
Research Article
Robust Sliding Mode Control Based on GA Optimization and
CMAC Compensation for Lower Limb Exoskeleton

Yi Long, Zhi-jiang Du, Wei-dong Wang, and Wei Dong

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

Correspondence should be addressed to Wei Dong; dongwei@hit.edu.cn

Received 16 January 2016; Accepted 17 February 2016

Academic Editor: Huapeng Wu

Copyright © 2016 Yi Long et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow
human motion intent accurately and compliantly to prevent incoordination. If the user’s intention is estimated accurately, a
precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position
control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network,
is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to
determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy
(SMC GA CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal
SMC with GA (SMC GA), and SMC with CMAC compensation (SMC CMAC), all of which are employed to track the desired
joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated
with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the
second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which
can be employed in similar exoskeleton systems.

1. Introduction

The lower extremity exoskeleton, which began in the late
1960s, is an electromechanical structure worn by human
users as an intelligent device for performance assistance and
enhancement. In recent years, wearable robots have attracted
interests of many researchers widely. The Berkeley Lower
Extremity Exoskeleton (BLEEX)was designed to assist people
in walking for carrying load, which could walk at the speed
of 0.9m/s while carrying 34 kg payload [1]. A mechanical leg
has seven DOFs (three at the hip, one at the knee, and three
at the ankle), of which four DOFs are actuated by valve-based
hydraulic actuation systems [2]. However, these many active
DOFs make the system complex and heavy, weighing 38 kg.
The latter exoskeletons, that is, ExoHiker, ExoClimber, and
HULC, simplifymechanical structure and reduce the number
of active DOFs while carrying more payloads up to 68 kg–
90 kg [3]. Hybrid Assistive Limb (HAL), proposed by the
University of Tsukuba in Japan, has two active DOFs at the
hip joint and knee joint, which are controlled according to

collected electrical signals from muscles [4]. HAL is used to
help users carry load and assist disabled people in walking
[5, 6]. An underactuated exoskeleton system is designed
based on appropriate criteria to help infantry soldiers walk
on different terrain, where active joints are applied to the knee
joints while other joints are passive [7]. Moreno et al. studied
and analyzed the human interactionwithwearable lower limb
exoskeleton, where the robot gathered information from the
sensors in order to detect human actions and subjects also
modified their gait patterns to obtain the desired responses
from the exoskeleton [8].

Although many kinds of lower limb exoskeleton robots
are studied, the human-exoskeleton collaborative movement
is quite complex and difficult due to nonlinear character-
istics of dynamic model and uncertainties, for example,
external disturbance and involuntary movements. To achieve
the goal of making exoskeletons providing assistance for
human beings, a consistent dynamic tracking performance is
required to maneuver exoskeletons in an efficient, smooth,
and continuous manner [9]. The control procedure can be
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divided into two steps, acquiring human motion intent with
human-robot interaction (HRI) and following the human
motion intent accurately.

When the wearer wants to move, the central controller
sends control signals to enforce the exoskeleton to follow
commanded signals, during which HRI decreases. A crucial
issue of control is to follow the estimated human motion
intent accurately. The more accurate the intention tracking
is, the more compliantly the exoskeleton works. The pre-
cise motion control of robotic manipulators has received
considerable attention from many robotics researchers and
its challenges continue to limit overall control performance
because of structured and unstructured uncertainties [10].
In exoskeletons, the structured uncertainties contain payload
variations, while unstructured uncertainties contain sensor
noises, joint friction, and external disturbances. There are
many approaches for position control approaches to deal with
uncertainties such as robust control [11, 12], adaptive control
[13, 14], intelligent control [15], and sliding mode control
[16].

SMC is a robust control approach that drives state tra-
jectory to predefined sliding surface by using discontinuous
control inputs [17], which is used to improve control per-
formance for robotic manipulators with model uncertainties
such as parameter perturbations, unknown joint frictions
and inertias, and external disturbances [18]. It is notable that
its overall performance is superior to general PID control
algorithm [19]. The process of designing a SMC controller
has two steps: defining suitable sliding surfaces and designing
discontinuous control laws [13]. Parameters of SMC should
be chosen suitably to obtain optimal performance. Some
common optimization methods are provided and applied in
robots, for example, GA [20], particle swarm optimization
(PSO) [21], ant colony optimization (ACO) [22], and evolu-
tionary algorithm (EA) [23]. GA is simple to be implemented
and is capable of locating global optimal solutions [24], which
is utilized to optimize the structure of intelligent methods
[25, 26]. The decoupled SMC as a supervisory controller is
applied in accordance with PID control, whose parameters
are tuned using GA, to enhance tracking performance and
eliminate the chattering problem [27]. The gain switch and
sliding surface constant parameters are selected byGA so that
the designed SMC can achieve satisfactory performance [28].
However, GA is only used to optimize parameters of sliding
surfaces or SMC control laws. In this work, we use GA to
optimize all parameters of the sliding surface and the control
law at the same time.

The optimal SMC can deal with uncertainties to achieve
satisfactory performance. To improve tracking performance,
CMAC is added as a compensation item with property of
fast learning capability. The CMAC proposed first by Albus
[29] is similar to the mode of human cerebellum, which
is an autoassociative memory feed-forward neural network.
Compared with other feed-forward neural networks, it has
faster convergence speed [30]. The approach which uses
CMAC as a compensation item with SMC is applied in
position control of robotic manipulators [31]. In this work,
we propose to combine optimal SMC using GA and CMAC
compensation to form the hybrid position control strategy.
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Figure 1: Prototype of lower limb powered exoskeleton. There
are two active joints of each leg in walking direction, which are
represented as 𝜃hip and 𝜃knee. All auxiliary facilities are packaged in
the backpack.

The remainder of this paper is organized as follows. The
specific system under study is given in the second section.
In Section 3, the proposed control strategy is explained
in details. Cosimulations using the proposed approach and
results analysis are presented in the fourth section. Conclu-
sions are drawn in the final section.

2. Problem Formulations

2.1. Exoskeleton Configuration. Based on principles in bio-
logical design, the designed exoskeleton is required to retain
adaptability to multifunctionality of human lower limbs. An
available powerful tool when designing an assistive exoskele-
ton is the enormous Clinical Gait Analysis (CGA) data on
human walking [32]. With CGA data [33], our designed
exoskeleton is shown in Figure 1. As Figure 1 shows, there
are two active joints of a single leg in sagittal plane, which
are knee joint and hip joint actuated by hydraulic actuation
system.

2.2. Mathematical Model of Exoskeleton. For multirigid sys-
tem, Euler-Lagrange is a frequently used method for mod-
eling of robotic manipulators. The exoskeleton is a typical
human-robot collaboration system, which includes the user’s
lower limbs and mechanical limbs which are tied together at
the interaction cuffs. Mathematical model of a single leg of
exoskeleton is obtained because of its symmetry structure.
Without loss of generality, the dynamic equation of the swing
leg of exoskeleton robot can be expressed as follows:

M (q) q̈ + C (q, q̇) q̇ + G (q) +D = T, (1)

whereM(q) ∈ 𝑅𝑛×𝑛 is the symmetric definite inertial matrix;
C(q, q̇) ∈ 𝑅

𝑛×𝑛 is the Coriolis and centrifugal force matrix;
G(q) ∈ 𝑅

𝑛×1 is the gravitational force matrix; T ∈ 𝑅
𝑛×1
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is the control input vector; D ∈ 𝑅
𝑛×1 denotes unmodeled

dynamics and external disturbances.
For dynamics model in (1), several properties are pre-

sented as the following [34].

Property 1. MatrixM(q) is symmetric and positive definite.

Property 2. Matrix Ṁ(q) − 2C(𝑞, 𝑞̇) is a skew-symmetric
matrix if ∀𝜀 ∈ 𝑅𝑛, 𝜀𝑇(Ṁ(q) − 2C(𝑞, 𝑞̇))𝜀 = 0.

Property 3. There exist finite scalars 𝛿
𝑖
> 0, 𝑖 = 1, . . . , 4 such

that ‖M(q)‖ ≤ 𝛿
1
, ‖C(q, q̇)‖ ≤ 𝛿

2
, ‖𝐺(q)‖ ≤ 𝛿

3
, and ‖𝐷‖ ≤

𝛿
4
, which means all items in dynamic model are bounded.

In the position control of robotic manipulators, we define
trajectory tracking error as

e = q
𝑑
− q, (2)

where e is the tracking error, q
𝑑
is reference trajectory, and q

is actual trajectory. Based on (2), we can obtain

ė = q̇
𝑑
− q̇,

ë = q̈
𝑑
− q̈,

(3)

where ė and ë is the first and second derivative of e, q̇
𝑑
and

q̈
𝑑
are angular velocity and acceleration vector of command

input, and q̇ and q̈ are that of actual output, respectively, all
of which are bounded.

3. Control Strategy Design

3.1. Sliding Mode Control. A general SMC design consists
of two steps: the sliding surface design and the control
law construction. The purpose of the SMC is to track the
trajectory specified by human intention and maintain system
trajectory in the sliding surfaces [18]. Considering that there
exist uncertainties including unmodeled frictions, variation
of parameters, and external disturbances, the robustness
should be an important concern in the controller design for
exoskeleton system. The general sliding surface is defined as
s = ė + Ae. To improve robustness of controller, a designed
integral sliding surface is represented as follows [35]:

s = ė + Ae +H∫

𝑡𝑠

0

e 𝑑𝑡, (4)

where 𝐴 and 𝐻 are positive definite matrix. Then ̇s can be
derived:

̇s = ë + Aė +He. (5)

As the second design stage of SMC, the control laws should
be chosen, which should be satisfied with the existence
condition of SMC [36]:

s𝑇 ̇s < 0. (6)

For the exoskeleton system under study, we define the SMC
control law as follows:

u = M (𝑞) q̈
𝑑
− (T
𝑑
− C (𝑞, 𝑞̇) q̇) +M (𝑞)Aė

+M (𝑞)He + C (𝑞, 𝑞̇) s + 𝜀 sgn (s) + Ks,
(7)

where T
𝑑
= D − G(q), 𝜀 and K are positive definite matrices,

and sgn(s) is a symbolic function which is shown as follows:

sgn (s) =
{{{{

{{{{

{

1, s > 0,

0, s = 0,

−1, s < 0.

(8)

The SMC algorithm has chattering phenomena, which
affects the accuracy of position control much. In order to
eliminate chattering, the continuous function 𝜃(s) with relay
characteristics is used to replace the function of symbolic
function sgn(s) to restrict the trajectory in a boundary layer
of ideal sliding mode [37]. Then (7) can be rewritten as

u = M (𝑞) q̈
𝑑
− (T
𝑑
− C (𝑞, 𝑞̇) q̇) +M (𝑞)Aė

+M (𝑞)He + C (𝑞, 𝑞̇) s + 𝜀𝜃 (s) + Ks,
(9)

where 𝜃(s) = s/(‖s‖ + 𝜎), 𝜎 > 0. Before stability analysis,
Barbalat lemma is shown as the following [38].

Barbalat Lemma. If a differentiable function 𝑓(𝑡) has a limit
as 𝑡 → ∞, and if 𝑓̇(𝑡) is uniformly continuous, then 𝑓(𝑡) → 0

as 𝑡 → ∞.

Theorem 1. The proposed controller (9) guarantees asymptotic
convergence to zero, both of the trajectory tracking errors and
sliding surfaces. Namely, the system is globally stable; that is,
when 𝑡 → ∞, 𝑒 → 0, 𝑠 → 0.

Proof. Lyapunov function is defined as

V =
1

2
s𝑇M (𝑞) s. (10)

Differentiating V with respect to time yields

V̇ = s𝑇M (𝑞) ̇s + 1

2
s𝑇Ṁ (𝑞) s. (11)

Considering Property 2, then

s𝑇 (1
2
Ṁ (𝑞) − C (𝑞, 𝑞̇)) s = 0. (12)

Combining (10)–(12), one can get

V̇ = s𝑇 (M (𝑞) ̇s + C (𝑞, 𝑞̇) s) = s𝑇 (M (𝑞) (q̈
𝑑
− q̈)

+M (𝑞)Aė +M (𝑞)𝐻𝑒 + C (𝑞, 𝑞̇) s) .
(13)

And q̈ can be solved by

q̈ = M (𝑞)
−1

(T + T
𝑑
− C (𝑞, 𝑞̇) q̇) . (14)

Substituting (14) into (13), then

V̇ = s𝑇 (M (𝑞) q̈
𝑑
− (T + T

𝑑
− C (𝑞, 𝑞̇) q̇) +M (𝑞)Aė

+M (𝑞)He + C (𝑞, 𝑞̇) s) .
(15)
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Substituting (7) into (15), we can obtain

V̇ = s𝑇 (−𝜀𝜃 (s) − Ks) . (16)

It is easy to know that K and 𝜀 are positive definite matrices;
therefore s𝑇Ks > 0, s𝑇𝜃(s) > 0; then V̇ < 0. Hence, the
system is globally stable. With the Barbalat lemma, s → 0

as 𝑡 → ∞; then one knows e → 0 and ė → 0 as 𝑡 → ∞.
This control law could realize convergence of the trajectory
tracking error to zero.

3.2. Genetic Algorithm. In SMC, those constant parameters
existing in sliding surfaces and control laws, which are
A, H, K, and 𝜀 in (9), determine the overall performance.
Hence, it is necessary to find the optimal values of them
using optimization algorithm. GA is an adaptive heuristic
search algorithm that mimics the process of natural selection
and uses biological evolution to develop a series of search
space points toward an optimal solution. There are five com-
ponents that are required to implement GA: representation,
initialization, fitness function, genetic operators, and genetic
parameters [39].

A simple GA involves three types of operator: selection,
crossover, and mutation [40]. Selection is a probabilistic
process for selecting chromosomes in the population using
their fitness values.The chromosome with larger fitness value
is likely to be selected to reproduce. Crossover is the process
of randomly choosing a locus and swaps the characters either
left or right of this locus between two chromosomes to create
two offspring. The probability of crossover occurring for the
parent chromosomes is usually set to a large value (e.g., 0.8).
Mutation is to randomly flip some of the bits by changing “0”
to “1” or vice versa, with a small probability (e.g., 0.001) which
maintains genetic diversity to guarantee that GA can come to
better solution. The process of GA optimization is shown in
Figure 2. As Figure 2 shows, there are parameters such as the
size of population and generation and the length of code that
should be initialized; then the process of selection, crossover,
and mutation is preceded until the convergence conditions
are satisfied.

3.3. SMC with GA Optimization. Based on that discussed
above, the fitness function should be confirmed before
implementing GA to SMC. The goal of SMC is to achieve
precise trajectory tracking for robotic manipulators; that is,
the smaller the trajectory errors are, the more effective the
controller is. Those parameters to be optimized are relevant
to trajectory error; hence the fitness function is defined as
follows:

𝐽 (A,H,K, 𝜀) =
∞

∑

𝑘=0

‖e (𝑘)‖2 . (17)

With the fitness function, those parameters can be found
with theminimization of tracking errors during the trajectory
tracking using the designed control law. In the search space
of GA, the SMC will have optimal parameters when the
fitness function has minimum values. The algorithm of SMC
optimized by GA is shown as Algorithm 1 in Appendix A.
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Figure 2: The process of GA optimization, when the convergence
condition is satisfied, the optimal parameters will be obtained.
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Figure 3: Structure of CMAC neural network.

3.4. CMAC Neural Network. The CMAC neural network has
three steps: projecting an input into association area, com-
pressing memory cell through Hash coding, and calculating
the output as a scalar product of the memory area [41], which
is shown in Figure 3. The output of CMAC can be expressed
as follows [42]:

y
𝑠
= C𝑇
𝑠
HW

= [𝑐
𝑠,1

𝑐
𝑠,2

⋅ ⋅ ⋅ 𝑐
𝑠,𝑁ℎ

]

[
[
[
[

[

ℎ
1,1

⋅ ⋅ ⋅ ℎ
1,𝑀𝑝

.

.

.
.
.
.

ℎ
𝑁ℎ ,1

⋅ ⋅ ⋅ ℎ
𝑁ℎ ,𝑀𝑝

]
]
]
]

]

[
[
[
[
[
[
[

[

𝜔
1

𝜔
2

.

.

.

𝜔
𝑀𝑝

]
]
]
]
]
]
]

]

,

(18)
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𝐺 = 200, Size = 30, Code𝐿 = 10, parameters definition
input vector 𝑋

𝑘
= [𝑞hd(𝑘), 𝑞kd(𝑘)]

𝑇, the length of optimized parameters Len = 8
initialize population 𝐸 = round(rand(Size, Siez ∗ Code𝐿))
for 𝑔 = 1, 2, . . . , 𝐺 do
for 𝑠 = 1, 2, . . . , Size do

for 𝑙 = 1, 2, . . . , Len do
𝐹(𝑠, 𝑙) = (Max(𝑙) −Min(𝑙)) ∗ Code(𝑗)/1023 +Min(𝑙); 𝐹(𝑠, 𝑙) will be used for fitness

end for
end for
Selection and reproduction
sort the fitness value and obtain the sequence number index
for 𝑠 = 1, 2, . . . , Size do

Temp𝐸(𝑗𝑗, :) = 𝐸(index(𝑖), :); 𝑗𝑗 = 𝑗𝑗 + 1

end for
Crossover and select the probability 𝑝

𝑐
= 0.8

for 𝑠 = 1, 2, . . . , Size do
temp = rand

If 𝑝
𝑐
> temp do

for 𝑡 = 1, 1, . . . ,Num do
Temp𝐸(𝑠, 𝑡) = 𝐸(𝑠 + 1, 𝑡)

Temp𝐸(𝑠 + 1, 𝑡) = 𝐸(𝑠, 𝑡)

end for
end if

end for
Mutation and select the probability

𝑝
𝑚
= 0.001 − [1 : 1 : Size] ∗ (0.001)/Size, temp = rand
for 𝑠 = 1, 2, . . . , Size do

for 𝑗 = 1, 2, . . . , Len do
if 𝑝
𝑚
> temp do

if Temp𝐸(𝑠, 𝑗) == 0 do
Temp𝐸(𝑠, 𝑗) = 1

else
Temp𝐸(𝑠, 𝑗) = 0

end if
end if

end for
end for
replace old generation with new one

end for
Obtain optimal parameters

Algorithm 1: Optimize SMC with GA. (Notation: 𝑞hd(𝑘) and 𝑞kd(𝑘) represent desired trajectory of hip joint and knee joint, resp.)

where C
𝑠
is an association vector projected by input vector,

W is the weight vector,H is the matrix of Hash coding,M
𝑝
is

the number of Hash vector, 𝑁
ℎ
is the number of association

vector, and ℎ
𝑖𝑗
= 1 represents 𝑖th association unit response to

𝑗th Hash unit.
Similar to other neural networks, the weight parameters

should be updated using Least Square Method (LSM). The
updating process is expressed as follows:

ΔW =
𝜂

𝑁
ℎ

A
𝑠−1

(ŷ
𝑠−1

− A𝑇
𝑠−1

W
𝑠−1
) ,

W (𝑘 + 1) = W (𝑘) + ΔW + 𝛼 (W (𝑘 + 1) −W (𝑘)) ,

(19)

where ΔW is the weight vector increment, 𝜂 is the learning
rate, A𝑇

𝑠−1
= C𝑇
𝑠−1

H, 𝑦̂
𝑠−1

is the target output, and 𝛼 is the
inertial parameter.

CMACwas originally proposed to be applied into control
problems by Miller III et al. [43]. The CMAC control loop
is usually added to traditional control loops, where the
traditional controller actuates the plant stably and the CMAC
helps to improve control preciseness without affecting the
traditional control loop [44, 45]. In other words, the CMAC
control is usually added as a compensation item of traditional
control method.The algorithm of the hybrid control strategy
combining SMC and CMAC is shown as Algorithm 2 in
Appendix B.

3.5. Combination of GA Optimization-Based SMC and
CMAC Neural Network. Based on discussion above, we can
combine SMC, GA, and CMAC neural network into a
hybrid control strategy, which is called SMC GA CMAC.
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input vector 𝑠 = [𝑠
1
, 𝑠
2
], determine the range of 𝑠 as 𝑠max 1, 𝑠min 1, 𝑠max 2, 𝑠min 2

initialize CMAC, the range of quantization𝑀, storage of association𝑁, storage of memory 𝐶
Input quantization:
𝑠
1
= round((𝑠

1
− 𝑠min 1) ∗ 𝑀/(𝑠max 1 − 𝑠min 1)), 𝑠1 = round((𝑠

1
− 𝑠min 1) ∗ 𝑀/(𝑠max 1 − 𝑠min 1))

Hash coding and obtain output of CMAC
for 𝑘 = 1, 2, . . . , 𝐶 do

add
1
= mod(𝑠

1
+ 𝑘,𝑁) + 1, add

2
= mod(𝑠

2
+ 𝑘,𝑁) + 1

Sum1 = 𝑤
1
(add1(𝑘), add2(𝑘)), Sum2 = 𝑤

2
(add2(𝑘), add2(𝑘))

end for
Weight update
for 𝑖 = 1, 2, . . . , 𝐶

for 𝑗 = 1, 2, . . . , 𝐶 do
𝑑𝑤
1
(𝑖, 𝑗) = 𝜂𝑒

1
/𝐶, 𝑑𝑤

2
(𝑖, 𝑗) = 𝜂𝑒

2
/𝐶

end for
end for
𝑤
1
= 𝑤
1 1

+ 𝑑𝑤
1
+ 𝛼(𝑤

1 1
− 𝑤
1 2
), 𝑤
2
= 𝑤
2 1

+ 𝑑𝑤
2
+ 𝛼(𝑤

2 1
− 𝑤
2 2
)

𝑤
1 2

= 𝑤
1 1
, 𝑤
1 1

= 𝑤
1
, 𝑤
2 2

= 𝑤
2 1
, 𝑤
2 1

= 𝑤
2

Algorithm 2: The process of CMAC neural network. (Notation: the input is sliding surface and the output is the compensation control
vector.)
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Figure 4: The control diagram of the proposed method for the exoskeleton system.

We can write the proposed control law based on (9) as
follows:

u = K
𝑐
U
𝑐
+M (𝑞) q̈

𝑑
− (T
𝑑
− C (𝑞, 𝑞̇) q̇)

+M (𝑞)AGAė +M (𝑞)HGAe + C (𝑞, 𝑞̇) s

+ 𝜀GA𝜃 (s) + KGAs,

(20)

where U
𝑐
represents the output of CMAC neural network,

K
𝑐
∈ 𝑅
𝑛×1 is a positive definite matrix, and AGA, HGA, 𝜀GA,

andKGA arematrices optimized using GA.With the reaching
condition (6), the output of CMAC U

𝑐
has constraint as the

following:

U
𝑐
=
{

{

{

U
𝑐
, if s𝑇U

𝑐
≥ 0,

−U
𝑐
, if s𝑇U

𝑐
< 0.

(21)

For the exoskeleton system, the control diagram is illus-
trated as Figure 4 shows. As Figure 4 shows, GA is employed
to obtain the optimal parametersAGA, KGA, HGA, and 𝜀GA to
construct optimized SMC. The CMAC’s input is the sliding
surface and its weight updating is derived from minimizing
the tracking error. The output of the proposed control law is
U = U

𝑠
+ K
𝑐
U
𝑐
, of which U

𝑠
is the main output provided

by SMC GA and U
𝑐
is the compensation output provided by

CMAC.

4. Simulations with the Proposed
Control Strategy

In this section, the proposed method is examined through
simulations. The simulation results, which are from
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Figure 5: The desired joint trajectory of human lower limb movement. The initial posture is in the vertical direction.

application into controlling the swing leg of the exoskeleton
using the proposed algorithms, are presented. As Figure 1
shows, the active DOFs are hip joint and knee joint, while
the ankle joint is passive. Based on (1), the dynamics model
of swing leg can be expressed as

M (𝑞)exo q̈ + C (𝑞, 𝑞̇)exo q̇ + G (𝑞)exo = T, (22)

where M(𝑞)exo ∈ 𝑅
2×2, C(𝑞, 𝑞̇)exo ∈ 𝑅

2×2, G(𝑞)exo ∈ 𝑅
2×1,

q̈ ∈ R2×1, q̇ ∈ R2×1, and T ∈ R2×1. In simulations, the desired
angular position of lower limb joints stems from the CGA
data as Figure 5 shows. The period of the cyclical gait is 2
seconds and we will obtain the fitting expression with respect
to time

𝑞hip (𝑡) = 3.85 cos (0.330𝑡 + 2.14)

+ 71.6 cos (3.49𝑡 − 1.88)

+ 41.0 cos (4.68𝑡 − 0.3) ,

𝑞knee (𝑡) = 40.9 cos (1.04𝑡 − 0.208)

+ 157 cos (5.82 − 0.047)

+ 82.3 cos (7.49𝑡 − 4.13) ,

(23)

where 𝑞hip(𝑡) and 𝑞knee(𝑡) are the desired angular position of
hip joint and knee joint, respectively.

To investigate the effectiveness and robustness of the pro-
posed scheme, two simulation cases are considered: without
disturbances (Case One) and with bounded disturbances
(Case Two). The external disturbance 𝐷(𝑡) is a function of
time which is assumed to have an upper bound:

𝐷 (𝑡) = 𝑎 sin (𝜋𝑡) , ‖𝑎‖ ≤ 1. (24)

For recording the respective performances, the root mean
square error (RSME) is defined to examine control perfor-
mance as follows:

RSME = √

𝑁

∑

𝑘=1

‖𝑒 (𝑘)‖
2

𝑁
, (25)

where 𝑁 is the size of error vector. We integrate ADAMS
and MATLAB/SIMULINK to control the exoskeleton using
the proposed control strategy, which is shown in Figure 6. As
Figure 6 shows, there are six output variables from ADAMS
model which are angular position, velocity, and acceleration
of knee joint and hip joint of a swing leg while the designed
controller in MATLAB outputs two control torques into
ADAMS model. Figure 6(a) shows the exoskeleton model
in ADAMS and Figure 6(b) shows the control scheme in
SIMULINK.Thedesigned controller produces control signals
transferred to ADAMS while the kinematics information of
exoskeleton joints is measured in ADAMS and returned back
to MATLAB workspace. Through creating a communica-
tion block between MATLAB and ADAMS, the dynamics
movements in gait cycles are shown in Figure 7, which
illustrates the level ground walking for the lower extremity
exoskeleton.

The comparisons between the proposed control scheme
and conventional SMC, SMC with CMAC (SMC CMAC)
neural network, and optimal SMC with GA (SMC GA)
are conducted. The simulated comparisons, containing
tracking positions and tracking errors of SMC, SMC GA,
SMC CMAC, and SMC GA CMAC in Case One and Case
Two, are depicted in Figures 8 and 9. As Figure 8 shows,
Figures 8(a) and 8(c) represent the joint trajectory tracking
of hip joint and knee joint while Figures 8(b) and 8(d)
show tracking error comparisons of those two joints using
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(a) ADAMS model
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2010
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Memory
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(b) SIMULINK control model

Figure 6: Cosimulation using ADAMS and MATLAB for exoskeleton robot.

Figure 7: ADAMS effect pictures of gait cycles for lower extremity exoskeleton.
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Figure 8: The performance comparisons using four methods in Case One.

four kinds of controllers separately. It can be seen that all
of controllers can achieve good tracking performance and
the conventional SMC without optimization has the largest
tracking errors. Similarly, the angular position tracking and
tracking errors comparisons in Case Two are depicted in
Figures 9(a)–9(d). As Figure 9 shows, the desired joint
angular trajectory also can be tracked well. To evaluate
the control performances of Case One and Case Two,
RSME comparisons using four controllers are depicted in

Figures 10 and 11. Figure 10(a) gives RSME of two joint
tracking errors in Case One while Figure 10(b) describes
that in Case Two. In two cases, the performance sequence
fromworse to better should be SMC, SMC CMAC, SMC GA,
and SMC GA CMAC. Figure 11(a) illustrates the RSME
comparison of hip joint while Figure 11(b) illustrates that of
knee joint. In Figures 10 and 11, the RSME do not change
much; hence the proposed control strategy still works when
there exists external disturbance.
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Figure 9: The performance comparisons using four methods in Case Two.

If the RSME is treated as a benchmark, the improvement
percent (IMP) of performance with four kinds of controllers
in Case One and Case Two is displayed in Tables 1 and 2. As
the two tables show, the proposed control strategy will gain
the highest improvement percentages of 69.4% and 76.8% for
hip joint and knee joint separately in Case One while they
change to be 68.1% and 76.8% in Case Two. Tables 1 and 2
illustrate that the SMC GA is inferior to SMC GA CMAC
but has better performance than SMC CMAC, while

the SMC CMAC is superior to SMC. Therefore, the
proposed control strategy is robust and effective whether the
exoskeleton system dynamics suffer from bounded external
disturbance or not.

5. Conclusions

For lower limb assistive exoskeletons, precise position
control is very important for the human-exoskeleton
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Figure 10: RSME comparisons in Case One (without disturbance) and Case Two (with bounded disturbance), respectively. RSME1 is for the
hip joint while RSME2 is for the knee joint.
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Figure 11: RSME1 and RSME2 comparisons in two cases. Icon “No-dis” means Case One and “Dis” means Case Two, respectively.

Table 1: Accuracy improvement comparison (Case One).

Control methods IMP for hip joint (%) IMP for knee joint (%)
SMC 0 0
SMC GA 57.1% 74.5%
SMC CMAC 24.5% 37.4%
SMC GA CMAC 69.4% 76.8%

collaboration. In this paper, a hybrid position control
strategy SMC GA CMAC is proposed to follow human
limb joints trajectory for the exoskeleton. GA is used to find

Table 2: Accuracy improvement comparison (Case Two).

Control methods IMP for hip joint (%) IMP for knee joint (%)
SMC 0 0
SMC GA 55.3% 75.2%
SMC CMAC 17.4% 31.7%
SMC GA CMAC 68.1% 76.8%

the optimal structure of SMC and CMAC neural network
is implemented as the compensation to improve tracking
performance. The proposed SMC GA CMAC control
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strategy is proven to be stable with Lyapunov function and
features better tracking performance compared with SMC,
SMC GA, and SMC CMAC.The proposed control algorithm
has guaranteed the requirement for high accuracy of position
control for robotic manipulators suffering from dynamics
uncertainties. The hybrid control strategy SMC GA CMAC
is more suitable to control the exoskeleton to follow human
motion intent under the occurrence of uncertainties. In
addition, the proposed method will be investigated and
explored in the real exoskeleton prototype in the near future.

Future study will be focused on the optimization of
CMAC to overcome its drawbacks because of the binary input
mapping character, which can be addressed by intelligent
approaches such as fuzzy logic in cosimulation. The human
motion intent estimation is also a crucial challenge, which
will be investigated using machine learning methods.

Appendix

A. SMC Optimization Using GA

See Algorithm 1.

B. CMAC Neural Network Compensation

See Algorithm 2.
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