
Behavioral/Cognitive

Complementary Functional Organization of Neuronal
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It is commonly conceived that the cortical areas of the hippocampal region are functionally divided into the perirhinal cortex (PRC) and
the lateral entorhinal cortex (LEC), which selectively process object information; and the medial entorhinal cortex (MEC), which selec-
tively processes spatial information. Contrary to this notion, in rats performing a task that demands both object and spatial information
processing, single neurons in PRC, LEC, and MEC, including those in both superficial and deep cortical areas and in grid, border, and head
direction cells of MEC, have a highly similar range of selectivity to object and spatial dimensions of the task. By contrast, representational
similarity analysis of population activity reveals a key distinction in the organization of information in these areas, such that PRC and LEC
populations prioritize object over location information, whereas MEC populations prioritize location over object information. These
findings bring to the hippocampal system a growing emphasis on population analyses as a powerful tool for characterizing neural
representations supporting cognition and memory.
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Introduction
A main theme in the functional anatomy of the medial temporal
lobe (MTL) memory system has emphasized input pathways
composed of extensions of the classic “what” and “where”
streams that converge within the MTL (Davachi, 2006; Diana et
al., 2007; Eichenbaum et al., 2007; Witter et al., 2014). One path-
way involves inputs from sensory and association areas that enter

the MTL via the perirhinal cortex (PRC) and then the lateral
entorhinal cortex (LEC) where information about objects and
events is represented (Witter et al., 1989; Suzuki and Amaral,
1994; Burwell et al., 1995; Burwell and Amaral, 1998; Kerr et al.,
2007; van Strien et al., 2009). The other pathway involves inputs
from spatial processing areas that enter the MTL via the parahip-
pocampal (in primates; postrhinal in rodents) cortex (PHC) and
then the medial entorhinal cortex (MEC) where information
about spatial context is represented. While there are connections
between the PRC-LEC and PHC-MEC areas, most emphasize
that the two streams converge primarily within the hippocampus
where objects and events are represented in spatial context. This
simple model has recently been challenged by reconsiderations of
the functional distinctions between LEC and MEC that suggest a
mixture of object and spatial processing functions in these areas
(Knierim et al., 2013; Morrissey and Takehara-Nishiuchi, 2014;
Sasaki et al., 2015).
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Significance Statement

Contrary to the common view that brain regions in the “what” and “where” streams distinctly process object and spatial cues,
respectively, we found that both streams encode both object and spatial information but distinctly organize memories for objects
and space. Specifically, perirhinal cortex and lateral entorhinal cortex represent objects and, within the object-specific represen-
tations, the locations where they occur. Conversely, medial entorhinal cortex represents relevant locations and, within those
spatial representations, the objects that occupy them. Furthermore, these findings reach beyond simple notions of perirhinal
cortex and lateral entorhinal cortex neurons as object detectors and MEC neurons as position detectors, and point to a more
complex organization of memory representations within the medial temporal lobe system.
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Here we examine object versus spatial coding in PRC, LEC,
and MEC, respectively, as embodied in this model. Studies on
MEC have highlighted “grid cell” neurons that fire with spatial
periodicity throughout an environmental context (Hafting et al.,
2005), as well as neurons that encode head direction and spatial
borders (Sargolini et al., 2006; Witter et al., 2014). Notably, the
observation of prominent spatial coding is almost exclusively
from studies of animals foraging in an open field in the absence of
salient nonspatial stimuli or task demands. By contrast, LEC neu-
rons exhibit little spatial specificity in this behavioral situation
(Hargreaves et al., 2005) and PRC neurons exhibit none
(Deshmukh et al., 2012). Conversely, in experiments where ani-
mals perform object recognition or discrimination tasks, PRC
and LEC neurons fire during the presentation of specific odor (in
rats) or visual (in monkeys) cues, during maintenance of nonspa-
tial memories, or associated with behavioral responses, but firing
patterns associated with the animals’ location in space were not
examined (Suzuki et al., 1997; Young et al., 1997; Yanike et al.,
2009; Igarashi et al., 2014; Ahn and Lee, 2015; Brown and Banks,
2015). Some recent studies have identified activity in PRC and
LEC neurons associated with objects or visual patterns in partic-
ular places as animals explore an open field (Deshmukh and Kn-
ierim, 2011; Deshmukh et al., 2012; Tsao et al., 2013) or traverse
a circular path in a maze (Burke et al., 2012; Neunuebel et al.,
2013). In these studies, the objects and visual cues were not asso-
ciated with specific behaviors or rewards, and the only behavioral
demand was movement through the environment in which these
cues were positioned. So, it is unclear whether the objects and
visual cues were encoded as specific nonspatial stimuli indepen-
dent of their locations or as among the stimuli composing dis-
tinct spatial representations of a changing environment.

In the present study, we examined the activity patterns of
PRC, LEC, and MEC neurons and neuronal populations in ani-
mals performing a task in which they were required to use the
current spatial context to associate objects with reward or nonre-
ward at multiple locations within each context. This task de-
manded the animals to attend to the environmental cues and to
the objects independent of their location in an environment, as
well as to use the spatial context to guide retrieval of object-
reward associations.

Materials and Methods
Subjects. Subjects were 10 male Long–Evans rats (Charles River) weigh-
ing between 300 and 325 g at the start of the experiment. All animals were
single housed and maintained on a 12 h light/dark cycle (lights on 8:00
A.M. to 8:00 P.M.). Behavioral training and testing were conducted ex-
clusively during the light phase. Animals were maintained at a minimum
85% of their ad libitum feeding body weight and had ad libitum access to
water in the home cage. Procedures were conducted according to the
requirements set by the National Institutes of Health and Boston Uni-
versity Institutional Animal Care and Use Committee.

Materials and apparatus. The behavioral training environment was a
custom-built apparatus (160 l � 60 w � 40 h cm) consisting of two 40
cm � 40 cm boxes connected by a central alley. The training apparatus
was surrounded by black curtains, which limited the availability of distal
cues. Each context was composed of unique visual and tactile cues. The
objects consisted of identical terra cotta pots (10 cm high with an internal
diameter of 9 cm), with unique digging media and odors (e.g., purple
beads with grapefruit scent). To prevent the animal being guided by the
smell of the Froot Loop (Kellogg’s), the pots and digging media were
sprinkled with crushed Froot Loops. An open field environment (1 m �
1 m) was used to examine spatial firing patterns of cells following behav-
ioral training.

Behavioral task. Rats were trained to perform the complete behavioral
paradigm through successive stages. Initially, rats were trained to dig for

a reward (one-quarter Froot Loop) buried in a pot filled with unscented
sand. Once rats reliably retrieved buried rewards, they were trained on a
simple odor discrimination task in their home cages. Two pots filled with
sand, each scented with a distinct odor (aloe and cloves), were simulta-
neously presented to the rat in pseudorandomized left or right positions.
The aloe-scented pot was always rewarded, whereas the cloves-scented
pot was never rewarded. Simple odor discrimination continued until the
rats reached a criterion of 80% correct across 20 consecutive trials. Upon
reaching criterion, rats were habituated to the testing apparatus during a
30 min exploration period with Froot Loops scattered throughout the
environment and all context dividers removed. Following habituation,
behavioral training in the complete task ensued.

The behavioral training environment consisted of two chambers com-
posed of unique visual and tactile cues on the floors and walls connected
by a central alleyway that allowed rats to shuttle between them, with
access restricted to one context per trial (see Fig. 1). The objects consisted
of identical terra cotta pots with unique digging media and odors (e.g.,
purple beads with grapefruit scent), which could be presented in either of
two pseudorandomized positions for a given trial where the rat was re-
stricted to a single context. Rewards in the form of one-quarter Froot
Loop were buried in the rewarded pot on each trial. After reaching be-
havioral criterion, 10 rats were implanted with microdrives targeting
PRC, LEC, or MEC (five PRC, four LEC, and four MEC with 3 micro-
drives yielding both PRC and LEC data in the same rats). Following
recovery, neuronal activity in perirhinal or entorhinal cortex was moni-
tored in rats during the retrieval of memories where two distinct envi-
ronmental contexts (1 and 2) predicted different reward expectations for
behavioral responses to two distinct objects (A and B) presented in either
of two positions within each context. It is important to note that context
dictates the opposing object-reward associations, whereas position
within a context is irrelevant to the task demands. When presented at
either position in Context 1, choosing Object A was rewarded and choos-
ing Object B was not rewarded, whereas in Context 2, choosing Object B
was rewarded and not Object A (see Fig. 1). Positions within a context
shared the same object-reward association, whereas comparisons across
context reflected opposing object-reward associations. Each session con-
sisted of two contexts with two paired odor/digging media combinations,
but new sets of contexts and stimuli were introduced throughout training
in the same order across all rats. After each behavioral training session,
rats were allowed to explore an open field environment while foraging for
Froot Loops, which was later used to examine spatial firing patterns of
cells in MEC.

Each session consisted of 90 trials, 45 in each context. In a typical trial,
the animal was allowed to enter and explore one of the contexts in the
absence of objects for 10 s. At the end of this context exploration period,
a divider was inserted in the middle of the context restricting the rat to
one half of the context while two pots (Objects A and B) with unique
digging media and odors were placed in the corners behind the divider.
The divider was then removed, allowing the rat to approach the pots
where it could choose to dig in the pot or refrain from digging and sample
the other pot. The beginning of object sampling was defined as the mo-
ment in time when the rat’s nose crossed the threshold of the pot rim.
Object position within each context was pseudo-randomized, and no
object occurred in the same location for more than three consecutive
trials. After most trials, the animal moved into the opposite context via
the alleyway. However, on 9 trials for each session, the animal remained
in the same context for an additional trial to prevent utilization of a strict
alternation strategy. On these trials, the pots were removed, the rat re-
mained in the same context, and the context exploration period began,
after which the divider was inserted and testing resumed as previously
described. Before drive implantation, rats were trained to criterion,
which was defined as correct performance on 70% of trials in each con-
text over a 20 trial block. Following implantation, rats were retrained to
criterion and given at least two overtraining sessions before initiation of
electrophysiological recordings. As recordings progressed, rats were
trained on new object-context association problems that involved novel
digging mediums and contextual cues. Following the initial learning ses-
sion in which criterion performance was obtained on a new problem,
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animals were presented with the same problem in a number of additional
overtraining sessions, which provided the data for this study.

Surgery. Anesthesia was induced by inhalation of 5% isoflurane (Web-
ster Veterinary Supply) in oxygen and was maintained at 2%–3%
throughout surgery. Before surgery, animals were injected with the anal-
gesic Buprenex (buprenorphine hydrochloride, 0.03 mg/kg i.m.; Reckitt
Benckiser Healthcare), an antiobiotic cefazolin (330 mg/ml i.m.; West-
Ward Pharmaceutical), and placed in a stereotaxic frame (Kopf), where
an incision was made along the midline to expose the skull. Animals were
implanted with microdrives that contained 18 –24 independently driv-
able tetrodes aimed at the junction of perirhinal and lateral entorhinal
cortex (centered at anteroposterior � �6.92 mm; mediolateral � 5.2
mm; 16°–20° lateral angle, varied to more directly target LEC at 16° and
PRC at 20°) or the dorsocaudal portion of medial entorhinal cortex
(anteroposterior � �8.0 mm; mediolateral � 4.6 mm; 25° angle from
anterior to posterior; all coordinates derived from bregma). Each tetrode
was composed of four 12 �m RO 800 wires (Sandvik Kanthal HP Reid
Precision Fine Tetrode Wire; Sandvik) gold-plated to reduce impedance
to between 180 and 220 k� at 1 kHz. At the end of surgery, all tetrodes
were lowered �5 mm and �2 mm into tissue, in PRC-LEC and MEC,
respectively. In addition, animals were injected with postoperative doses
of Buprenex and cefazolin as described above. Animals were allowed to
recover for 1 week before behavioral testing resumed.

Neural recordings. Electrophysiological recordings were collected us-
ing a 96 channel OmniPlex D Neural Data Acquisition System (Plexon).
Each channel was amplified and bandpass-filtered for both single-unit
activity (154 Hz to 8.8 kHz) and local field potentials (1.5 Hz to 400 kHz).
Spike channels were referenced to a local electrode in the same region to
remove movement-related noise. Action potentials were detected by
threshold crossing and digitzed at 40 kHz. Cineplex Studio (Plexon) was
used for video recording of behavioral training sessions. Single units were
isolated using Offline Sorter (Plexon), and behavioral events were time-
stamped using Cineplex Editor (Plexon). All data analysis was performed
using custom scripts for MATLAB (The MathWorks). To reduce the
likelihood of recording from the same neurons across multiple sessions,
tetrodes were lowered before each testing session (��0.18 mm), and the
amount a tetrode was lowered was based on a visual inspection of the
identified units. To maximize unit quality, a score of 1–10 was generated
for each unit based on the separation of each cluster from neighboring
clusters and the background noise. Only units with a score of �5 were
included in the analysis presented here.

Histology. Upon completion of behavioral testing, rats were anes-
thetized with �5% isoflurane in oxygen, and tetrode placements were
confirmed by creating a lesion at the tetrode tip by passing a 40 �A
current until the connection was severed on each wire. Animals sub-
sequently received an overdose injection of Euthanol (Virbac AH)
and were perfused intracardially with 0.9% saline followed by 10%
formalin phosphate (VWR). Brains were removed and placed in a
20% sucrose solution until processed. Using a cryostat (CM 3050s;
Leica Biosystems), brains were cut into 40 �m sections (coronal for
PRC-LEC, sagittal for MEC), mounted onto presubbed glass slides,
and stained with cresyl violet to determine the location of tetrode tip
lesions and tetrode tracks. The stereotaxic atlas of Paxinos and Wat-
son (2007) was used to confirm the localization of tetrode tip lesions
within LEC and MEC. This information was used in conjunction with
driver turn counts to estimate the neuronal layer for each recording,
with each unit categorized as either superficial (layers II and III) or
deep (layers IV-VI) for PRC, LEC, and MEC, as well as to distinguish
between Areas 35 and 36 in PRC.

Analysis
Single-neuron analysis. Rats could sample the two objects presented on
each trial multiple times, and all object sampling events in which the rat
dug in the rewarded pot and refrained from digging in the nonrewarded
pot were considered in our analysis. To estimate the entorhinal represen-
tation of every object sampling event, for each cell, the number of spikes
fired was counted for up to the first 1.5 s of object sampling, and this
count was divided by the sampling duration to give the average firing rate
for each cell on each object sampling event.

Selectivity index (SI) for individual neurons. Firing rates during object
sampling were calculated as the number of spikes as a function of the time
from the onset of object sampling when the animal’s snout begins to
cover the rim of the pot until the animal began to dig or turn its head
away from the pot, using event markers in the video recordings. As
previously described (Komorowski et al., 2009), object, position, and
context selectivity for each neuron were measured using an SI calculated
as follows:

SI �

� n � �
i�1

n

��i/�pref	�
n � 1

where n is the number of conditions for the dimension under study (e.g.,
2 in the case of objects, 4 in the case of positions), �i is the average firing
rate of the neuron for the ith possible event type, and �pref is the average
firing rate of the neuron in the condition associated with highest firing
rate for the dimension under study. SI � 1 if a cell fired for only one
condition. Conversely, SI � 0 if the cell fired equally under all conditions.
To test whether the SI values for individual units were larger than that
expected by chance, we compared each observed SI value against a dis-
tribution of 10,000 SI scores in which the object and/or position identi-
ties of all events were randomly shuffled for each session individually.
Cells were defined as significantly selective for a dimension if p � 0.01 for
the observed SI value relative to the shuffling distribution. This analysis
was performed for each of four dimensions (see Fig. 5 A, B): (1) for con-
text SI, firing rates were compared between the two context conditions;
(2) for position SI, firing rates were compared between the four position
conditions; (3) for object SI, firing rates were compared between the two
object conditions; and (4) for object-position SI, firing rates were com-
pared among the eight object-position combinations (two objects in each
of two positions in two contexts).

To further evaluate the observed average SI values for each dimension
for each region, we used a similar bootstrap shuffling procedure. In this
case, we shuffled the object and/or position identities for each trial 1000
times per session. Thus, the observed firing patterns were maintained,
albeit with shuffled object and/or position identities. The average values
of this shuffling distribution (see Fig. 5A, dotted lines) reflect a stringent
criterion against which we compared the observed average SI values for
each dimension for each region to determine significant coding for task
dimensions. All post hoc analyses for SI comparisons used a Wilcoxon
rank-sum test with a Bonferroni correction for multiple comparisons
(significance threshold of p � 0.05/4 dimensions � 0.0125) to determine
significance.

Characterization of spatial firing patterns of individual neurons. We
additionally examined the spatial firing properties of MEC neurons as
animals foraged in an open field, particularly to identify grid cells, border
cells, and head direction cells. After each testing session, we continued to
collect data from the same neurons (see Fig. 4, waveforms) as the animals
foraged for randomly sprinkled Froot Loop bits in an open field environ-
ment over a period of 20 min. Spatial firing rate maps were estimated
using the total number of spikes that occurred when the rat was at a given
location (3 � 3 cm bins) divided by the total time spent in that bin. Only
bins visited at least twice for a total time of at least 200 ms were included.
Spikes were included if the rat was moving at a velocity 
3 cm/s. Spatial
firing maps were smoothed with a 2D Gaussian filter (� � 1 pixel).

Grid scores were calculated using previously established methods
(Brandon et al., 2011). Briefly, the six surrounding peaks of the autocore-
logram of the smoothed rate map for each cell were identified, and the
rate map was corrected for the ellipse of the hexagon. Then, the rotational
symmetry of a circular donut of pixels encompassing the six identified
peaks was calculated at 30, 60, 90, 120, and 180 degrees. The minimum
difference in symmetry of 60 and 120 degrees to that at 30, 90, 120, and
180 degrees was then calculated as the raw grid score. A bootstrap confi-
dence measure of the grid score was adopted (Bonnevie et al., 2013). We
calculated the grid score as above for each cell 10,000 times after the spike
timestamps were shuffled while preserving the temporal structure of the
spike train. A unit was classified as a grid cell if the observed gridness
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score surpassed the critical threshold of p � 0.01 compared with the
shuffled distribution.

Similarly, border scores were calculated using methods described previ-
ously (Solstad et al., 2008). For each cell, its place fields were defined as
contiguous groups of pixels in the smoothed rate map that had a firing rate of
at least 30% of the maximum firing rate pixel. Then, the ratio of the place
field’s coverage of each wall to that place field’s average distance from that
wall was calculated to represent the border score. Border cells were desig-
nated as those with border scores 
0.4 for any of the four walls.

To determine the animal’s head direction, tracking coordinates for the
LED were first smoothed to estimate the animal’s location for any miss-
ing tracking frames. Then, the angle of displacement was calculated by
taking the arc tangent of the difference in coordinates recorded at 40 Hz,
providing a heading estimate. As with grid cells, for each cell, the spike
timestamps were shuffled 10,000 times while preserving the temporal
structure of the spike train. The number of spikes at each head direction
(in 5 degree bins) was then summed and divided by the total occupancy
of that head direction. The length of the resultant vector was then com-
pared with the shuffled distribution. Units with an observed vector
length below the critical threshold of p � 0.01 were considered head
direction cells.

Representational similarity analysis (RSA) of neural ensemble activity
patterns. Neural ensemble firing patterns were explored using an RSA to
determine the extent to which multiple task dimensions were encoded by
PRC, LEC, and MEC (Kriegeskorte et al., 2008; McKenzie et al., 2014). To
measure the similarity of ensemble representations of different object
sampling events, the average z-normalized firing rate for each neuron
was calculated for all object sampling. A population vector was then
composed for every sampling event based on these normalized rates, and
the population vector of each event was then correlated to that for all
other events, and then the correlation coefficients of similar comparisons
(e.g., all comparisons between events involving different objects of the
same value in the same position) were averaged, yielding a pattern of
correlation coefficients that reflects the degree of similarity or separation
of population representations between events that differ in multiple task
dimensions, and these patterns were similar in each subject (see Fig. 6).

Using the pooled correlations from all sessions for all rats within a
brain region (PRC, LEC, or MEC), we calculated the strength of the
coding dimension (e.g., object in position) using the ensemble correla-
tions. We first compared the average correlation for events within a given
condition (e.g., all sampling events in the same position with Object A)
for a task dimension versus events that were between conditions for that
dimension (e.g., events in the same position with Object A vs Object B).
In this manner, a single d� was calculated for each dimension as follows:

d� �
�w � �b

�1

2
��w

2 � �b
2	

Where �w is the mean correlation coefficient for within-condition events
for that dimension with variance, �w

2 , and �b is the mean correlation
coefficient for between-condition events with variance, �b

2. The observed
d� was compared with bootstrapped data in which event identities were
randomly shuffled 10,000 times, and then the correlation analysis and d�
metric for each bootstrap sample were recomputed. When the observed
d� was 
95% of the 10,000 shuffled d� metrics, the dimension captured
by the d� was considered to have been significantly coded by the perirhi-
nal or entorhinal cortices.

We used the d� metric to measure the separation of the distributions of
the correlation coefficients for specific task features from 0 or against the
distribution of coefficients from an appropriately opposing condition to
characterize the population signal of that feature. Conjunctive object-
position coding was defined as the d� distance between correlation coef-
ficients for events that involved that same object in the same position
versus events that involved different objects at the same position (see Fig.
5D, Obj*Pos). Object coding was defined as the d� distance between
correlation coefficients for events that involved the same object at differ-
ent positions versus events that involved different objects at different
positions within the same context (Fig. 5D, Object). Position coding was

defined as the d� distance between correlation coefficients for events at
the same position versus events at different positions within the same
context (Fig. 5D, Position). Context coding was defined as the d� distance
between correlation coefficients for comparisons among events in the
same context at different positions versus that for all events in the oppos-
ing context (Fig. 5D, Context). All post hoc d� comparisons used a Bon-
ferroni correction for multiple comparisons (significance threshold of
p � 0.05/4 dimensions � 0.0125) to determine significance.

Cosine vector analysis. To ensure the robustness of the findings in the d�
distance analysis, ensemble representations were also analyzed using the
cosine between population vectors to determine the similarity of repre-
sentations. First, firing rates for each neuron were normalized to the
maximum firing rate among all object-sampling events to create a pop-
ulation vector of normalized rates for each event. Then, a cosine score
was calculated as 1, the cosine of the included angle between points made
by the pairs of vectors for the comparison of each event with all others of
the same type. Strength of a coding dimension was calculated by com-
paring the mean cosine score for events within versus between sample
conditions for that dimension. As with the RSA analysis, d� distances
were calculated for the cosine scores for the comparisons described in the
previous paragraph.

Bayesian classifier. As a separate test of event similarity that had
a different set of assumptions, a naive Bayesian classifier was used
(MATLAB R2014b function with type set to determine the probability
that a pattern of neural activity was recorded for each object and place
combination, two objects in four positions; as in McKenzie et al., 2014).
Because of to uneven sampling, rats often preferred a particular object
and position combination and would sample those more often. There-
fore, we only considered the last 5 sampling events for each object and
place combination. When there were �5 events, that category of object
and position trial was eliminated. Next, the z-scored population vector
was calculated for each event, as described above. The dimensionality of
the ensemble representation for each event was reduced via principal
component analysis and only the first four components were used to
categorize object/position combinations. Then, the mean, variance, and
covariance of each object/position four-dimensional ensemble represen-
tation were estimated with one event missing from each object and po-
sition combination. Next, a multidimensional normal distribution with
the estimated means, variance, and covariance matrices was fit to each
cluster of object/position ensemble representations (maximum 8). Fi-
nally, the probability of the missing events being any of the possible
object/position combinations was calculated based on the probability of
that object/position combination given the ensemble representation as
estimated by the normal distributions above.

The degree of dimensional coding was calculated in a similar fashion
to that for the correlation coefficients and cosine analysis, although the d�
was calculated based on the probability of classifying within each dimen-
sion (e.g., events occurring at the correct position) or across that dimen-
sion (e.g., events occurring at a different position). To test significance,
we ran a bootstrap analysis in which event identities were shuffled 10,000
times; and if the observed d� for the difference in probabilities was 
95%
of the shuffled d� metrics, we concluded that PRC, LEC, or MEC encoded
that dimension.

Temporal dynamics of population firing patterns. To assess when coding
for different task dimensions emerged during object sampling, the d� metric
was calculated exactly as with the correlation RSA, except that d� strength
was calculated for 200 ms time bins centered �3 s around object sampling
(see Fig. 8). To tightly control for behavior during the approach to objects,
we considered only the first object-sampling event of each trial. Significance
testing of the observed d� values was performed using the d� bootstrap anal-
ysis at each time point with a significance threshold of p � 0.05.

Dendrogram analysis. To explore the organization of ensemble represen-
tations for the 8 types of object sampling events (i.e., conjunctions of 2
objects in 2 positions within 2 contexts), we generated composite ensemble
representations for each event type using the firing rates of all principal
neurons recorded in PRC, LEC, and MEC. The composite population vector
for each type of event was calculated as follows: for each neuron, the number
of spikes observed was divided by the sampling duration on each event; then
these firing rates were standardized into z-scores using the mean and SD of
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firing rates across events; then the mean z-score firing rates across events
were calculated. The relationships between the composite population vec-
tors for the 8 types of events were then assessed using an agglomerative
hierarchical clustering algorithm (MATLAB R2014b function ‘linkage’). The
agglomerative hierarchical clustering algorithm takes the unweighted aver-
age distance between pairs of the 8 vectors, where the Pearson’s correlation
coefficient was used as the distance metric. Of the 8 vectors, the two that were
nearest were combined; then calculations of distances between the revised set
of vectors were repeated and the nearest two vectors were combined. This
process was repeated iteratively until only two combinations remained. The
height of each line in the dendrogram represents the similarity (mean r
value) between the event types being connected.

Results
Behavioral performance
We recorded activity from neurons in PRC, LEC, and MEC while
rats performed a context-guided object-reward association task
that required subjects to select one of two objects presented si-
multaneously within each of two distinctive spatial contexts dif-
fering in multiple features (Fig. 1). When presented in Context 1,
Object A was rewarded in either of two positions, and Object B
was not. When presented in Context 2, Object B was rewarded in
either position, and Object A was not. Context, but not position
within context, was predictive of object-reward association in
this task. Thus, subjects were required to use the current context

to guide learning and retrieval of distinct associations for the
same objects. Several different problems consisting of different
contexts and objects were successively used (but will all be re-
ferred to here as Context 1 and 2 and Objects A and B). In the
initial learning session on each problem, rats reached the perfor-
mance criterion of 70% correct in each context within a 20 trial
block on average by Trial 38 (range, 30 – 44 trials) for PRC-
implanted rats (n � 5), by Trial 34 (range, 11– 45 trials) for LEC-
implanted rats (n � 4), and by Trial 38 (range, 17–70 trials) for
MEC-implanted rats (n � 4), respectively. A one-way ANOVA
on the average trials to criterion revealed no differences in the rate
at which rats learned new problems (F(2,11) � 0.08, p � 0.91).
Subsequently, animals performed in overtraining sessions on
each problem where performance was 96.4 � 1.0% for PRC-
implanted rats, 97.0 � 0.8% for LEC-implanted rats, and 94.2 �
1.3% for MEC-implanted rats. A one-way ANOVA on perfor-
mance in overtraining sessions revealed no differences (F(2,58) �
1.49, p � 0.23). In this study, data analysis focused on these
overtraining sessions (14 for PRC, 17 for LEC, 30 for MEC).

Single-neuron isolation
In five PRC-implanted rats, a total of 204 units were isolated. In
four LEC-implanted rats, a total of 188 units were isolated. In
four MEC-implanted rats, a total of 323 units were isolated. A 10
Hz firing rate cutoff across the whole session was used to exclude
interneurons, yielding 164 PRC neurons, 164 LEC neurons, and
236 MEC neurons for analysis (summarized in Table 1). The
average scores for cluster quality were highly similar across the
three regions (PRC � 6.78 � 0.11; LEC � 6.93 � 0.11; MEC �
6.76 � 0.09). Neurons were subdivided by whether they were
recorded in superficial or deep laminae based on a combination
of histological examination, driver turn counts, and maps of te-
trode locations within the microdrives. The anatomical distribu-
tion of neurons recorded from PRC, LEC, and MEC is presented
in Figure 2. Based on these criteria, a total of 92 deep units and 72
superficial units were identified in PRC, a total of 57 deep units
and 107 superficial units were identified in LEC, and a total of 133
deep units and 103 superficial units were identified in MEC. In
addition, a total of 95 units were identified in Area 35 and a total
of 69 units were identified in Area 36 within PRC. Finally, open
field exploration sessions following behavioral testing were used
to characterize spatial firing properties of MEC units to further
categorize and analyze spatially heterogeneous populations of
grid cells, border cells, and head direction cells. A total of 23 grid
cells, 27 border cells, and 125 head direction cells were isolated
and analyzed separately from the other MEC units.

PRC, LEC, and MEC neurons encode multiple dimensions of
both object and spatial information
During the object sampling period, neurons in PRC, LEC, and
MEC exhibited remarkable mixed selectivity associated with
multiple task dimensions both across the population of cells in
each region and within single neurons. Several examples of this
pattern are provided in Figure 3 where the firing pattern of each
example is illustrated for each of the eight object-position com-
binations, four in each context. The beginning of object sampling
was defined as the moment when the rat’s nose reached the rim of
the pot (the 0 time point for the rasters and histograms in Figs. 3,
4) and object sampling ended when the rat either began to dig or
turned away, up to a maximum of 1.5 s after onset. Mixed selec-
tivity in each brain region was readily apparent in neurons re-
corded in both superficial and deep layers, as well as within all the
spatially heterogeneous subpopulations within MEC (summa-

Figure 1. Task design. Rats were trained to perform a context-guided object association
task. Each context consisted of unique tactile and visual stimuli. On a typical trial, rats were
allowed to explore the context for 10 s (context exploration period). Then, two objects, consist-
ing of terra cotta pots with unique digging media and odors, were presented in either of two
positions (object sampling period). Object A, but not Object B, was always reinforced in
either position within Context 1, whereas Object B, but not Object A, was always rein-
forced in Context 2.
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rized in Table 1). For example, PRC Unit 2, LEC Unit 4, and MEC
Units 5 and 6 were highly selective for specific object-position
conjunctions. LEC Unit 3 fired differentially during sampling of
Object A relative to Object B across multiple positions. MEC grid
cell 1 demonstrated particularly striking specificity for Object B
in Position 1 of Context 1 (Fig. 4). Thus, even neurons typically
considered dedicated to spatial representation exhibited object
selective firing in animals performing this task, and vice versa.

To quantify selectivity of neurons for features of the task, we
calculated an SI (Komorowski et al., 2009) for each of four task
dimensions: context, position, object identity, and conjunction
of object and position within a context. SI scores ranged from 0,
reflecting a lack of selectivity, to 1, reflecting fully selective acti-
vation for one condition of a dimension. SI scores were calculated
for each dimension in each recording session. We also examined
whether the observed average SI value across all single units for
each brain region was indicative of significant coding for each

task dimension using a similar bootstrap shuffling procedure in
which object and/or position identities were shuffled for each
trial. Figure 5A (dotted lines) reflects this bootstrap distribution.
We found that each of the four task dimensions was significantly
encoded in each area (all p values �0.001; Fig. 5A). Thus, there
was significant position as well as object coding in PRC, LEC, and
MEC, rather than the selective position coding in MEC and se-
lective object coding in PRC and LEC as one might expect.

We also examined selectivity between brain regions by com-
paring average SIs in each area for each dimension (Fig. 5A) and
by comparing the fraction of neurons in each area that individu-
ally distinguished conditions of a particular dimension (Fig. 5B).
MEC neurons exhibited slightly greater average selectivity rela-
tive to PRC or LEC neurons (two-way ANOVA, main effect of
region, F(2,2796) � 19.82, p � 0.00001; no interaction, F(6,2796) �
1.76, p � 0.08). Post hoc tests confirmed that MEC exhibited
significantly greater selectivity with respect to context (p values

Table 1. Number and percentage of units having significant coding for specific task dimensions based on SI (interneurons excluded) and average SI � SEMa

Context Position Object Object � position

Brain region No. significant % No. significant % No. significant % No. significant %

PRC
Overall 49/164 29.9% 39/164 23.8% 27/164 16.5% 46/164 28.0%

0.33 � 0.02 0.43 � 0.02 0.31 � 0.02 0.55 � 0.02
Superficial 28/72 38.9% 24/72 33.3% 16/72 22.2% 26/72 36.1%

0.36 � 0.03 0.45 � 0.03 0.33 � 0.03 0.58 � 0.02
Deep 21/92 22.8% 15/92 16.3% 11/92 12.0% 20/92 21.7%

0.30 � 0.03 0.41 � 0.03 0.31 � 0.03 0.54 � 0.02
Area 35 26/95 27.4% 20/95 21.1% 18/95 19.0% 26/95 27.4%

0.31 � 0.3 0.42 � 0.02 0.32 � 0.03 0.55 � 0.02
Area 36 23/69 33.3% 19/69 27.5% 9/69 13.0% 20/69 29.0%

0.34 � 0.03 0.44 � 0.03 0.30 � 0.03 0.56 � 0.03
LEC

Overall 38/164 23.2% 47/164 28.7% 24/164 14.6% 43/164 26.2%
0.31 � 0.02 0.43 � 0.02 0.26 � 0.02 0.57 � 0.02

Superficial 29/107 27.1% 35/107 32.7% 19/107 17.8% 28/107 26.2%
0.31 � 0.02 0.41 � 0.02 0.27 � 0.02 0.54 � 0.02

Deep 9/57 15.8% 12/57 21.1% 5/57 8.8% 15/57 26.3%
0.31 � 0.03 0.46 � 0.03 0.25 � 0.03 0.61 � 0.03

MECb

Overall 101/236 42.8% 120/236 50.8% 51/236 21.6% 101/236 42.8%
0.41 � 0.02 0.51 � 0.02 0.30 � 0.1 0.59 � 0.01

Superficial 44/103 42.7% 57/103 55.3% 27/103 26.2% 50/103 48.5%
0.45 � 0.03 0.55 � 0.02 0.33 � 0.02 0.65 � 0.02

Deep 57/133 42.9% 63/133 47.7% 24/133 18.0% 51/133 38.3%
0.39 � 0.02 0.48 � 0.02 0.28 � 0.02 0.56 � 0.02

MEC spatialc

All grids 12/23 52.2% 12/23 52.2% 3/23 13.0% 13/23 56.5%
0.52 � 0.06 0.64 � 0.05 0.32 � 0.05 0.71 � 0.04

Grid only 7/12 58.3% 5/12 41.7% 0/12 0.0% 6/12 50.0%
0.56 � 0.09 0.66 � 0.07 0.24 � 0.06 0.70 � 0.07

Grid � HD 5/11 45.5% 7/11 63.6% 3/11 27.3% 7/11 63.6%
0.48 � 0.07 0.62 � 0.06 0.40 � 0.08 0.72 � 0.05

All head direction 62/125 49.6% 81/125 64.8% 37/125 29.6% 73/125 58.4%
0.44 � 0.02 0.55 � 0.02 0.34 � 0.02 0.63 � 0.02

HD only 52/101 51.5% 66/101 65.4% 29/101 28.7% 59/101 58.4%
0.43 � 0.03 0.53 � 0.02 0.32 � 0.02 0.62 � 0.02

Border � HD 5/13 38.5% 8/13 61.5% 5/13 38.5% 7/13 61.5%
0.48 � 0.09 0.60 � 0.05 0.48 � 0.06 0.69 � 0.05

All border 11/27 40.7% 14/27 51.9% 7/27 25.9% 11/27 40.7%
0.46 � 0.06 0.53 � 0.04 0.34 � 0.05 0.61 � 0.04

Border only 6/14 42.9% 6/14 42.9% 2/14 14.3% 4/14 28.6%
0.43 � 0.07 0.47 � 0.06 0.22 � 0.05 0.53 � 0.06

Other 26/85 30.6% 28/85 32.9% 15/85 17.6% 18/85 21.1%
0.35 � 0.03 0.45 � 0.03 0.26 � 0.02 0.54 � 0.02

aData are mean � SEM. No. significant � number of cells with significant coding/total number of cells tested.
bProportions reflect MEC down-sampled data to allow direct comparison to PRC and LEC. Average SI data were not sensitive to firing rate differences and therefore were not adjusted.
cProportions reflect MEC data without down-sampling given within region comparisons only. Average SI data were not adjusted.
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�0.002) as well as position (p � 0.0001),
although the magnitude of these differ-
ences is modest (Fig. 5A).

In comparing the proportions of cells
in different areas that code for specific di-
mensions, it is important to consider that
the proportion of cells significantly cod-
ing for dimensions (Fig. 5B), but not the
average SI values (Fig. 5A), was sensitive
to increases in firing rate. Given a higher
average firing rate in MEC (PRC 2.16 �
0.19 Hz, LEC 2.08 � 0.17 Hz, MEC 3.07 �
0.16 Hz; p � 0.0001), we randomly down-
sampled MEC neurons to an average fir-
ing rate equivalent to that of PRC and LEC
neurons (Bonnevie et al., 2013; Mizuseki
and Buzsáki, 2013). As can be seen in Fig-
ure 5B and in greater detail in Table 1,
more cells in MEC significantly coded for
context, position, and the conjunction of
object-position information than in PRC
or LEC (p values �0.001), whereas there
were no differences in proportions of
cells significantly coding task dimensions
between PRC and LEC (p values 
0.3).
Thus, although analysis of single-unit
properties with the SI revealed some
quantitative differences in selectivity, the
most striking result of this analysis is that
all regions exhibit substantial coding for the full spectrum of task
dimensions. This observation challenges the commonly held
view that PRC and LEC selectively encode object and not spatial
information, whereas MEC selectively encodes spatial informa-
tion (Davachi, 2006; Eichenbaum et al., 2007).

Selectivity for task dimensions is similar across anatomical
subdivisions of PRC, LEC, and MEC
When neurons were separated by laminar location of their re-
cordings, superficial neurons in PRC exhibited greater selecti-
vity overall relative to deep layer neurons (one-way ANOVA,
F(1,810) � 5.22, p � 0.02), but post hoc tests revealed no differences
between subdivisions with respect to specific task dimensions (p
values 
0.01). In contrast, there was no difference in stimulus
selectivity between Area 35 neurons and Area 36 neurons within
PRC (one-way ANOVA, F(1,810) � 0.35, p � 0.55). There was also
no difference in stimulus selectivity between superficial versus
deep layers within LEC (one-way ANOVA, F(1,801) � 0.64, p �
0.42). However, within MEC, superficial neurons exhibited
greater selectivity than neurons in deep layers (one-way ANOVA,
F(1,1155) � 30.16, p � 0.0001). Post hoc tests confirmed that su-
perficial layers of MEC exhibited greater object-context (p �
0.003) and object-position selectivity (p � 0.003). Again, despite
some modest differences in coding across laminar subdivisions,
these results reflect similar coding of task dimensions across these
subdivisions.

Furthermore, contrary to the common emphasis on spatial
coding in MEC grid and border cells, we found that grid cells,
border cells, and head direction cells exhibited selectivity for all
task dimensions, including those involving object selectivity (Ta-
ble 1, bottom half; all p values �0.01). Indeed, the selectivity of
these spatial coding cells was greater than that of the remaining
MEC population (two-way ANOVA, F(3,1310) � 19.62, p �
0.0001). Post hoc tests confirmed that grid cells and head direc-

tion cells exhibited greater selectivity for all task dimensions (p
values �0.01) relative to the remaining MEC population, other
than object coding for grid cells (p � 0.42) and context coding for
head direction cells (p � 0.015). Border cells exhibited similar
selectivity to the remaining MEC population (p values 
0.06),
and there were no differences in selectivity between the spatial cell
groups (p values 
0.01). Given that many grid cells and border
cells also exhibit significant head direction modulation, we also
compared selectivity between a combined group of grid cells and
border cells without head direction modulation against that of
cells with significant head direction coding only and found no
differences in selectivity between these groups (p values 
0.01;
for more information, see Table 1). Thus, spatial selectivity prop-
erties (identified during open field foraging) may contribute in
part to the identification of contexts, positions, and objects dur-
ing memory performance, although all these dimensions are sub-
stantially encoded even by cells that lack the specific spatial firing
properties observed during open-field foraging.

Ensemble representations in PRC, MEC, and LEC organize
information distinctly
To explore how neural populations represented the task dimen-
sions, we used an RSA. This analysis yields modest, but highly
reliable, correlation coefficients that indicate that ensemble firing
patterns are highly consistent between identical individual events
(Fig. 5C; e.g., sampling events involving the same object in the
same position and context).

First, to measure the extent to which identical events were
coded similarly, population vectors for odd-numbered events
were correlated against those for even-numbered events for each
of the two objects within each of the two positions in each of the
two contexts. The mean of those eight correlation coefficients was
used to measure the ensemble similarity for identical events
within each of the recording sessions (14 for PRC, 17 for LEC, 30
for MEC; Fig. 5C, first set of bars). For all other comparisons,

Figure 2. Recording site reconstruction. Left set of panels (A), Red circles represent estimated tetrode locations during neuro-
nal recordings in MEC. Right set of panels, Blue circles and green circles represent estimated tetrode locations in LEC and PRC,
respectively. Inspection of histology for tetrode tracks and tetrode tip lesions was used in conjunction with driver turn counts and
maps of tetrode locations to estimate tetrode locations during neuronal recordings.
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Figure 3. Examples of neuronal firing patterns during object sampling. Rasters and perievent histograms represent activity patterns during the sampling of each object (A or B) at each position
(1 or 2) within each context (1 or 2). Time 0 indicates the onset of object sampling. Histograms represent firing rates in 167 ms time bins. Observed SI values for each example are provided at the
bottom of the panel for each unit. Observed SI values (top row for each unit below) and statistical significance as determined by comparing observed SI values against bootstrapped distribution
(significance level p � 0.01): Unit 1: C � 0.71; p � 0.66; O � 0.35; O, p � 0.80. Unit 1: C, p � 0.0001; P, p � 0.0001; O, p � 0.04; O-P, p � 0.0001. Unit 2: C � 0.78; p � 0.78; O � 0.74; O, p �
0.83. Unit 2: C, p � 0.0001; P, p � 0.0001; O, p � 0.0001; O-P, p � 0.0001. Unit 3: C � 0.50; p � 0.37; O � 0.62; O, p � 0.73. Unit 3: C, p � 0.002; P, p � 0.11; O, p � 0.0001; O-P, p � 0.0001.
Unit 4: C � 0.44; p � 0.79; O � 0.79; O, p � 0.81. Unit 4: C, p � 0.03; P, p � 0.0001; O, p � 0.0001; O-P, p � 0.0002. Unit 5: C � 0.77; p � 0.91; O � 0.82; O, p � 0.92. Unit 5: C, p � 0.0001;
P, p � 0.0001; O, p � 0.0001; O-P, p � 0.0001. Unit 6: C � 0.84; p � 0.78; O � 0.57; O, p � 0.82. Unit 6: C, p � 0.0001; P, p � 0.0001; O, p � 0.0004; O-P, p � 0.0001. C, Context; O-C,
object-context; O, object; O-P, object-position; P, position.
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population vectors for object-sampling events of each type were
correlated with those for a different type of event. To measure the
similarity of ensemble representations for different objects sam-
pled at the same position, population vectors for odd-numbered
events for one object were correlated against even-numbered
events for the other object, and vice versa (even-numbered events
for the first object against odd-numbered events for the second
object), to compose eight total correlations, and the mean of
those correlation coefficients was used to measure the represen-
tational similarity for different objects (holding position and
context constant) in each session (Fig. 5C, second set of bars).
The same approach was used to measure the representational
similarities for the same or different objects at different positions
within a context, including the separation of odd- and even-
numbered events to ensure that similar amounts of data were
used in all analyses. To assess the similarity of ensemble represen-
tations for the same object between positions, population vec-
tors for sampling events involving an object in one position
were correlated with those for the same object in the other
position within the same context (Fig. 5C, third set of bars) or
with that for the other object in the other position within the
same context (Fig. 5C, fourth set of bars), again comparing
odd-numbered against even-numbered events and vice versa.
To assess the similarity of ensemble representations of objects
between contexts, population vectors for odd-numbered and
even-numbered events for the same object (Fig. 5C, fifth set of
bars) or different objects (Fig. 5C, sixth set of bars) at positions
between contexts were similarly correlated. The mean corre-
lation coefficients for individual rats for all 3 brain regions are
presented in Figure 6, showing that the overall pattern of cor-
relations was similar across individual subjects.

Although a statistical comparison of the individual bars in
Figure 5C is not easily interpreted, it is clear that PRC and LEC
share a highly similar pattern of correlations for events varying

across dimensions; and on some dimensions, these are distinct
from that found in MEC. In particular, whereas MEC ensembles
are similar for different objects in the same position (p � 0.0001),
PRC and LEC ensembles have independent representations for
different objects in the same position (correlation not signifi-
cantly different from 0, p values 
0.3). Conversely, whereas PRC
and LEC ensembles have similar representations for the same
object at different positions (p values � 0.002), MEC ensembles
do not (p 
 0.5). This dissociation reflects stronger position
coding in MEC ensembles and stronger coding of object infor-
mation in PRC and LEC. It is also notable that, in all areas, rep-
resentations of different objects in different positions and
comparisons between contexts were negatively correlated (all
p values � 0.005), indicating strong pattern separation of repre-
sentations across these dimensions.

To better quantify these distinct patterns of activity, these
correlations were combined in several ways described below to
provide a straightforward measure of the similarity of population
representations associated with each task dimension. We used a
d� metric (as in McKenzie et al., 2014) to measure the separation
of the distributions of the correlation coefficients for specific task
features from 0 or against the distribution of coefficients from an
appropriately opposing condition (for each comparison, see Ma-
terials and Methods). As seen in Figure 5D, analysis of the ensem-
ble representations revealed both similarities and differences in
the representation of task dimensions. A two-way ANOVA on the
d� metric indicated a main effect of task dimension (F(3,232) �
23.75, p � 0.00001), a main effect of region (F(2,232) � 3.57, p �
0.03), and a significant interaction (F(6,232) � 7.21, p � 0.00001).
Post hoc tests indicated that PRC, LEC, and MEC populations
equally strongly represented contexts (p values 
0.4), whereas
MEC exhibited stronger representation of position information
than PRC (p � 0.001) and LEC (p � 0.001). In contrast, PRC and
LEC exhibited stronger representation of object information (p

Figure 4. Examples of neuronal firing patterns for grid cells during object sampling. Rasters and perievent histograms (top half) for grid cells as in Figure 3. In the bottom half of each example,
from left to right, firing rate maps for the entire session of the behavioral task, the open field session, and an autocorrelogram for the open field session. Below that are the average tetrode waveforms
for spikes isolated during the behavioral (left) and open field (right) sessions, respectively. Observed SI values are plotted at the bottom of the panel for each unit. Observed SI values (top row for each
unit below) and statistical significance as determined by comparing observed SI values against bootstrapped distribution (significance level p � 0.01): Grid cell 1: C � 0.91; p � 0.89; O � 0.94; O,
p � 0.96; grid score � 0.15. Grid cell 1: C, p � 0.0004; P, p � 0.0003; O, p � 0.0001; O-P, p � 0.0001. Grid cell 2: C � 0.31; p � 0.64; O � 0.23; O, p � 0.83; grid score � 0.42. Grid cell 2: C, p �
0.14; P, p � 0.0001; O, p � 0.29; O-P, p � 0.0001. Grid cell 3: C � 0.31; p � 0.76; O � 0.50; O, p � 0.80; grid score � 0.36. Grid cell 3: C, p � 0.14; P, p � 0.0001; O, p � 0.007; O-P, p � 0.0001.
C, Context; O-C, object-context; O, object; O-P, object-position; P, position.
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values � 0.0001) and object-position conjunction information
than MEC (PRC vs MEC, p � 0.009; PRC vs MEC, p � 0.001).
Consistent with findings of mixed selectivity from the SI analysis,
analysis of ensemble representations in PRC, LEC, and MEC in-
dicated that all regions encode all task dimensions (all p values
�0.01), but the observed double dissociation between MEC rep-
resentation of position and PRC-LEC representation of objects
and object-position conjunctions indicates a difference in the
underlying organization of representations in PRC-LEC and
MEC.

To test the generality of the RSA approach, ensembles of re-
corded neurons were also analyzed using the cosine separation of
population vectors to characterize the similarity of representa-
tions. Strength of coding dimensions to different task features
were identified by comparing d� distributions of mean cosine
scores similar to the RSA approach. Analysis of these d� compar-
isons with a two-way ANOVA revealed a very similar pattern of
population coding as with the RSA approach (Fig. 7A), indicating
a main effect of task dimension (F(3,232) � 19.86, p � 0.00001), no
main effect of region (F(2,232) � 0.18, p � 0.84), and a significant
interaction (F(6,232) � 6.42, p � 0.00001). Similar to the RSA
results, post hoc tests indicated that PRC, LEC, and MEC popula-

tions equally strongly represented contexts (p values 
0.3) while
also indicating similar representation of object-position con-
junctions (p values 
0.2). In contrast to those similarities in
function, MEC exhibited stronger representation of position in-
formation than PRC (p � 0.006) and LEC (p � 0.001), whereas
PRC and LEC exhibited stronger representation of object infor-
mation (PRC vs MEC, p � 0.01; PRC vs MEC, p � 0.0005).
Despite reflecting more similar representations with respect to
object-position conjunctions, these results are nonetheless highly
consistent with those found with the RSA approach, and they
suggest a distinct, but complementary, organization of object and
spatial information at the population level between PRC-LEC
and MEC.

We further tested the generality of these findings across ana-
lytical approaches by estimating the probability that a pattern of
ensemble firing rates was recorded in each of 8 object in position
combinations using a Bayesian decoding algorithm. Because
there is a probability associated with each object/position combi-
nation, we could determine whether there were different hierar-
chies of coding probabilities among the areas examined. MEC
ensembles exhibited nearly equivalent coding probabilities for
position and object/position conjunctions, followed by object

Figure 5. Single-unit and population coding for task dimensions. A, Average SI � SE for task dimensions during object sampling in PRC, LEC, and MEC. Dotted lines indicate the average SI values
from a bootstrapped distribution in which the position and/or object identities were shuffled for each trial (preserving firing rates and patterns). Even with this stringent criterion to determine coding
of task dimensions, we found significant coding for all dimensions in all three regions. B, Percentage of cells that significantly code for task dimensions after controlling for firing rate differences. C,
Mean correlations coefficients � SE for comparisons between object sampling events that are the same or different in distinct dimensions (object, position, context). Diff, Different. D, Strength of
population coding of different task dimensions, measured as d� distance between distributions of z-scored firing rates for context, position coding, object coding, and objects in specific positions
(Obj*Pos).
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and context coding probabilities. In contrast, LEC ensembles
exhibited object/position and object coding probabilities most
strongly, followed by context coding and then position coding
probability. In PRC, the hierarchy was less distinct with strong
object/position coding, followed by relatively equivalent coding
of context, position, and object information. With respect to the
decoding probabilities for task dimensions, for all regions ensem-
bles were most likely to have originated from trials with the same
object and position combination (mean probability PRC � 0.29;
LEC � 0.32; MEC � 0.42), which was greater than the probability

of the neural activity originating from trials with different objects
or positions (PRC mean probability � 0.15, d� � 0.66, p � 0.01;
LEC mean probability � 0.15, d� � 0.71, p � 0.001; MEC mean
probability � 0.13, d� � 0.81, p � 0.001). These differences in
probabilities reflect strong object-in-position coding. PRC and
LEC exhibited the greatest object coding, followed by MEC, in-
dicated by a greater probability of ensembles originating from
sampling events of the same object in different positions (PRC
mean probability � 0.18; LEC mean probability � 0.19; MEC �
0.11) than different objects in different positions within a context

Figure 6. Mean correlation coefficients for individual rats. Mean correlation coefficients for comparisons between object sampling events that are the same or different in distinct dimensions
(object, position, context) for individual subjects in (A) PRC, (B) LEC, and (C) MEC. diff, Different.
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(PRC mean probability � 0.10, d� � 0.34, p � 0.001; LEC mean
probability � 0.07, d� � 0.42, p � 0.001; MEC mean probabil-
ity � 0.07, d� � 0.24, p � 0.001). In contrast, MEC exhibited the
greatest position coding, followed by PRC and LEC, reflected by a
greater probability of ensembles originating from sampling
events in the same position (PRC mean probability � 0.20; LEC
mean probability � 0.22; MEC � 0.28) than sampling events at
different positions within a context (PRC mean probability �
0.14, d� � 0.32, p � 0.001; LEC mean probability � 0.13, d� �
0.53, p � 0.001; MEC mean probability � 0.09, d� � 1.29,
p � 0.001). Finally, a greater probability of ensembles origi-
nated from sampling events within contexts (PRC mean prob-
ability � 0.17; LEC mean probability � 0.17; MEC � 0.19)
than across contexts (PRC mean probability � 0.08; d� � 0.59,
p � 0.001; LEC mean probability � 0.09, d� � 0.22, p � 0.001;
MEC mean probability � 0.07, d� � 0.09, p � 0.05, not sig-
nificant), indicating approximately equivalent context coding
in LEC and MEC.

To directly compare the findings
among brain regions and relate these find-
ings to the correlation and cosine separa-
tion analyses, we compared the decoding
probabilities for task dimensions using
the d� metric (Fig. 7B). An ANOVA was
conducted on the d� values generated with
the Bayesian decoding algorithm. This
analysis indicated no main effect of region
(F(2,168) � 1.04, p � 0.35) but did indicate
a significant interaction (F(3,168) � 5.47,
p � 0.0001). Post hoc tests revealed an un-
derlying pattern that was highly similar to
those found in the ensemble correlation
and cosine separation analyses. LEC ex-
hibited greater object coding than MEC
(p � 0.005), and MEC exhibited greater
position coding than PRC or LEC (p val-
ues �0.001). However, PRC did not ex-
hibit greater object coding than MEC
(p 
 0.05), potentially because of a higher
probability of context decoding in PRC.
In contrast, there were no differences be-
tween PRC, LEC, and MEC with respect
to context or object-position conjunctive
coding as determined by the decoding al-
gorithm (p values 
0.05). Together, this
group of analyses demonstrates reliable
patterns of activity in PRC, LEC, and
MEC, suggesting distinct but comple-
mentary roles in processing object and
spatial information.

Coding of task dimensions across time
during object sampling
We also compared these brain areas with
respect to the temporal dynamics of infor-
mation coding among the different task
dimensions based on the correlation RSA
(as in Fig. 5D). Significant sustained posi-
tion coding was evident in MEC earliest,
followed �1–2 s later by PRC and LEC
(Fig. 8A). Furthermore, position coding
appeared to peak around the onset of ob-
ject sampling, which was particularly pro-

nounced in MEC (PRC peak � �400 ms, d� � 0.35, p � 0.001;
LEC peak � �400 ms, d� � 0.30, p � 0.001; MEC peak � 0 ms,
d� � 0.82, p � 0.001). In contrast, significant object coding was
evident in PRC and LEC at the onset of object sampling (Fig. 8B)
with sustained peak firing beginning at �500 ms after the onset of
object sampling (PRC peak � 800 ms, d� � 0.32, p � 0.001; LEC
peak � 1200 ms, d� � 0.31, p � 0.001), whereas MEC did not
exhibit significant object coding in this analysis (MEC peak �
600 ms, d� � 0.07, p � 0.24). Despite these differences in position
and object coding, there was less difference in the onset of object-
in-position coding among PRC, LEC, and MEC (Fig. 8C). Sus-
tained, significant coding for this task dimension was evident at
or just after the onset of object sampling (0 ms) with peak firing at
�1–1.5 s after the onset of object sampling (PRC peak � 1200
ms, d� � 0.82, p � 0.001; LEC peak � 1000 ms, d� � 0.74, p �
0.001; MEC peak � 1400 ms, d� � 0.71, p � 0.001). It should also
be noted that the timing pattern is unique for each of these di-

Figure 7. Population coding of task dimensions in MEC and LEC during object sampling. A, Strength of coding as in Figure 5D,
except using d� distance between distributions of average cosine values for firing rates normalized by the maximum firing rate
during object sampling. B, Strength of coding using d� distance between mean probabilities that patterns of ensemble firing rates
were recorded in each of the eight object in position combinations determined by a Bayesian decoding algorithm.
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mensions, reflecting distinct coding of
each of these features of events. Collec-
tively, the temporal dynamics of coding of
different task dimensions further distin-
guishes MEC as emphasizing position
coding, whereas PRC and LEC population
activity reflects earlier and stronger object
coding, consistent with the results of the
other population analyses.

PRC-LEC and MEC exhibit distinct
hierarchical organizations
of information
To explore the organization of dimen-
sions represented in PRC, LEC, and MEC
populations, we performed an additi-
onal analysis in which similarities bet-
ween population vectors for each sample
type were iteratively clustered according
to their mean correlation coefficients.
The highest correlations result in the
tightest clustering of nodes in the organi-
zational structure and successively lower
correlations reflect greater separation of
representations, resulting in a systematic
hierarchical organization of task dimen-
sions (Fig. 9). At the top of the hierarchy
for all regions, representations were
strongly separated (negatively correlated)
by events that occurred in different con-
texts. Within each context-based cluster,
in PRC and LEC, events within each con-
text were next separated by the object pre-
sented. Then, within each object cluster,
the positions where objects occurred were
separated. In MEC, events within each
context were also strongly separated (neg-
atively correlated). Then, in contrast to
PRC and LEC, within each context-based
cluster, events were separated by the
positions in which objects were sampled.
Then within each position representation,
objects were separated. Finally, in all
areas, representations of identical events
are most closely associated. Thus, al-
though PRC, LEC, and MEC exhibit great
similarity in mixed selectivity at the
single-neuron level, RSA revealed an
emergent distinction between these areas
in complementary organizations of event
representations.

Discussion
The present observations on PRC, LEC,
and MEC neuronal firing patterns quite
dramatically reject the notion that PRC
and LEC neurons selectively encode ob-
ject information, whereas MEC neurons
selectively encode spatial information.
Given the direct and indirect connections
between these areas (Witter et al., 1989;
Suzuki and Amaral, 1994; Burwell and

Figure 8. Coding for task dimensions is expressed at different times across regions during object sampling. The average d�
strength calculated from mean correlations (as in Fig. 5D) for each task dimension is depicted over time (using 200 ms bins) before
and after the onset of object sampling (0 s). MEC exhibits the earliest and strongest position coding compared with the pattern for
PRC or LEC (A), whereas PRC and LEC exhibit early and strong object coding, which is not observed in MEC (B), and all three regions
exhibit a similar degree of conjoint object-position coding that peaks later than separate coding of positions and objects (C).
Color-coded bars at the top of each graph represent periods in which the dimension was significantly coded.
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Amaral, 1998; Kerr et al., 2007), it should
be expected that information processed in
each of these areas is shared with the
other. However, the extent to which indi-
vidual PRC, LEC, and MEC neurons, in-
cluding even grid cells, border, and head
direction cells, process both object and
spatial information equally is surprising.
At the same time, population analyses
strikingly dissociated PRC and LEC from
MEC networks as prioritizing object and
spatial information, respectively. These
observations reinforce conclusions from
recent studies that the full content and or-
ganization of representations in higher-
order brain areas are most clearly revealed
in population analyses (Rigotti et al.,
2013; Shamir, 2014).

Given the previous reports of striking
coding of specific spatial dimensions (po-
sition, direction, borders) in MEC neu-
rons, it was quite surprising that MEC
neurons of all subtypes (grid, border, head
direction, other) strongly encoded object
information and did so at least as well as
PRC and LEC neurons. Also, given previ-
ous observations suggesting a lack of spa-
tial coding by PRC and LEC neurons
(Hargreaves et al., 2005; Deshmukh et al.,
2012), it was quite surprising that PRC
and LEC neurons strongly encoded
position and context, although not quite
matching that seen in MEC. The most ob-
vious difference in the present study and
previous work is that both spatial and ob-
ject dimensions were salient features of
the task demands in this context-guided
object-reward association paradigm. It is
important to consider that spatial context,
which determined the reward associations
and therefore was critical for task perfor-
mance, and position within contexts,
which was not a relevant dimension for
task performance, were both strongly en-
coded by PRC, LEC, and MEC. Perhaps,
once contextual spatial cues are relevant,
both global and local spatial information
becomes sufficiently salient to demand
representation. This interpretation is con-
sistent with other recent studies that have
previously identified spatial coding in a
minority of LEC cells (Deshmukh et al.,
2011; Tsao et al., 2013). Both studies pro-
vided evidence of spatial “memory” fields
at prior locations when objects were

Figure 9. Hierarchical organization of event representations by task dimensions. Dendrograms illustrating organization of
population representations in PRC, LEC, and MEC during object sampling for each specific type of object sampling event (a
particular object in a specific position within one context). Letters indicate Objects A or B in Positions 1 or 2 (Context 1) or Positions
3 or 4 (Context 2) with 
 or � indicating whether the stimulus was reinforced. Repeated events (e.g., A1
 and A1
) indicate

4

comparison of population vectors for even- and odd-
numbered events for that event type (see Online Methods).
Black represents correlation of population vectors between
contexts. Red represents correlations between objects. Green
represents correlations between positions. Blue represents
correlations between even- and odd-numbered trials.
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moved in or removed from the environment, whereas Deshmukh
et al. (2011) also provided examples of activity similar to place
field firing when objects were presented. In addition, studies on
earlier stages of information processing before LEC and MEC
(i.e., in the PRC and postrhinal cortex) have also reported mixed
selectivity of neuronal activity in animals performing memory
tasks where objects and spatial choices are relevant (Furtak et al.,
2012; Ahn and Lee, 2015). The present findings suggest that both
LEC and MEC also represent organizations of objects and events
within spatial contexts (see also Knierim et al., 2013) and that
even PRC exhibits a combination of object and spatial coding.

It was particularly striking that grid cells strongly encoded
object information, often differentiating objects sampled at the
same location (Fig. 4). In contrast to the common view that grid
cells are specialized for position coding, results from the present
study strongly suggest that grid cells possess strong object-coding
properties that have been largely overlooked to this point. Future
investigation of these properties could yield further insights
about the organization of information in cortical structures of the
hippocampal region and beyond, given the detailed understand-
ing of grid cell function and organization (Moser and Moser,
2013; Moser et al., 2013; Witter et al., 2014).

The RSA used here revealed that, within equivalent coding of
specific dimensions by single PRC, LEC, and MEC neurons, pop-
ulations of neurons in all these areas developed distinct system-
atic organizations of those dimensions. Notably, both areas
developed quite separate (anticorrelated) networks consistent
with the opposite reward associations of objects in the two con-
texts. Other recent studies have shown that grid cell firing pat-
terns in MEC are responsive to contextual differences (Marozzi et
al., 2015) as well as a merging of spatial contexts (Carpenter et al.,
2015). Furthermore, strong pattern separation of contextual rep-
resentation was also observed in the hippocampus in a previous
study that used the same task (McKenzie et al., 2014). Thus,
contrary to other work suggesting that pattern separation occurs
selectively within subregions of the hippocampus (Lee et al.,
2004; Leutgeb et al., 2004; Bakker et al., 2008), here the entire
hippocampal system responds to a strong demand for reducing
interference between the opposite object associations in the two
contexts by robust pattern separation.

Within the two context-based networks, PRC, LEC, and MEC
organize the object and spatial information quite differently.
Within each context-based network, the closely interconnected
PRC and LEC populations distinguish objects, and then only
within each object representation distinguish the positions where
objects are sampled. Conversely, within each context-based net-
work, MEC populations distinguish the positions where object
sampling occurs, and then only within each position representa-
tion distinguish the objects at those locations. Notably, the pop-
ulation representation within the MEC is very similar to that
observed in the hippocampus (McKenzie et al., 2014), suggesting
a prominent role of MEC in driving spatial organization in the
hippocampus. Overall, this pattern of findings suggests we move
from thinking about modality-specific processing areas within
the hippocampal system (Eichenbaum et al., 2007) to conceiving
the hippocampal system as composed of interconnected areas,
each of which processes all the information but differently orga-
nizes the dimensions of information processing.
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