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The human voice originates from oscillations of the vocal folds in the larynx.The duration of the voice onset (VO), called the voice
onset time (VOT), is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical
approaches for computing theVOTbased on endoscopic imagingwere compared to determine themost reliablemethod to quantify
automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed
camera (8000 fps) was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated.
Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW) during
phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated.
Three criteria were analyzed to determine the most appropriate computation approach: (1) reliability of the fit function for a correct
approximation of VO; (2) consistency represented by the standard deviation of VOT; and (3) accuracy of the approximation of VO.
The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8%
of the saturation amplitude of the filtered GAW.

1. Introduction

The voice is an essential part of human communication
and in modern times has become increasingly important
in professional and private life. As voice-based communica-
tion increases, however, voice disorders are more frequently
encountered and financial costs increase [1]. Particularly
in professions such as teaching, there is often an overuse
of voice, which significantly increases the prevalence of
voice disorders [2]. A better understanding of the complex
process of vocalization is essential for new andmore effective
treatments of persons suffering voice disorders or even loss of
voice.

The primary voice signal originates from the vibrating
vocal folds [3]. Subsequently, this primary voice signal is
modulated in the vocal tract, generating the normal voice
signal. The beginning of vocalization is denoted as the voice
onset (VO). This is the event after the vocal folds have
adducted and the air starts to flow from the lungs through

the larynx and the vocal folds are initiated to vibrate (Figure 1)
[4]. Thus, VO is the transition from damped to sustained
vocal fold oscillations [5].

There are different ways to observe the vocal fold
dynamics (100–400Hz during normal phonation) directly.
Currently used visualization techniques are videostrobo-
scopy, high-speed videokymography (HSK), and high-speed
videoendoscopy (HSE) [6]. Videostroboscopy is widely
applied for clinical examinations of vocal fold vibrations and
represents the gold standard. However, videostroboscopy is
not suitable for observing irregular or nonperiodic oscilla-
tions in pathological voices or the VO [6]. In contrast, HSK
uses higher frame rates of up to 8000 fps and hence is suitable
for examining the entire phonation cycle and recording
irregularities within the oscillations. However, HSK shows
the vocal folds dynamics just at a single horizontal line across
the vocal folds (i.e., one trajectory at one vocal fold position)
and therefore does not reflect the entire vocal fold vibrations.
In contrast, HSE enables the entire superior vocal fold
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Figure 1: (a) Top view of vocal folds; (b) view of the coronal plane of the larynxwith subglottal area, vocal folds, and supraglottal area depicted.

dynamics to be visualized. To visualize and analyze the vocal
fold oscillations from the HSE recordings, the area of the
glottis is segmented for each frame [7]. By stringing together
the glottal area of each frame, the glottal area waveform
(GAW) is generated, reflecting the vocal fold vibrations [8].

Moreover, owing to increasing performance of digital
high-speed camera chips, it is possible to use flexible nasally
introduced endoscopes instead of the commonly used rigid
endoscopes for HSE at high frame rates of up to 20000 fps
[9]. The flexible endoscope affects the phonatory process less
because it is nasally induced and therefore does not restrict
the flexibility of the tongue as much as a rigid endoscope.
Only by the flexible endoscope, the vocal fold oscillations
can be visually inspected during articulation, for example, the
disyllabic word [‘mama] being analyzed in our study.

The VO as a transient effect with its short irregular oscil-
lations of the vocal folds may contain valuable information
for assessing the vocal fold characteristics that determine
vibratory function [6]. By analyzing the nonstationary VO,
pathological voices can be differentiated from healthy voices
[10]. Also, age-related changes in vocalization, which become
increasingly important in a society with an increasing life
span, are measurable during VO [6].

In previous studies, VO was analyzed based on acoustic,
electroglottographic (EGG), and HSE signals (trajectories
and GAW) in addition to aerodynamic measures such as the
phonation threshold pressure [6, 10–15]. VO characteristics
have been analyzed in in vivo [6, 11, 14] and in vitro studies
based on physicalmodels [16] or excised human larynges [15].

Different measures such as the glottal parameter open
quotient [11, 17] and the duration of the voice onset (voice
onset time, VOT) have been derived from HSE signals to
quantify the VO [10, 13, 17]. The VOT especially seems to be
a promising measure.

For HSE signals, VOT has been determined by trajecto-
ries [5, 10] or GAWs [18], on filtered [5, 10] and unfiltered
signals [18]. Kunduk et al. [18] fitted a polynomial function

to the peaks of the GAW. Mergell et al. [5] fitted an analytic
envelope curve based on the analysis of the Hopf bifurcation
representing the dynamic system at the onset of oscillation
(transition from damped to sustained vocal fold oscillations)
to the Hilbert envelope of the trajectory function. Also, the
definition of the VOT referring to the full opening of the
glottis differs. Definitions of the interval of VO were set from
5 to 90% (VOT

90
) [18] and from 32.2 to 67.8% (VOT

67
) [5, 10]

of the saturation amplitude [17].
These different approaches and definitions of the VOT

show that there is no standardized determination or com-
putation of the onset process yet. Therefore, it is difficult
to compare the results of different studies carried out to
determine VOT. In the various studies analyzing the VO
using different methods, there is wide intersubject and
intrasubject variability within and between the different
studies [11]. Variability of the results concerning the VOT
might be partially due to the methods used to determine
VOT.

Thus, and owing to the advantages of HSE recordings
in combination with GAW analysis as described above, we
sought to investigate whichmethodmight be themost robust
and reliable way to quantify automatically and objectively the
VOT from the GAW. Hence we investigated different existing
methods to determine the VOT based on the GAW. In
particular we analyzed the function𝑀(𝑡) [5] with a different
quantity of parameters being optimized (𝑀

𝑎
(𝑡),𝑀

𝑎𝑠
(𝑡), and

𝑀
𝑎𝑠𝑟
(𝑡)) and polynomials [18] of second 𝑃

2
(𝑡), third 𝑃

3
(𝑡),

and fourth order 𝑃
4
(𝑡). Additionally, we combined different

parts of the methods to find the potentially best combination
of fit functions. Furthermore, we applied them on filtered or
unfiltered GAW and with different definitions of the VOT
referring to the percentage of the saturation amplitude on
which the computation of the VOT is based. The goal was
to determine the potentially best combination of raw data,
fit function, and calculation rule for VOT to find a robust
and reliable procedure for determining the VOT based on
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Figure 2: Schematic illustration of transnasal high-speed endoscopy with a flexible endoscope. Bottom right: top view of the vocal folds and
glottis as seen through the camera; figure after image enhancement (Section 2.3).

the GAW. Besides, we aimed to suggest improvements to the
existing methods.

A further methodological novelty in this study is that we
used HSE recordings at 8000 fps with a flexible endoscope
for the analysis of VO. The flexible and nasally inserted
endoscope has less effect on the vocalization or speech
production process; hence in the analysis of the VOs this
allows articulations or words to be closer to normal voice use
than just phonating a vowel.

2. Method

2.1. Subjects. Nine men (age 23.9 ± 2.7 years) and 15 women
(age 24.4 ± 2.2 years) participated in the study. All of the
subjects were native German speakers. No voice or hearing
impairments were diagnosed in the pretest examination.
None of the subjects were trained singers and all of them
signed a consent form. The experiments conformed to the
Declaration ofHelsinki (1964) andwere approved by the local
ethical committee (approval number 4364).

2.2. Test Setup. The subjects heard the word [‘mama] spoken
by a model speaker over headphones to memorize speed
of pronunciation and intonation. The subjects articulated
[‘mama] at a convenient loudness level at around 75 dB. Each
subject produced around 20 [‘mama]s, which were recorded.
Simultaneously, the vocal fold vibrations were recorded with

a Photron SA1.1 high-speed (hs) camera coupled to a flexible
fiber endoscope (Olympus) via a 25mm Storz objective. The
endoscope was introduced nasally (Figure 2). The spatial
resolution of the hs recordings was 128 × 128 pixels at a
frame rate of 8000 fps. A 270W Storz light source was
attached to the flexible endoscope to illuminate the vocal
folds during the recordings. Depending on the video (i.e.,
visibility of the entire vocal folds) and the segmentation
quality (see Section 2.4), some videos were excluded from
further analysis. Overall, 126 recordings of the nine male
subjects and 210 recordings of the 15 female subjects were
evaluated.

2.3. Image Processing. Image processing was conducted to
improve the image quality in terms of brightness and contrast
and to allow for a more accurate segmentation of the hs
recordings (Figure 3). A 50Hz flickering induced by the light
source and interferences due to fractionation at the fiber optic
impaired the quality of the hs recordings. Therefore, three
steps of image processing were conducted. A stretching of
the grey-scale values to the whole grey scale of 256 values
to increase brightness and to reduce temporal variations
in brightness induced by the 50Hz flickering of the light
source was performed. A spatial low-pass filter with a linear
response was applied to reduce the interference patterns.
Finally, clipping off the upper 50% of the grey-scale range
and distributing the remaining grey-scale values over the
whole grey-scale range were conducted, again to increase
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Figure 3: Left: image series of hs recordings of vocal folds; middle: single hs image of vocal folds with segmented glottis—blue area; right:
function of the glottal area waveform (GAW) derived from the segmented image series over time (i.e., image series). Maxima in the GAW
correspond to an open glottis and zero values to a closed glottis.
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Figure 4: Normalized glottal area waveform of the word [‘mama]
representing a female subject. Onset, offset, and central moving
average cma (red) over normalized first syllable and saturation
amplitude 𝑟sat are depicted. The cma (red) starts at the fifth peak
because (1) the first two peaks are excluded from cma calculation
because there is no glottal closure before (Section 2.6) and (2) the
kernel size of the cma is five.

the contrast between the dark glottis and the surrounding
vocal folds.

2.4. Glottal Area Waveform (GAW). The glottal area was
determined via the in-house segmentation tool “Glottis Anal-
ysis Tools (GAT)” for each frame. The glottal area waveform
(GAW) was then generated automatically. The GAW is the
glottal area in pixel units over time (Figure 3). In the following
the GAW is shown in diagrams of the normalized glottal area
𝑟 as function of the time 𝑡.Therein, the GAWwas normalized
to themaximumpeak of the first syllable of the word [‘mama]
(Figure 4).

2.5. Definition of the Voice Onset

Voice Onset. For our purposes, the phonation process can be
divided roughly into three major parts (Figure 4). The first
is the phonation onset, that is, the event when the tracheal

Table 1: Applied analytic fit functions 𝑀(𝑡), 𝑃
𝑖
(𝑡), and 𝑃

𝑖

90
(𝑡),

optimization parameters, and optimization boundaries.

Analytic fit
functions

Optimization
parameters

Optimization
boundaries

𝑀
𝑎

𝑎/(1/s) [1 1000]

𝑀
𝑎𝑠

𝑎/(—) [1 1000],
𝑟sat/(—) [0 2]

𝑀
𝑎𝑠𝑟

𝑎/(1/s) [1 1000],
𝑟sat/(—) [0 2],
𝑟
0
/(—) [0 1]

𝑃
2
, 𝑃
2

90
𝑎
0
, 𝑎
1
, 𝑎
2

—
𝑃
3
, 𝑃
3

90
𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3

—
𝑃
4
, 𝑃
4

90
𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4

—

air flow from the lungs starts to pass through the adducted
vocal folds, which begin to vibrate. During this process, the
oscillation amplitude of the vocal folds increases until they
reach their maximal amplitudes and pass on to a periodic
oscillation state.This periodic state is called sustained phona-
tion. When ending the phonation (i.e., sustained state), the
amplitudes decrease until the vocal fold oscillations stop
entirely. This process is called the phonation offset. The
duration of onset or offset is then consequently denoted as the
phonation/voice onset time (VOT) and voice offset time. In
our study, we focused only on VOT. At the very beginning of
the voice onset and during the offset, the vocal folds oscillate
but do not touch each other (Figure 4).

Saturation Amplitude. 𝑟sat is defined as the mean oscillation
amplitude during sustained phonation obtained from the
GAW.As the GAWof an articulation of a word does not show
constant amplitudes, the saturation amplitude was defined
as the maximum of the central moving average of the peak
values cmamax of each oscillation cycle with a kernel size of
five peaks during the first syllable, which corresponds to the
first 40% of the GAW (Figure 4).

Voice Onset Time (VOT). The VOT was determined based
on analytical functions (Table 1 and (1)) that model the peak
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devolution of the GAW. The functions were fit over all peaks
between the first fitting point (see Section 2.6) and the last
peak included in the cmamax computation. We tested two
different intervals, given in the literature, for computing the
VOT.

VOT67. VOT67 is defined as the time period that the fit
function needs to reach 67.8% of the saturation amplitude 𝑟sat
starting from 32.2%of the saturation amplitude [5] (Figure 5).

VOT90. VOT90 is defined as the time period that the fit
function needs to reach 90% of the saturation amplitude 𝑟sat
starting from 5% of the saturation amplitude [18] (Figure 5).

2.6. Filtered and Unfiltered GAW. For each GAW, the VOTs
were computed for the original unfiltered signal GAW

𝑜
[18]

and for the filtered signal GAW
𝑓
according to Mergell et al.

[5] (Figure 6).
TheGAWswere filtered using a fourth-order Butterworth

band-pass filter reaching from 0.7 to 1.3 times the fundamen-
tal frequency 𝑓

0
of the respective GAWs. The fundamental

frequency 𝑓
0
is computed for the first 180ms of the GAWs.

For the male subject group 𝑓
0
was between 87Hz and 131Hz

and for the female subject group 𝑓
0
was between 184Hz and

243Hz.This filtering frequency bandwas chosen owing to the
relatively strong variation of 𝑓

0
at the beginning of the word

[‘mama]. The band-pass filter has the following advantages:

(1) The low-pass filter eliminates high frequencies and
hence smoothes the GAW. In this way, the actual
maximum of each glottal cycle can be determined
more accurately. High-frequency artifacts might be
generated by user-caused quality variations of the
semiautomatic segmentation, which can result in a
slightly incorrect glottal area determined for each
picture. High-frequency artifacts may also be caused
by reduced quality of the hs recordings. The quality
of the hs recordings can be affected, for example, by
slight movements of the endoscope or reduced image
quality caused by foggy endoscope optics.

(2) The high-pass filter removes low frequencies and
therefore eliminates the offset so that the fit function
(as presented by Mergell et al. [5]) that also naturally
converges to zero lim

𝑡→−∞
𝑀(𝑡) = 0 (Figure 7)

becomes reasonable.

When fitting the unfiltered GAWs, only peaks after the first
vocal fold contact were included [18]. For filtered GAWs, all
peaks occurring, including those before the first vocal fold
contact, were included as fitting points [5] (Figure 6).

2.7. Fit Functions and Optimization Methods. Six analytic
fit functions were compared (Figure 7, Table 1). They were
optimized by a nonlinear least-squares curve fitting within a
MATLAB script.Three of the six fit functions are based on the
analytical function𝑀(𝑡) (1) presented in Mergell et al. [5]:

𝑀(𝑡) = 𝑟0

1

√(1 − 𝑥
𝑖
) 𝑒−2𝑎𝑡 + 𝑥

𝑖

with 𝑥
𝑖
= (
𝑟
0

𝑟sat
)

2

. (1)

Within 𝑀(𝑡), the parameter 𝑎 is the reciprocal of VOT
67
.

Therefore, for𝑀 functions, just theVOT
67
andnot theVOT

90

is computed. The parameter 𝑟
0
is the peak amplitude of the

normalized GAW within the first phonation cycle (Figures
5 and 6). In contrast to Mergell et al. [5], we additionally
optimized 𝑟

0
and 𝑟sat to increase the degrees of freedom for

yielding the least RMS error between the peak amplitudes
of all oscillation cycles during onset and the approximated
envelope determined by𝑀(𝑡).

To judge the impact of a single optimization parameters,
three functions 𝑀

𝑎
(𝑡), 𝑀

𝑎𝑠
(𝑡), and 𝑀

𝑎𝑠𝑟
(𝑡) were applied

that differ in the number of parameters to be optimized,
which are indicated by the subscripts (Table 1, column 2).
These optimization parameters were varied within physically
reasonable boundaries to accelerate the identification of best
fit as indicated in the third column of Table 1.

Moreover, three polynomial fit functions of second, third,
and fourth order were tested:

𝑃
2 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2
,

𝑃
3 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2
+ 𝑎
3
𝑡
3
,

𝑃
4 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2
+ 𝑎
3
𝑡
3
+ 𝑎
4
𝑡
4
.

(2)

For the polynomial fit functions, the coefficients 𝑎
𝑖
were

optimized to find the best fit of the GAW envelope during
phonation onset with a low error. As criterion, the RMSE
between the maximum values of the GAW and the fit curve
was evaluated. During the optimization process, the ranges
of the variations of the coefficients 𝑎

𝑖
were not restricted

to find the global optimum for the approximation of the
GAW envelope. An additional “supporting point” at 𝑟 = 0
was added to the polynomial fit functions at the distance of
one oscillation cycle before the first fitting point to prevent
the polynomial fit functions from rising to 𝑡 → 0ms. If
the polynomial fit function rises to 𝑡 → 0ms (Figure 8,
dotted line), tests have shown that the polynomial fit function
does not reach the 5% or 32.2% of the saturation amplitude
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Table 2: Reliabilities (%) for the six fit functions for both gender
groups for GAW

𝑜
s andGAW

𝑓
s. All fit functions achieve high values

of at least 94%.

Reliability (%) 𝑀
𝑎
𝑀
𝑎𝑠
𝑀
𝑎𝑠𝑟
𝑃
2
𝑃
3
𝑃
4

Female group
GAW

𝑜
100 100 100 94 98 98

GAW
𝑓

100 100 100 96 99 100
Male group

GAW
𝑜

100 99 99 98 100 100
GAW

𝑓
100 98 99 97 100 100

as shown in Figure 8 for the polynomial fit function 𝑃
4

without supporting point (dotted line) and the VOT cannot
be determined.

2.8. Evaluation of Fit Function Quality. To judge the quality
of the different analytic fit functions and to compare the
results for unfiltered and filtered GAWs and the male and
female groups, the three parameters standard deviation of the
VOT, reliability, and rootmean square error (RMSE) of the fit
functions were investigated:

(1) The standard deviation of the voice onset time (VOT)
gives information on the consistency of the VOT
computation. It is desired to have a small standard
deviation to be able to separate physiological from
pathological VOTs in the future clinical applications.
Therefore, the analytic fit functions can be classified in
terms of their ability to reproduce physiological VOTs
within a narrow time interval.

(2) The parameter reliability is the percentage of GAWs
for which the VOT is computable, that is, if a fit
function lies in the defined intervals (VOT

67
: 32.2–

67.8%;VOT
90
: 5–90%) related to the saturation ampli-

tude (Section 2.5). It shows how reliably the VOT
can be computed by each fit function. Furthermore, a
comparison between VOT

90
and VOT

67
is performed

for the polynomial fit functions.

(3) The accuracy of the approximation given by RMSE
shows the normalized error between the fit function
and the peaks of each glottal cycle in the GAW. The
RMSE indicates how accurate the fit function is to the
GAW.

The suitability of the different analytic fit functions for
computing the VOT is finally determined by combining the
results for the three parameters standard deviation of VOT,
reliability, and RMSE.

3. Results and Discussion

3.1. Reliability of Fit Functions

3.1.1. VOT67. In Table 2, the reliability is listed for the analytic
fit functions for the female and male groups and for filtered
(GAW

𝑓
) and unfiltered (GAW

𝑜
) data.

For GAW
𝑜
s of the female group, all𝑀 functions have a

reliability of 100%. Within the polynomial fit function group,
𝑃
4
and𝑃
3
show the highest reliabilities, with 98%. For GAW

𝑓
,

a 100% reliability is reached by all 𝑀 fit functions and by
𝑃
4
. Comparing GAW

𝑜
with GAW

𝑓
, all of the𝑀 fit functions

show a reliability of 100% for the GAW
𝑜
s and for the GAW

𝑓
s.

The reliabilities of the polynomial fit functions are higher for
the GAW

𝑓
s than for the GAW

𝑜
s.

For GAW
𝑜
s of the male group, 𝑃

3
, 𝑃
4
, and 𝑀

𝑎
reach

a reliability of 100%. For GAW
𝑓
, 𝑃
3
, 𝑃
4
and 𝑀

𝑎
reach

a reliability of 100%. 𝑃
2
has the lowest reliability (97%).

Comparing GAW
𝑜
with GAW

𝑓
, the highest reliability of

100% is achieved by 𝑃
3
, 𝑃
4
, and 𝑀

𝑎
. Whereas 𝑀

𝑎𝑠𝑟
shows a

reliability of 99% for both the filtered and the unfiltered data,
𝑀
𝑎𝑠
and 𝑃

2
have a 1% higher reliability for GAW

𝑜
s than for

GAW
𝑓
s. In contrast to the female group, the reliabilities of

the polynomial fit functions are slightly higher for the GAW
𝑜

compared with GAW
𝑓
.

A reliability of 100% in both gender groups and for
GAW

𝑓
s and GAW

𝑜
s is achieved by 𝑀

𝑎
, which is therefore

the most robust fit function. 𝑃
4
has a reliability of 100% for

both the male and female groups for the GAW
𝑓
s and of 100%

and 98% for the GAW
𝑜
s. 𝑀
𝑎𝑠𝑟

shows a reliability of at least
99%.𝑀

𝑎
and𝑃
3
have reliabilities between 100% and 98%.𝑃

2
is

the least robust fit function. In summary, for VOT
67
, a similar

high reliability is given for all fit functions except 𝑃
2
.

3.1.2. VOT90. In Table 3, the reliability for the analytic fit
functions 𝑃

2

90, 𝑃
3

90, and 𝑃
4

90 is listed for the female and
male groups and for filtered and unfiltered data. In general,
the reliability is lower than for VOT

67
owing to the stricter

definition of the VOT
90
.
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Table 3: Reliabilities for the polynomial fit functions for both gender
groups for GAW

𝑜
s and GAW

𝑓
s.

Reliabilites (%) 𝑃
2

90
𝑃
3

90
𝑃
4

90

Female group
GAW

𝑜
85 89 94

GAW
𝑓

90 91 93
Male group

GAW
𝑜

94 96 98
GAW

𝑓
95 94 98

Table 4: Mean values for VOT
67

and the standard deviation (SD)
listed for all fit functions and both gender groups.

VOT
67
(ms) 𝑀

𝑎
𝑀
𝑎𝑠
𝑀
𝑎𝑠𝑟

𝑃
2
𝑃
3
𝑃
4

Female group
GAW

𝑜
118 144 152 51 41 37

SD 220 241 233 33 34 34
GAW

𝑓
32 29 66 47 41 39

SD 28 31 106 30 35 36
Male group

GAW
𝑜

58 94 97 43 33 32
SD 109 200 189 29 21 25
GAW

𝑓
71 82 117 41 35 34

SD 179 209 238 28 32 37

For the female group, 𝑃
4

90 shows the highest reliability
for GAW

𝑜
and GAW

𝑓
, with 94% and 93%. Basically, the

reliability increases with the order of the polynomial. For the
male group, the highest reliability for GAW

𝑜
and GAW

𝑓
is

shown by 𝑃
4

90, with 98%. Again, the reliability increases with
the order of the polynomial. Concerning both gender groups,
𝑃
4

90 shows the highest reliability for the unfiltered and filtered
GAW.

3.1.3. Onset Time Definition VOT67 versus VOT90. The com-
parison of the reliability between the fit functions for the
two onset time definitions VOT

67
and VOT

90
reveals better

results for VOT
67
. However, higher reliabilities for VOT

67

were expected, since by definition functions reaching 5% of
the saturation amplitudes naturally always reach 32.2% of the
saturation amplitude (Figure 8). Regarding reliability, the best
combination would be VOT

67
in combination with any fit

function except 𝑃
2
.

3.2. Consistency of Fit Functions

3.2.1. VOT67. In Table 4, mean VOT
67
s and their standard

deviations (SDs) are listed. For both gender groups, M
functions have significantly higher VOT

67
s and SDs than

polynomial fit functions for GAW
𝑓
and GAW

𝑜
. VOT

67
s

of the 𝑀 functions basically increase with the number
of optimized parameters. For the polynomial fit functions,
VOT
67
s decrease with the polynomial degree (51 → 32ms).

For the polynomial fit functions, the SDs of VOT
67
s are

in similar range between 21 and 37ms (Δ(𝑡) = 16ms).

Table 5: Mean values for VOT
90

(ms) and the standard deviation
(SD) for 𝑃

2

90, 𝑃
3

90, and 𝑃
4

90.

VOT
90
(ms) 𝑃

2

90
𝑃
3

90
𝑃
4

90

Female group
GAW

𝑜
116 113 102

SD 59 73 62
GAW

𝑓
110 110 103

SD 57 69 59
Male group

GAW
𝑜

103 94 92
SD 59 60 59
GAW

𝑓
96 94 88

SD 56 71 63

In contrast, the SDs of the𝑀 functions spread over an interval
from 71 to 241ms (Δ(𝑡) = 170ms).

Overall, themost consistent combination for both gender
groups is given by 𝑃

2
, 𝑃
3
, and 𝑃

4
for unfiltered data (21ms ≤

SD ≤ 34ms); however, 𝑃
2
, 𝑃
3
, and 𝑃

4
show almost identical

consistent results for the filtered data (28ms ≤ SD ≤ 37ms).

3.2.2. VOT90. In Table 5, mean VOT
90
s and their standard

deviations (SDs) are listed for the analytic fit functions 𝑃
2

90,
𝑃
3

90, and 𝑃
4

90 for the female and male groups and for
filtered and unfiltered data. For both gender groups, the
polynomial fit functions show similar consistency for filtered
and unfiltered GAW (57ms ≤ SD ≤ 63ms). Also, the absolute
VOT values are very similar (88ms ≤ VOT

90
≤ 116ms).

Overall, the most consistent combination for both gender
groups is given by𝑃

2

90 and𝑃
4

90 owing to the smaller standard
deviation than for 𝑃

3

90. Hence computing VOT
90
for GAW

𝑓

or GAW
𝑜
yields equally good results.

3.2.3. Comparison of VOT90 with VOT67. Owing to the def-
initions of VOT

90
and VOT

67
, it was expected that VOT

90

values would be significantly higher than VOT
67

values.
However, regarding the consistency, it was not obvious. Here,
the SD values for VOT

67
were only about half (≤34ms) those

for VOT
90

(≥56ms). Hence, from the consistency point of
view, the best choice would be a polynomial fit function
(𝑃
2
, 𝑃
3
, 𝑃
4
) for filtered or unfiltered GAW applying VOT

67
.

3.3. Accuracy: Root Mean Square Error (RMSE). In Table 6,
the RMSEs of all fit functions and their SDs are given on
the basis of the experimental data for which VOT

67
could

be reliably computed. For the computation of the RMSE, all
peaks of the GAW that contributed to the determination of
the corresponding fit function were used.

All values for the𝑀 functions are given only for VOT
67
.

For the polynomial fit functions, the RMSEs are equal on
comparing VOT

90
and VOT

67
since these two definitions

differ only in the time considered to compute the onset time
interval.
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Table 6: Mean RMSEs and SDs of the applied fit functions for
filtered and unfiltered GAW and both gender groups.

RMSE 𝑀
𝑎
𝑀
𝑎𝑠
𝑀
𝑎𝑠𝑟

𝑃
2

𝑃
3

𝑃
4

Female group
GAW

𝑜
0.09 0.08 0.07 0.08 0.08 0.07

SD 0.06 0.05 0.04 0.03 0.03 0.03
GAW

𝑓
0.11 0.09 0.07 0.08 0.7 0.06

SD 0.05 0.04 0.03 0.03 0.03 0.03
Male group

GAW
𝑜

0.11 0.09 0.08 0.10 0.08 0.07
SD 0.06 0.05 0.04 0.04 0.03 0.03
GAW

𝑓
0.10 0.09 0.08 0.10 0.08 0.07

SD 0.06 0.05 0.05 0.06 0.06 0.05

Regarding 𝑀 functions, the best performance for both
gender groups and for filtered and unfiltered GAW is pro-
vided by 𝑀

𝑎𝑠𝑟
(0.07 ≤ RMSE ≤ 0.08). Of the polynomial

fit functions, 𝑃
3
and 𝑃

4
show the best performance (0.06 ≤

RMSE ≤ 0.08). In summary, 𝑃
4
for the GAW

𝑓
s has the lowest

RMSE values in addition to very small SDs, followed by 𝑃
4

(GAW
𝑜
) and𝑀

𝑎𝑠𝑟
. The highest RMSEs are shown by𝑀

𝑎
.

3.4. Evaluation of the AppliedMethods. For the three different
criteria, the following best combinations were found:

(i) Reliability: VOT
67

combination with any fit function
except 𝑃

2
.

(ii) Consistency: polynomial fit functions (𝑃
2
, 𝑃
3
, 𝑃
4
) for

filtered and unfiltered GAW applying VOT
67
.

(iii) Accuracy (RMSE): 𝑃
4
for the GAW

𝑓
independent of

VOT definition.

Combining the results for the three criteria yields the con-
clusion that the most reliable way to compute the VOT is to
fit a fourth-order polynomial fit function (𝑃

4
) to the filtered

glottis area waveform (GAW
𝑓
) with the onset time definition

VOT
67
(onset time equals the time between 32.2 and 67.8% of

the saturation state). A highly important advantage of VOT
67

is the high consistency (i.e., small SD of onset time) compared
with VOT

90
. This is very important with regard to potential

future clinical use, since the physiological onset time of the
norm group can only be differentiated from the pathological
onset time if the pathological VOT lies outside the given
norm onset time interval.

4. Conclusion

A study on computing VOT based on GAW from the word
[‘mama] derived from HSE data obtained with a flexible
endoscope was conducted in order to determine the most
robust and reliable method. Different-order polynomial fit
functions and a Hopf bifurcation function were tested that
approximate the transient VO process, exhibiting increasing
amplitudes of the glottal area with a different number of
parameters being optimized.The results for filtered and unfil-
tered GAWs were compared. As a measure of the suitability

of a method, a combination of the three different criteria was
chosen: the reliability, that is, the percentage of GAWs for
which the VOT was computable, VOT itself and its SD, and
the RMSE between the fit function and the peak values of
the GAW. In summary, the results suggest applying a fourth-
order polynomial to approximate the voice onset by fitting
it to peak values of the GAW. Furthermore, preprocessing
of the GAW in the form of a band-pass filter around 𝑓

0

in combination with the VOT
67

(period between 32.2 and
67.8% of the saturation amplitude of the first syllable of the
word [‘mama]) ismost advantageous regarding reliability and
consistency.

Analyzing the VO based on a GAW derived from HSE
data obtained with a flexible endoscope combines different
benefits. The vocal fold dynamics reflect the actual basic
voice signal which is not modified by the vocal tract as the
acoustic voice signal. The flexible endoscope affects the voice
production less than a rigid endoscope and allows recording
of articulations. Moreover, the GAW reflects the entire vocal
fold dynamics, in contrast to trajectories which reflect the
vocal fold dynamics just at one thin line. However, owing to
image quality, not all of the HSE results could be included in
the VOT computation. With a new generation of hs cameras,
image quality in terms of brightness, contrast, and spatial
resolution will be increased [9]. Moreover, the temporal
resolution of the hs recordings can be increased, so that at
some point it will keep up with acoustic voice recordings.

As perspective, the data in this paper are a contribution to
the establishment of VOT as clinical measure in clinical diag-
nostics and therapy for voice disorders, especially functional
dysphonia.The results of the reliability, robustness, and accu-
racy of the different methodologies for the determination of
theVOT are suited to contribute to the standardization of this
measure.
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