. Vascular ring ten-
sion was adjusted until 0.4 g preload force was maintained. After equilibration, the rings were
exposed to 100 nM of U-46619 (9,11-epoxymethano-PGH2, Biomol Research Laboratories,
Plymouth Meeting, PA) to ensure vascular smooth muscle stabilization (maximally effective
concentration determined in preliminary experiments). After agonist washout, ring re-equili-
bration was permitted. Twenty minutes after the initial washing, 50nM of U-46619 was added
to each ring bath to generate approximately 0.4 g vascular contraction. Once stable contraction
was achieved, acetylcholine (ACh, a vasorelaxive agent eliciting endothelial NO production)
was added to the bath in cumulative concentrations of 10−8–10−4 M to evaluate endothelial
vasorelaxive function. After stabilization of ring response to cumulative ACh, bath washout
and ring re-equilibration to baseline was permitted. The procedure was repeated with 10−8–
10−4 M dose increments of acidified NaNO2 (prepared by dissolving NaNO2 in 0.1 N HCl
titrated to pH 2.0), an agent eliciting vasorelaxation in an endothelium-independent manner.
Any ring exhibiting less than 60% relaxation in response to maximal ACh concentrations was
excluded from further study.

After achieving stable vasorelaxation by ACh, repeat solution bath washout and ring re-
equilibration to baseline was permitted. Full-length APN (fAPN) was purchased from Pepro-
Tech Company (Rocky Hill, NJ). fAPN was added in cumulative concentrations of 5, 10, and
15μg/ml. To evaluate the involvement of NO in the observed vasorelaxive effects of fAPN, Nω-
nitro-L-arginine methyl ester (L-NAME, a non-selective inhibitor of NO synthesis, dose
100 μmol/L), was administered concomitantly with fAPN.

Cell culture and treatments
HUVECs (passage 2–3) were plated on six-well plates and cultured in endothelial growth
medium containing 10% fatal bovine serum, 2mM glutamine, 100U/ml penicillin, and 100 μg/
ml streptomycin at 37°C and 5% CO2. Upon reaching 80% confluence, cells were treated with
vehicle or fAPN (5, 10, and 15 μg/ml). Cells were collected after 15, 30, or 60 minutes of fAPN
treatment. Total nitric oxide (NO) content, phospho-eNOS, and total eNOS expression were
determined as described in detail below.

Small interfering RNA transfection
RNA oligonucleotides complementary to Cav1, AdipoR1, and AdipoR2 target sequences
silenced respective gene expression. HUVECs were transfected with a siIMPORTER siRNA
transfection kit (Qiagen Science Inc. Benelux, Venlo, Netherlands) per manufacturer’s protocol
with siRNA duplexes against Cav1 (5’-UAUUAUGAGAUGGUAGGCAdTdT-3’), AdipoR1
(5’-GGACAACGACUAUCUGCUACATT-3’), AdipoR2 (5’-GGAGUUUCGUUUCAUGA
UCGGTT-3’), and universal control oligonucleotides (AllStars, Westerville, OH). HUVECs
were plated on six-well plates before transfection. After the HUVECs reached 80% confluence,
siRNA was applied to each well (final concentration 50 nM).

Immunoblotting and co-immunoprecipitation
HUVECs were lysed by cold lysis buffer and homogenized. After centrifugation, the superna-
tant was collected. For immunoblotting, proteins were separated on SDS-PAGE gels and trans-
ferred to PVDF membranes. Membranes were then incubated with primary antibodies and
HRP-conjugated secondary antibody. The blot was developed with a Supersignal Chemilumi-
nescence detection kit (Pierce, Rockford, IL). Bands were visualized by a Kodak Image Station
4000R Pro (Rochester, NY). For co-immunoprecipitation, cell lysates were pre-cleared with
corresponding nonimmune IgG, and incubated together with protein A plus-Sepharose for
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2 hours at 4°C. Cleaned lysates were then incubated with 2μg of anti-Cav1 antibody. Cell
lysates were then incubated with protein A plus-Sepharose overnight at 4°C. Protein A beads
were then extensively washed with lysis buffer. Proteins were eluted from beads, and resolved
by elusion buffer. Samples with 2XSDS sample buffer were heated and separated by electropho-
resis. After transfer to PVDF membranes, proteins were immunoblotted with anti-AdipoR1 as
described above.

Determination of total nitric oxide content in HUVECs
After treatment, HUVECs were collected and homogenized. Nitric oxide (NO) and its meta-
bolic products (NO2 and NO3) in the supernatant (collectively known as NOx) were deter-
mined by a chemiluminescence NO detector (Siever 280i NO Analyzer), as described
previously [14].

Statistical analysis
All values in the text are presented as means±SEM of n independent experiments. All data
(except Western blot density) were subjected to ANOVA followed by Tukey correction for
post-hoc t test. Western blot densities were analyzed by the Kruskal-Wallis test, followed by
Dunn’s post-hoc test. Probabilities of 0.05 or less were considered statistically significant.

Results

Physiologic APN doses facilitate ACh-induced vasorelaxation in an
endothelium-dependent and NO-mediated manner
Aortic rings were isolated from wild type mice. Administration of APN at physiologic concen-
trations (up to 15μg/ml) resulted in no apparent vasodilatory effects (data not show). However,
pretreatment of wild type mouse aortae with different physiologic APN levels (5, 10, 15μg/ml)
significantly enhanced ACh (an established, endothelium-dependent vasodilatory agent)-
induced vasorelaxation in dose-dependent fashion (5μg/ml APN 79.52±1.95% vasorelaxation
vs control 51.91±2.02%, P<0.01, Fig 1A).

Vasodilation occurs physiologically by two mechanisms, namely enhanced endothelial sen-
sitivity or enhanced smooth muscle responsiveness. To determine the manner by which APN
enhances the vasodilatory effects of ACh upon endothelial cells, we employed L-NAME
(100μmol/L, a NO synthase inhibitor). As seen in Fig 1B, pre-treatment with L-NAME abro-
gated APN-enhanced ACh-induced vasorelaxation (5 μg/ml APN treatment 87.63±2.24% vs
L-NAME pretreatment then APN 20.57±1.66%, P<0.01). Together, these data suggest physio-
logical-dose APN enhances the endothelial cell sensitivity in a NO-dependent manner.

Knockout of adiponectin receptor 1 (AdipoR1), but not receptor 2
(AdipoR2), abolishes APN-enhanced ACh-induced vasorelaxation
Having demonstrated physiologic doses of APN enhanced ACh-induced vasorelaxation in an
NO-dependent manner, we next determined the adiponectin receptor subtype (AdipoR1 or
AdipoR2) responsible. Administration of APN (5 μg/ml) in AdipoR1-KO mouse aorta signifi-
cantly decreased ACh-induced vasorelaxation (WT 82.96±1.77% vs AdipoR1KO 58.37±2.01%,
P<0.01, Fig 2A). However, APN-enhanced ACh-induced vasorelaxation remained intact in
AdipoR2-KO aortae (Fig 2B). Together, these data support the involvement of AdipoR1 in
APN-enhanced ACh-mediated vasorelaxation.

Adiponectin and Vascular Function

PLOS ONE | DOI:10.1371/journal.pone.0152247 March 29, 2016 4 / 14



Fig 1. Physiologic APN doses facilitate ACh-induced vasorelaxation in an endothelium-dependent
and NO-mediated manner. (A) Different physiologic APN levels (5, 10, 15μg/ml) significantly enhanced
ACh-induced vasorelaxation in a concentration-dependent fashion. (B) APN-induced aortic vascular ring
vasorelaxation is blocked after pre-treatment with L-NAME (NO synthesis inhibitor, 100 μmol/L). n = 5–7
mice/group. #,P<0.05; ##, P<0.01.

doi:10.1371/journal.pone.0152247.g001
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Fig 2. Knockout of adiponectin receptor 1 (AdipoR1), but not receptor 2 (AdipoR2), abolishes APN-
enhanced ACh-induced vasorelaxation. (A) Enhanced vasorelaxation to ACh by APN (5μg/ml) was
significantly decreased in AdipoR1-KOmouse aorta. (B) Enhanced vasorelaxation to ACh by APN (5μg/ml)
was not affected in AdipoR2-KOmouse aorta. n = 5–7 mice/group. #, P<0.05; ##, P<0.01.

doi:10.1371/journal.pone.0152247.g002
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Physiologic APN levels induced eNOS phosphorylation in an
AdipoR1-dependent fashion
Having demonstrated physiologic doses of APN enhanced ACh-induced vasorelaxation via
AdipoR1, we next investigated the responsible underlying molecular mechanisms. Acetylcho-
line activates endothelial nitric oxide synthase (eNOS), which increases NO release. In the next
experiment series, we determined whether physiologic APN doses augment eNOS activation,
thereby facilitating increased ACh-induced vasorelaxation.

HUVECs were incubated with different physiologic doses of APN (5, 10, and 15 μg/ml) for
different time periods (0, 15, 30, and 60 minutes). eNOS phosphorylation at Ser1177 was deter-
mined. After a fixed 15-minute period of exposure, physiologic doses of APN increased eNOS
phosphorylation in a dose dependent manner (Fig 3A). At a fixed 5 μg/ml concentration,
APN-induced eNOS phosphorylation peaked after 15 minutes of exposure (Fig 3B).

To further determine the molecular mechanisms underlying physiologic dose APN-induced
eNOS phosphorylation, siRNA was employed to downregulate endogenous AdipoR1 and Adi-
poR2 production. Western blot analysis confirmed successful suppression of endogenous Adi-
poR1 and AdipoR2 expression (72 hours siRNA transfection decreased AdipoR1 or AdipoR2
expression by 70–80%, Fig 3C). In Fig 3D, we redemonstrate APN (physiologic dose 5 μg/ml)
increased eNOS phosphorylation (Lane 2), compared to control (Lane 1), and downregulation
of AdipoR1 (Lane 3), but not AdipoR2 (Lane 4), blocked APN-induced eNOS phosphoryla-
tion. Taken together, these results support APN activates eNOS via AdipoR1 signaling.

Cav-1 is required for AdipoR1-dependent APN-enhanced
vasorelaxation
Caveolae are small (100 nm diameter) flask-like invaginations in the plasma membrane, pro-
viding spatial and temporal regulation of cell signaling events [14]. The caveolins, scaffolding
proteins within the caveolae, compartmentalize and concentrate signaling molecules, and are
responsible for endothelial function regulation [15, 16]. We have recently demonstrated the
existence of a membrane-situated APN signalsome, containing APN receptor 1 (AdipoR1) and
caveolin-1 (Cav-1), that facilitates APN signaling transduction [17]. Our study demonstrated
direct interaction between AdiopR1 and Cav-1 (the primary caveolin subtype in HUVECs)
[17].

The results presented in Figs 2 and 3 collectively suggest the pivotal role of AdipoR1 in
APN-enhanced ACh-induced vasorelaxation. We next investigate whether the enhancement of
ACh-induced vasorelaxation by physiologic concentrations of APN are dependent upon Adi-
poR1 association with Cav1.

After administration of APN to HUVECs, an anti-Cav-1 antibody was employed to
immunoprecipitate Cav-1 with its binding partner. The immunoblot in Fig 4A demonstrates
AdipoR1 interacts with Cav-1, as previously demonstrated [17, 18]. Western blot analysis
confirmed successful suppression of endogenous Cav-1 in HUVECs (72 hours siRNA trans-
fection decreased Cav-1 by 89%, Fig 4B). In Fig 4C, we redemonstrate APN (physiologic dose
5 μg/ml) increased eNOS phosphorylation (Lane 2), compared to control (Lane 1), and
downregulation of Cav-1 (Lane 3), blocked APN-induced eNOS phosphorylation. Finally,
APN (5μg/ml)-enhanced ACh-induced vasorelaxation was partially blocked in Cav-1 KO
mice (WT 83.39±2.19% vs Cav-1KO 20.57±1.66%, P<0.01, Fig 4D). Taken together, these
results demonstrate eNOS activation by APN is dependent upon an intact AdipoR1/Cav-1
signalsome. Furthermore, this signalsome is necessary for APN-enhanced ACh-mediated
vasorelaxation.
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Fig 3. Physiologic APN levels induced eNOS phosphorylation in an AdipoR1-dependent fashion.HUVECs were incubated with different doses of
APN (5, 10, and 15μg/ml) (A) and eNOS phosphorylation (Ser1177) was determined at different time periods (0, 15, 30, and 60 min) (B). (C) Western blot
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Physiologic APN concentrations increased NO production in an
AdipoR1 and Cav-1 dependent manner
To further provide evidence supporting our study’s experimental data, we directly measured
total NO content in cell medium after a physiologic dose of APN (5μg/ml) was administered to
various HUVEC cell types for 15 minutes (Fig 5). APN (Lane 2) increased total NO content in
cell medium compared to control (Lane 1, APN 2.57±0.06 vs 1.3±0.10 control, P<0.01). APN
did not significantly increase total NO content in AdipoR1 KO cell medium (Lane 3, 1.56
±0.06), but did so in AdipoR2 KO cell medium (Lane 4, 2.41±0.17). APN did not significantly
increase total NO content in Cav-1 KO cell medium (Lane 5, 1.34±0.12). Finally, when
L-NAME (dose 100 μM) was administrated concomitantly with APN to WT cells, total NO in
the cellular medium remained unchanged (Lane 6, 1.12±0.17). Taken together, our data sup-
ports the AdipoR1/Cav-1 signaling pathway is essential in APN (at a physiologically relevant
dose)-mediated NO production.

Discussion
This study investigated the role of physiological adiponectin concentrations in endothelial dys-
function associated with hypertension. We demonstrated for the first time physiological adipo-
nectin concentrations facilitated endothelium-dependent vasorelaxation and endothelial NO
production by phosphorylating eNOS in an AdipoR1 and Cav-1 dependent manner (Fig 6).

Of primarily adipocyte origin, circulating adiponectin accounts for nearly 0.01% of all
plasma proteins [19]. Physiological APN concentration is approximately 5–10 μg/ml [20, 21].
The basic structure of full-length form of adiponectin (fAPN) consists of four domains: an N-
terminal signal sequence, a short region with no homology to any known protein, a collagen-
like domain, and a C-terminal globular domain. The human and murine globular domain of
adiponectin (gAPN) shares 91% conservation, indicating this domain preserves a vital biologi-
cal function [22]. Acting as a protein hormone, full length APN (fAPN) modulates numerous
metabolic processes [23], sensitizes insulin sensitivity [17, 24] as well as protects against ath-
erosclerosis [25]. Clinical studies have demonstrated an evident association between adiponec-
tin and hypertension [7, 8, 26], and supra-pharmacological doses of fAPN cause direct
vasodilation [11, 12]. Most research efforts have centered upon gAPN, because of its important
biological function. However, in the present study, we show here for the first time that although
physiologic fAPN levels (5μg/ml) are insufficient to be vasodilator to directly dilate vessel itself,
it enhances vasorelaxative response to vasodilatory factors, such as ACh. To minimize known
gender discrepancies in vascular vasodilatory response [27] (particularly to Ach [28]), only
male mice were employed in the current study.

Previously, we have demonstrated the APN signalsome, containing AdipoR1 and Cav-1,
facilitates APN signaling transduction. In the current study, AdipoR1 knockout mice exhibit
reduced fAPN-mediated ACh-induced vasorelaxation in aortic rings. However, in AdipoR2
knockout mice, there was no difference in fAPN-promoted ACh-induced vasorelaxation in
aortic rings compared to control. These results emphasize AdipoR1, not AdipoR2, is critically
involved in the physiologically relevant adiponectin concentration-mediated vasorelaxation.

The endothelium abundantly expresses Cav-1, a protein responsible for transcellular trans-
port in endothelial cells, regulation of endothelial permeability, and acceleration of atheroscle-
rosis [29–32]. Moreover, caveolin-1 is also responsible for signal transduction via its

analysis confirmed successful knockdown of AdipoR1 and AdipoR2 by siRNA. (D) AdipoR1, but not AdipoR2, knockdown significantly attenuated APN-
induced eNOS phosphorylation. n = 6–8 dishes/group. #, P<0.05; ##, P<0.01 vs respective control. R1, R2 represent AdipoR1 and AdipoR2, respectively.

doi:10.1371/journal.pone.0152247.g003
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Fig 4. Cav-1 is required for AdipoR1-dependent APN-enhanced vasorelaxation. (A) Immunoblot demonstrating interaction of Cav1 with AdipoR1 in the
presence or absence of APN (5μg/ml). (B) Western blot analysis confirmed successful knockdown of Cav-1 by siRNA. n = 6–8 dishes/group. (C) Knockdown
of Cav-1 significantly attenuated APN-induced eNOS phosphorylation. (D) Cav-1 KOmouse aorta exhibited significantly decreased APN enhancement to
ACh-induced vasorelaxation. Ir, irrelevant antibody. n = 5–7 mice/group. #, P<0.05; ##, P<0.01 vs respective control.

doi:10.1371/journal.pone.0152247.g004
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scaffolding domain. Our current study demonstrates that both ACh-mediated vasodilation and
NO production were inhibited in aortic rings isolated from Cav-1 knockout mice. siRNA-
mediated suppression of Cav-1 expression significantly attenuated APN-induced eNOS phos-
phorylation and NO production. Furthermore, mice overexpressing adiponectin exhibit
increased Cav-1 levels in adipocytes [32]. Recently, it was reported high glucose/high lipids
impair the effect of adiponectin upon vascular function via inhibition of the AdipoR1/Cav-1
signalsome [17]. Taken together, these data show that AdipoR1/Cav-1 complex is essential for
APN signaling transduction.

Nitric oxide (NO) is pivotal in the regulation of endothelial function. Released from the
endothelium itself, NO is synthesized from L-arginine by endothelial NO synthase (eNOS).
Phosphorylation of eNOS leads to its activation, and NO production [33]. In adiponectin
knockout vessels, eNOS expression is unchanged, but NO production and eNOS phosphoryla-
tion significantly decreased [9]. The present study provides the first evidence that physiologi-
cally relevant APN levels promoted vasorelaxative response to ACh in WT aortic rings.
L-NAME administration inhibited APN-mediated ACh-induced aortic ring vasorelaxation.
Our experiments involving HUVECs confirmed physiologic APN levels enhance eNOS phos-
phorylation and NO production in vitro. Together, these results support physiological full-
length APN concentrations can cause endothelium-dependent and NO-mediated
vasorelaxation.

Endothelial dysfunction is one of the causes of hypertension, and the association between
hypoadiponectinemia and hypertension is well documented [26, 33, 34]. In the current study,
we elucidated the mechanism responsible for physiologically relevant concentrations of APN
levels-induced vasorelaxation, by inducing NO production via AdipoR1/Cav-1 signaling. Path-
ologic conditions impairing proper APN signaling, such as diabetes and metabolic syndrome,

Fig 5. Physiologic APN concentrations increased NO production in an AdipoR1 and Cav-1 dependent
manner.NO production in HUVECmedium was determined after incubation with vehicle or APN (5μg/ml) for
15 minutes. Knockdown of AdipoR1 (but not AdipoR2), knockdown of Cav-1, and treatment with L-NAME
(100 μmol/L) abolished APN-induced NO production enhancement. n = 6–8 dishes/group. ##, P<0.01 vs
respective control. R1, R2 represent AdipoR1 and AdipoR2, respectively.

doi:10.1371/journal.pone.0152247.g005
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may therefore initiate hypertension development. Therapies restoring the APN signaling axis
may represent novel modalities preventing hypertension onset and its costly complications.
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