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Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus
and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer,
antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive
phenolic acid and has the potential to attenuate various chemically induced toxicities.Thisminireview is an effort to summarize the
available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas.

1. Introduction

As a result of metabolic processes, there is continuous pro-
duction of reactive oxygen species (ROS), such as hydroxyl
radicals [1], in human body. Various biological functions
like antimicrobial activity depend on ROS [2]. In normal
physiological state, ROS production in body is balanced by
scavengers “antioxidants.” This equilibrium is disturbed in
pathological conditions owing to overproduction of ROS, but
comparatively low concentration of endogenous antioxidants
in body. It results in the reaction between ROS and intra- and
extracellular species leading to emergence of oxidative stress
which causes various ailments like aging, cancer, and necrosis
[3]. To tackle the oxidative stress, it is needed to restore
balance between ROS and antioxidants by administering
exogenous antioxidants, for example, hydroxycinnamic acids.

Hydroxycinnamic acids belong to the class of pheno-
lic acids with bioactive carboxylic acids; the class mainly
includes caffeic acid, ferulic acid, and sinapic acid [4, 5].
According to literature, these compounds are capable of
donating their phenoxyl hydrogen atom for neutralization of
free radical species leading to production of corresponding
phenoxyl radicals. These radicals are weekly reactive due to
delocalization of unpaired electrons. Resultantly, the inhibi-
tion of dangerous radicals is useful for human health owing
to antiaging potential of these phenolic acids [6, 7].

Sinapic acid exists in both free and ester form; some
esters are sinapoyl esters, sinapine (sinapoylcholine), and
sinapoyl malate [8, 9]. Sinapic acid is a phytochemical found
in various edible plants such as spices, citrus and berry fruits,
vegetables [10–12], cereals, and oilseed crops [13, 14]. Sinapic
acid has been tested and reported against various pathological
conditions such as infections [15], oxidative stress [16],
inflammation [17, 18], cancer [19], diabetes [20], neurode-
generation [21], and anxiety [22]. Some derivatives of sinapic
acid, such as sinapine, 4-vinylsyringol, and syringaldehyde,
have also been studied for acetylcholinesterase inhibition
[23, 24], antimutagenicity [25], and antioxidant activity [26],
respectively. 4-Vinylsyringol, a decarboxylated sinapic acid,
is also termed as canolol. The term “canolol” was coined
by Wakamatsu et al. due to its source, canola oil [25]. The
structural formulas of sinapic acid and its derivatives are
shown in Figure 1 [23, 27, 28]. The literature search does
not show any extensive research on the biological features
of sinapic acid and its derivatives. Those studies have been
summarized in this brief review article so that the scientific
community may pay more attention to the biological aspects
of sinapic acid and its derivatives.

2. Pharmacokinetics of Sinapic Acid
Fruit and vegetable consumption can potentially decrease
the risk of degenerative diseases which mainly attributed to
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Figure 1: The structural formulas of sinapic acid and its derivatives (syringaldehyde, sinapine, and 4-vinylsyringol).

the phenolics present in them. Pharmacokinetic study helps
to understand the role of these phenolics in human body.
Serum albumin has been reported to be responsible for the
transport of sinapic acid in blood due to its ability to bind
with serum albumin through hydrophobic interaction and
hydrogen-bonding [29, 30]. Maximum plasma-sinapic acid
level has been described as 40 nMwith a bioavailability of 3%
of the total phenolics present in the nonprocessed cereal meal
[31, 32]. Moreover, the small intestine was reported as the
best place for absorption of orally administered sinapic acid
through active Na+ gradient-driven transport [33]. Plasma-
sinapic acid level has also been quantified (1.5 𝜇g/mL) after
intake of cranberry juice in human by using GC-MS [34].
However,metabolismof sinapic acid takes place in the epithe-
lium of the small intestine [35]; urine analysis, after sinapic
acid ingestion in rats, showed the presence of sinapic acid, 3-
hydroxy-5-methoxyphenylpropionic acid, methyl sinapate-
sulfate, methyl sinapate-glucuronide, dihydrosinapic acid, 3-
hydroxy-5-methoxycinnamic acid, and their acid-labile con-
jugates [35] and these are generated by the esterase activity of
the intestinal microflora [32, 36]. Nature of these metabolites
also indicates the possible metabolism of free and ester form
of sinapic acid through phase I and II reactions in human
small intestinal epithelium [37].

3. Antioxidant Activity

Reactive oxygen species (ROS) are continuously generated
and are used in normal physiologically based activities [38].
Simultaneously, they are captured by different scavengers,
known as antioxidants, to maintain their equilibrium in
human body [39]. However, the overproduction of ROS
destroys this equilibrium resulting in oxidative stress which
is responsible for various pathological conditions, such as
cancer, neurodegenerative disorders, and aging [40–42].

Polyphenols consist of four major classes of phytochemicals,
that is, phenolic acids, flavonoids, stilbenes, and lignans [43],
and behave as antioxidants, useful as anticancer, antiaging,
and antimicrobial agents and scavengers of ROS produced
in the body [44, 45]. Presence of methoxy- and hydroxyl-
groups in the structure of polyphenols also improves their
antioxidant ability [45, 46]. Sinapic acid belongs to this
family of phenolics with remarkable antioxidant potential.
Various modes of antioxidant activity of sinapic acid have
been documented in the literature as described below.

3.1. DPPH∙ Scavenging Potential. Sinapic acid is also known
to show free radical scavenging ability against paramagnetic
stable radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH∙).
According to the literature, the DPPH∙ inhibition by
0.02mM, 0.5mM, and 0.3mM of sinapic acid is 33.2% [8],
88.4% [47], and 50% [48], respectively. Moreover, 8-8󸀠-bis-
lactone-dimer of sinapic acid also shows DPPH∙ scavenging
activity but at concentrations higher than 200𝜇M [48].

Additionally, sinapic acid derivatives like sinapoyl gly-
cosides are also reported for DPPH∙ scavenging activity
[49, 50]. However, these studies report the higher DPPH∙
radical scavenging activity of sinapic acid as compared to
its glycosides including sinapoyl glucose, sinapine, and 6-
O-sinapoyl sucrose exceptmethyl 2-O-sinapoyl-𝛼-D-glucose
and methyl 6-O-sinapoyl-𝛼-D-glucose which showed a little
higher activity than that of sinapic acid.

Synergism in DPPH∙ scavenging activity of sinapic acid
is also observed; however, comparatively higher antioxidant
potential of rapeseed meal and oil extracts has been reported
which contains 4-vinylsyringol (87% w/w) and sinapine (13%
w/w) alongwith sinapic acid, in comparisonwith pure sinapic
acid alone [54]. In addition, the DPPH∙ scavenging activity of
sinapic acid is also compared with its derivatives, for exam-
ple, 4-vinylsyringol; however, DPPH∙ scavenging activity of
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sinapic acid (90.8%)was described to be higher than that of 4-
vinylsyringol (78.7%) at a concentration of 1mg/mL [54–56].
Moreover, another derivative syringaldehyde is also reported
to show strong DPPH∙ scavenging activity [26, 57].

3.2. 𝑂
2

∙− Scavenging Potential. Superoxide anion radical
(O
2

∙−) can suppress [4Fe-4S]-containing dehydratases and
oxidize some compounds including leukoflavins, tetrahy-
dropterins, and catecholamines. However, O

2

∙− scavenging
activity of sinapic acid has been found similar to that of
4-vinylsyringol (decarboxylated product of sinapic acid),
which shows that the decarboxylation of sinapic acid does
not modify its O

2

∙− scavenging activity [56]. Moreover, an
excellent O

2

∙− scavenging activity of sinapic acid (IC50 =
17.98mM) has been reported in comparison with Trolox used
as an antioxidant (IC50 = 7.24mM) [17]. In another study,
O
2

∙− inhibition was presented 35.52% by using 0.05mM of
sinapic acid [58], in both enzymatic (IC50 = 70.7 𝜇M) and
nonenzymatic (IC50 = 979.2 𝜇M) O

2

∙− generating systems.
Moreover, the O

2

∙− scavenging activity of sinapoyl glycosides
is also reported; however, this study reports the lower O

2

∙−

radical scavenging activity of sinapic acid (IC50 = 90mM)
as compared to its glycoside, 6-O-sinapoyl sucrose (IC50 =
65mM) [59].

3.3. ∙OH Scavenging Potential. Highly reactive hydroxyl rad-
icals (∙OH) have potential to damage their surroundings
in living system [60, 61]. Sinapic acid has been reported
as a good scavenger for ∙OH with an IC50 = 3.80mM
where ascorbic acid was used as standard showing IC50 =
5.56mM [62]. Moreover, three ester derivatives of sinapic
acid, methyl sinapate, 𝛽-D-(3,4-disinapoyl)fructofuranosyl-
𝛼-D-(6-sinapoyl)glucopyranoside, and 1,2-disinapoyl-𝛽-D-
glucopyranoside, have also shown comparable ∙OH scaveng-
ing activity [63].

3.4. Scavenging Potential against Other Free Radicals. Sinapic
acid has been known for hydroperoxyl radical (∙OOH) scav-
enging activity [64, 65]; however, 4-vinylsyringol, a derivative
of sinapic acid, scavenges the ∙OOH more quickly than
sinapic acid [65, 66].

Sinapic acid also possesses better ClO− scavenging poten-
tial as compared to other hydroxycinnamic acids, that is,
ferulic acid, chlorogenic acid, and p-coumaric acid. Sinapic
acid has also been reported to be efficient nitric oxide radical
(∙NO) scavenger compared to the reference compound,
that is, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide potassium salt [17].

Peroxynitrite (ONOO−) can potentially initiate apoptosis
[65]. Sinapic acid has been described to perform better
ONOO− scavenging activity by inhibiting 3-nitrotyrosine
formation in protein (bovine serum albumin) through an
electron donation mechanism as compared to standard
antioxidants, that is, ascorbic acid, penicillamine, and toco-
pherol [65]; however, sinapic acid scavenging activity against
ONOO− further increases in the presence of 25mMNa

2
CO
3
,

which contribute CO
2
for simulation of physiological envi-

ronment [17, 67]. In addition, 4-vinylsyringol can also scav-
enge ONOO− [11].

3.5. Suppression of Lipid Peroxidation. Lipid peroxidation
generates lipid hydroperoxides, which act as a source of
lipid peroxyl (LOO∙) and lipid alkoxyl (LO∙) radicals [68].
In a comparative study, sinapic acid was compared with 𝛼-
tocopherol and ferulic acid on the formation of hydroperox-
ides, and results showed that sinapic acid acts more efficiently
to suppress the hydroperoxide formation by preventing the
lipid oxidation in bulk methyl linoleate [16, 69]. Moreover,
in another comparative study, the antioxidant potential of
sinapic acid was compared with other antioxidants, that
is, Trolox and butylated hydroxyanisole [70, 71]. Sinapic
acid at a concentration of 500𝜇mol/kg has been found
comparable in lipid peroxidation inhibition against Trolox
and butylated hydroxyanisole; the results are even better
than 𝛼-tocopherol. Similarly, the concentration-dependent
inhibition of hydroperoxide formation by sinapic acid and
sinapine was observed in purified rapeseed oil stored at
40∘C in darkness; however, sinapine was found to be
noneffective on hydroperoxide synthesis inhibition alone
[49].

In another study, the prooxidant behavior of sinapine in
rapeseed oil was reported and is attributed to its low solubility
in oil [71]. An inverse relationship has been explained
between the antioxidant property of sinapic acid and the
concentration of tocopherols because sinapic acid may lose
its function due to reaction with tocopherol radicals whose
concentration got increased in elevated tocopherol level.
Furthermore, an increased amount of sinapic acid is reported
to produce less quantity of propanal (secondary oxidation
product) at low tocopherol concentration and larger quantity
at high levels. Concisely, sinapic acid can potentially play
a role in the stability of oils containing small quantities of
endogenous tocopherols [71].

Lipid peroxidation can be affected by sinapic acid deriva-
tives. In a comparative study, 15% more antioxidant activity
of 4-vinylsyringol has been observed against sinapic acid
in a nonpolar system; however, a diminished activity of
4-vinylsyringol is reported in polar environment [60]. In
another study, 4-vinylsyringol was found to be a more potent
RCOO∙ scavenger than vitamin C and 𝛼-tocopherol [25].
Moreover, a promising peroxyl radical scavenging activity
of syringaldehyde has been reported in crocin method,
involving a competition between antioxidant and crocin to
bind with the peroxyl radical; a similar antioxidant activity
of syringaldehyde has been published in bulk oil and lecithin
liposome [29]. Similarly, in another study, liposome (lipid
membrane model) was used to assess lipid peroxidation
capacity of sinapic acid and was found to be an excellent
protective agent for the membrane, especially when added at
the liposome synthesis stage [72]. Furthermore, linoleic acid-
based lipidic model was used and the diferential scanning
calorimetric analysis of sinapic acid, its alkyl esters (methyl,
ethyl, propyl, and butyl sinapates), and reference antioxidant
(Trolox) was conducted to compare their peroxyl radical
scavenging activity. The results revealed that the test sub-
stances had reducing abilities comparable to that of reference
compound suggesting sinapic acid and its alkyl esters as
promising antioxidants [73].
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(1) Inhibition of Oxidation of Low-Density Lipoprotein (LDL).
Low-density lipoprotein (LDL) oxidation has been found
responsible for atherosclerosis development [74]. In a com-
parative study, sinapic acid showed higher (28%) antioxi-
dant activity than 4-vinylsyringol (7.5%), in a LDL model
system at a concentration of 10 𝜇M [54]. Moreover, per-
oxyl radicals produced through Cu+2-mediated oxidation
of human LDL has been studied in vitro, and in terms
of Trolox equivalent (TE) the following order has been
observedwith decreasing lipid peroxidation inhibition capac-
ity: sinapic acid > caffeic acid > ferulic acid [75]. Additionally,
concentration-dependent inhibition of LDL oxidation by
sinapic acid has also been reported which can be attributed
to its chelating power with Cu+2 [76–78]. Similarly, Cu+2-
mediated peroxidation of human LDL and peroxyl radical
can attack on erythrocyte membranes resulting in AAPH-
(2,2󸀠-azobis(2-amidinopropane) dihydrochloride-) induced
hemolysis; however, ethyl sinapate at a concentration of
10 𝜇Mwas found to actmore effectively (76%) and suppressed
the LDL oxidation than sinapic acid (59%). Moreover, in
terms of IC50 values, for 50% AAPH-induced hemolysis
inhibition capacity, the studied hydroxycinnamates can be
configured in the following decreasing order: sinapic acid
(IC50 = 4.5 𝜇M) > ethyl sinapate (IC50 = 5.0 𝜇M) > caffeic
acid (IC50 = 7.2 𝜇M) > ferulic acid (IC50 = 6.8) [79].

3.6. Anti-Inflammatory and Anticarcinogenic Properties.
Nitric oxide synthase, tumor necrosis factor-𝛼 (TNF-𝛼),
cyclooxygenase-2, and interleukin-1𝛽 are proinflammatory
mediators and their expression by ROS and activated
nuclear factor-kappa B (NF-𝜅B) in macrophages cause
inflammation [19]. Inflammation produced by incorrect
regulation of NF-𝜅B disturbs immunity and can produce
autoimmune diseases, that is, cancer [80]; however, a
suppressive action of sinapic acid on NF-𝜅B has been
reported in the literature [18, 81]. Moreover, sinapic acid
has been described to have time-dependent and dose-
dependent suppressive effect on colon and breast cancer cells
(human breast cancer T47D cell line) and this inhibitory
action is attributed to its antiproliferative feature [19, 82].
Furthermore, proinflammatory mediators are reported to be
suppressed by 4-vinylsyringol [83]. In another study, sinapic
acid and its alkyl esters were evaluated for anti-inflammatory
activity in carrageenan-induced rat paw oedema model and
an excellent anti-inflammatory activity of isopentyl sinapate
was reported in comparison to other esters [84].

The ROS are generated due to Helicobacter pylori (H.
pylori) infection, which attack and damage macromolecules,
including DNA, fats, and proteins. Therefore, damaged DNA
produces 8-hydroxy-2󸀠-deoxyguanosine (8-OHdG); how-
ever, its level can be reduced by 4-vinylsyringol treatment
[85]. In Mongolian gerbils infected with H. pylori, oral
administration of 4-vinylsyringol (0.1% in the diet) has
been described to efficiently suppress the gastric malignancy
[83]. In an in vivo study, the protective effect of canolol
against inflammatory bowel disease and colitis associated
carcinogenesis via inhibition of inflammatory cytokines and
oxidation stress was observed [86]. Same effect of canolol
has also been reported in human retinal pigment epithelium

(ARPE-19) cell line through an extracellular signal regulated
kinase-mediated antioxidative pathway [87]. Additionally,
canolol has also been found capable of inhibiting bacte-
rial (H. pylori) mutation by protecting DNA damage from
ONOO−, a highly oxidative chemical [88]. Peroxynitrite
radicals (ONOO−) can cause DNA cleavage resulting in
mutation [80]. Sinapic acid and 4-vinylsyringol have been
studied for their antimutagenic characteristics and it was
reported that both hydroxycinnamic acids have potential
and dose-dependent antimutagenicity character, possibly
through ONOO− scavenging action [25].

3.7. Anxiolytic Property. Elevated plus-maze (EPM) and hole-
board test are generally used for anxiolytic studies in mice
[89]. These tests were employed to study the behavior of
sinapic acid and it was found that it increases the time spent
in open arms significantly and also increases percentage entry
in open arms [22]. Moreover, due to no side effects of sinapic
acid even after its prolonged use and its selective anxiolytic
features in comparison to existing anxiolytic agents [90, 91] a
targeted research is required to use sinapic acid preferably in
anxiety conditions.

3.8. Neuroprotective Property. Few studies are available in
the literature, which elaborate the neuroprotective function
of sinapic acid and its derivatives. Sinapine, a derivative
of sinapic acid, during in vitro studies has been found to
have dose-dependent acetylcholine (ACh) esterase inhibitory
activity; moreover, sinapine and ACh both contain quater-
nary nitrogen to bind reversibly to specific region on AChE
in a competitive mode [23, 24]. Furthermore, activity of
sinapine is more effective in the cerebral homogenate than in
blood serum of rats with IC50 values of 3.66 𝜇Mand 22.1𝜇M,
respectively [23].

3.9. Antimicrobial Activity. Emergence of drug resistance in
microbes is a fast growing issue in health sciences. Drugs
available in market are constantly facing the problem of drug
resistance, and therefore new drug molecules are required to
counter this threat [92–94]. In in vivo studies, conducted on
various Gram-positive and Gram-negative bacteria, 97–99%
eradiation of various microorganisms was observed indicat-
ing significant antibacterial potential of sinapic acid [95].
Table 1 carries minimum inhibitory concentrations (MIC) of
sinapic acid against various bacterial strains observed during
in vitro studies. In another study, sinapic acid was reported to
have the potential to selectively kill the pathogenic bacteria
leaving beneficial lactic acid bacteria alive that can resist and
metabolize the sinapic acid [14]. Moreover, syringaldehyde
has been described for its antifungal potential against Can-
dida guilliermondii [96].

3.10. Antihyperglycemic Activity. Antihyperglycemic activity
of sinapic acid was reported using induced-hyperglycemic
in vivo model [97, 98] by intraperitoneal administration
(45mg/kg body weight) of streptozocin (STZ, a compound
which destroys the insulin secreting pancreatic-cells). Sub-
sequently, both normal and hyperglycemic rats were stud-
ied for certain biochemical markers (blood urea, serum
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Table 1: Minimum inhibitory concentrations (MIC) of sinapic acid
against bacteria strains.

Number Reference Bacterial strain

Minimum
inhibitory

concentrations
(MIC)

Bacillus subtilis 0.45 g/L

1 Barber et al.,
2000 [51] E. coli 0.89 g/L

Pseudomonas
syringae 1.79 g/L

E. coli 0.49 g/L

2 Tesaki et al.,
1998 [52]

Salmonella
enteritidis 0.45 g/L

Staphylococcus
aureus 0.43 g/L

3
Engels et al.,
2012 [14]

Bacillus subtilis 0.3 g/L
E. coli 0.7 g/L

Staphylococcus
aureus 0.3 g/L

Listeria innocua 0.3 g/L
Listeria

monocytogenes 0.2 g/L

Pseudomonas
fluorescens 0.6 g/L

4 Johnson et
al., 2008 [53] Salmonella enteric Not mentioned

creatinine, uric acid, total protein, albumin, and A/G ratio)
and hepato- and nephron-histopathology; however, altered
values of the studied biochemical markers and pathological
features came to normal state after treating the rats with
sinapic acid (15mg/kg and 30mg/kg) for 35 days; therefore,
sinapic acid may have dose-dependent hepato- and nephron-
protective effects in STZ-induced-hyperglycemic rats. In
addition, sinapic acid can be further studied for applications
in diabetic states.

3.11. Antilipidemic Activity. One of the causative agents of
cardiovascular diseases, such as myocardial infarction, is
abnormal lipid profile of a subject [99]. In this context,
a study involving antilipidemic activity of sinapic acid has
been proposed by Roy and Prince [100]. They administered
isoproterenol (100mg/kg body weight) to rats for inducing
myocardial infarction, and then the myocardial infarcted rats
(rats with raised levels of cardiac troponin-T, cholesterol,
triglycerides, and free fatty acids in serum and higher ST-
segments in electrocardiogram) were studied to evaluate the
shielding effects of sinapic acid [100, 101]. Recently, during
in vivo studies performed on rats, an orally administered
sinapic acid dose (12mg/kg body weight) showed shielding
effects on hypertrophy of heart, abnormal lipid levels, and
electrocardiogram; furthermore, pre- and cotreatment with
sinapic acid standardized the levels of myocardial infarction
parameters which further elaborate antioxidant potential
as well as antilipidemic activity of sinapic acid. Moreover,
lysosomal dysfunction in isoproterenol-induced myocardial

infarcted rats can also be cured by sinapic acid [102, 103].
These evidences elaborate the antilipidemic activity of sinapic
acid.

3.12. Toxicities and Sinapic Acid
3.12.1. Isoproterenol-Induced Myocardial Infarction. Isopro-
terenol (ISO), a synthetic catecholamine, can cause the
lysosomal lipid peroxidation [103] followed by the production
of various lysosomal enzymes, such as lysosomal hydrolases
[104], which produce myocardial infarction (MI) [105]. The
ISO-mediated lysosomal dysfunction in rats suffering from
MI can be overcome by oral administration of sinapic acid in
rats at a concentration of 12mg/kg body weight. This effect
is evident from the changes in lysosomal lipid peroxidation,
serum lysosomal enzymes, heart homogenate, lysosomal
fraction, and myocardial infarct size calculated before and
after simultaneous intake of sinapic acid. The treatment with
sinapic acid notably suppressed the ISO-provoked release of
lysosomal enzyme activity, normalized all the biochemical
parameters, and diminishedmyocardial infarct size [102].The
membrane stabilizing features and free radical scavenging
potential of sinapic acid can be the possible mode for the
above-mentioned activities [104]. Thus, sinapic acid may be
employed as a protective agent in MI [102].

3.12.2. Kainic Acid-Induced Hippocampal Neuronal Damage.
Neuron depolarization and extreme calcium influx by kainic
acid (KA, a nonselective agonist of AMPA and kainate recep-
tors) generate the free radicals, activate the nitric oxide syn-
thase (NOS), and initiate the mitochondrial dysfunctioning
[106, 107]; it results in glutamatergic activation- and oxidative
stress-mediated inflammation and neurodegeneration [108,
109]. Sinapic acid has been evaluated due to its GABA recep-
tor agonistic feature and free radical scavenging potential,
during in vivo study in rats, for new glutamate receptors
blockers and radical scavengers for neuroprotection. An oral
administration of sinapic acid at a concentration of 10mg/kg
body weight was reported to efficiently treat the KA-induced
brain damage. However, the neuroprotective effect of sinapic
acid was attributed to its radical scavenging potential and
anticonvulsive activity through GABA receptor activation
[110, 111].

3.12.3. Amyloid 𝛽 (A𝛽)1–42 Protein-Induced Alzheimer’s Dis-
ease. Neuroprotective effect has been studied in mouse
suffering from Alzheimer’s disease, a neurological disease
involving cognitive impairment [112, 113], and was induced
in mouse by amyloid 𝛽 (A𝛽)

1–42 protein injected into the
hippocampus. Simultaneously, after injecting A𝛽

1−42
protein;

an oral administration of sinapic acid was started with a
dose of 10mg/kg body weight per day. A𝛽

1−42
protein-

induced effects were reported to be abolished by the use
of sinapic acid, including elevated expression of iNOS,
glial cells, and nitrotyrosine. Similarly, in rats suffering
from cognitive impairment induced by scopolamine, sinapic
acid shows better results [21]. Moreover, promising neuro-
protective effects were reported in rodents, where sinapic
acid suppressed potassium cyanide-induced hypoxia and
scopolamine-induced memory impairment [114].
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3.12.4. Carbon Tetrachloride and Dimethylnitrosamine-In-
duced Acute Hepatic Injury. Carbon tetrachloride (CCl

4
) can

produce the proinflammatory mediators causing an acute
hepatic inflammation and its associated pathologies [115].
Sinapic acid has been described for its potential to revert
the CCl

4
intoxication of liver by oral administration of 10

or 20mg/kg body weight in rats. Moreover, the sinapic
acid treatment notably suppressed the CCl

4
-provoked release

of proinflammatory mediators by scavenging the free rad-
icals [116]. Sinapic acid has the potential to be used as
a remedial approach for inhibiting hepatic inflammation
[117–119]. Moreover, sinapic acid has also effectively treated
dimethylnitrosamine-induced hepatotoxicity [120].

3.12.5. Corticosterone-Induced Toxicity. Corticosterone ad-
ministration in broiler chickens can produce oxidative stress,
which retards the animal growth. Corticosterone-induced
toxicity can be countered by the use of 4-vinylsyringol to
preserve the tissue 𝛼-tocopherol level and to reduce the
lipid peroxidation in the animal. Therefore, 4-vinylsyringol
can also be added to broiler chicken feed to exert effective
antioxidant effect [121].

3.12.6. tert-Butyl Hydroxide-Induced Toxicity. Antioxidant
potential of 4-vinylsyringol against t-BH- (tert-butyl
hydroxide-) mediated production of ROS, which induce
the human retinal epithelial cell death, has been studied
and compared to a standard antioxidant, N-acetyl cysteine;
however, it has been reported that 4-vinylsyringol at a
concentration of 200𝜇M exerts more protective effect than
the reference compound [122].

3.12.7. Arsenic-Induced Toxicity. Arsenic can cause patho-
logical conditions like cancer and diabetes on long-term
exposure [123, 124] by disturbing various enzymatic reactions
in liver resulting in generation of ROS (superoxide, peroxyl
radicals, and hydrogen peroxide) which produce hepatotox-
icity. During in vivo study, arsenic-induced toxicity can be
shielded by the use of sinapic acid and is mainly attributed
to its metal-chelating potential [62]. Therefore, sinapic acid
administration can help in avoiding arsenic-induced toxicity
[125].

3.13. Toxicity Study of Sinapic Acid. The toxicity profile of
sinapic acid has been reported to be considerably low in
broiler chickens; no effect on the serum activity of creatine
kinase and lactate dehydrogenase has been reported and
observed. Therefore, it is not harmful to various body organs
of the animal [126].

4. Conclusion

Sinapic acid and its derivatives, particularly 4-vinylsyringol,
are interesting natural compounds that has potential to
express various health benefits, that is, antioxidant, anti-
inflammatory, anticancer, antimutagenic, antiglycemic, neu-
roprotective, and antibacterial activities. Moreover, further
extensive and targeted studies are required to explain

relationship between the plasma concentrations of sinapic
acid, in therapeutic dose, and the therapeutic outcomes.
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M. Heinonen, “Antioxidant potential of hydroxycinnamic acid
glycoside esters,” Journal of Agricultural and Food Chemistry,
vol. 56, no. 12, pp. 4797–4805, 2008.

[51] M. S. Barber, V. S. McConnell, and B. S. Decaux, “Antimicrobial
intermediates of the general phenylpropanoid and lignin spe-
cific pathways,” Phytochemistry, vol. 54, no. 1, pp. 53–56, 2000.

[52] S. Tesaki, S. Tanabe, H. Ono, E. Fukushi, J. Kawabata, and
M.Watanabe, “4-hydroxy-3-nitrophenyllactic and sinapic acids
as antibacterial compounds from mustard seeds,” Bioscience,
Biotechnology and Biochemistry, vol. 62, no. 5, pp. 998–1000,
1998.

[53] M. L. Johnson, J. P. Dahiya, A. A. Olkowski, and H. L. Classen,
“The effect of dietary sinapic acid (4-hydroxy-3, 5-dimethoxy-
cinnamic acid) on gastrointestinal tractmicrobial fermentation,
nutrient utilization, and egg quality in laying hens,” Poultry
Science, vol. 87, no. 5, pp. 958–963, 2008.

[54] S. Vuorela, K. Kreander, M. Karonen et al., “Preclinical evalua-
tion of rapeseed, raspberry, and pine bark phenolics for health
related effects,” Journal of Agricultural and Food Chemistry, vol.
53, no. 15, pp. 5922–5931, 2005.

[55] B. Harbaum-Piayda, K. Oehlke, F. D. Sönnichsen, P. Zacchi,
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