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Human seasonal influenza viruses evolve rapidly, enabling the virus
population to evade immunity and reinfect previously infected indi-
viduals. Antigenic properties are largely determined by the surface
glycoprotein hemagglutinin (HA), and amino acid substitutions
at exposed epitope sites in HA mediate loss of recognition by
antibodies. Here, we show that antigenic differences measured
through serological assay data are well described by a sum of
antigenic changes along the path connecting viruses in a phyloge-
netic tree. This mapping onto the tree allows prediction of antige-
nicity from HA sequence data alone. The mapping can further be
used to make predictions about the makeup of the future A(H3N2)
seasonal influenza virus population, and we compare predictions
between models with serological and sequence data. To make
timely model output readily available, we developed aweb browser-
based application that visualizes antigenic data on a continuously
updated phylogeny.
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Seasonal influenza viruses evade immunity in the human
population through frequent amino acid substitutions in their

hemagglutinin (HA) and neuraminidase (NA) surface glycopro-
teins (1). To maintain efficacy, vaccines against seasonal influenza
viruses need to be updated frequently to match the antigenic
properties of the circulating viruses. To facilitate informed vaccine
strain selection, the genotypes and antigenic properties of circu-
lating viruses are continuously monitored by the World Health
Organization (WHO) Global Influenza Surveillance and Re-
sponse System (GISRS), with a substantial portion of the viro-
logical characterizations being performed by the WHO influenza
Collaborating Centers (WHO CCs) (2).
Antigenic properties of influenza viruses are measured in hem-

agglutination inhibition (HI) assays (3) that record the minimal
antiserum concentration (titer) necessary to prevent crosslinking of
red blood cells by a standardized amount of virus based on
hemagglutinating units. An antiserum is typically obtained from a
single ferret infected with a particular reference virus. For a panel
of test viruses, the HI titer is determined by a series of twofold
dilutions of each antiserum. An antiserum is typically potent
against the homologous virus (the reference virus used to produce
the antiserum), but higher concentrations (and hence lower titers)
are frequently required to prevent hemagglutination by other
(heterologous) test viruses. HI titers typically decrease with in-
creasing genetic distance between reference and test viruses (1).
Given multiple antisera raised against different reference

viruses and a panel of test viruses, WHO CCs routinely measure
the HI titers Taβ of all combinations of test viruses a and sera β,
resulting in a matrix of HI titers (see Fig. 1A). The HI titer of a
test virus a using antiserum β raised against the reference virus b
is typically standardized as Haβ = log2ðTbβÞ− log2ðTaβÞ, i.e., the
difference in the number of twofold dilutions between homolo-
gous and heterologous titer. Standardized log2 titers from many
HI assays can be visualized in two dimensions via multidimen-
sional scaling—an approach termed “antigenic cartography” (4).
Although standard cartography does not use sequence information,

sequences have been used as priors for positions in a Bayesian
version of multidimensional scaling (5). To infer contributions
of individual amino acid substitutions to antigenic evolution,
Harvey et al. and Sun et al. (6, 7) have used models that predict
HI titer differences by comparing sequences of reference and
test viruses.
Here, we show that antigenic properties of seasonal influenza

viruses are accurately described by a model based on the phy-
logenetic tree structure of their HA sequences. We use the
model to show that HI titers have a largely symmetric and tree-
like structure that can be used to define an antigenic distance
between viruses. We show that large-effect substitutions account
for about half of the total antigenic change and that the effect of
specific substitutions is dependent on the genetic background in
which they occur. We further investigate the ability of HI mea-
surements to predict dominant clades in the next influenza sea-
son. To visualize antigenic properties on the phylogenetic tree,
we have integrated the models of antigenic distances and the raw
HI titer data into nextflu.org—an interactive real-time tracking
tool for influenza virus evolution (8).
This comprehensive summary of HA sequences from past and

current influenza viruses linked to their antigenic properties has
the potential to inform vaccine strain selections and facilitate
efforts to predict successful influenza lineages (9–13).

Results
We use two related models that predict HI titers from sequences.
The first—the tree model—explains standardized log2 HI titers
Haβ as a sum of contributions associated with internal branches
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in the phylogenetic tree that connect the reference virus b and the
test virus a (see Fig. 1B). The second—the substitution model—
explains HI titers in terms of a sum of contributions associated with
amino acid substitutions between reference and test virus (see Fig.
1C). These two models are similar but complement each other in a
few aspects that we discuss further below. In addition to contri-
butions associated with branches or substitutions, measured HI
titers depend on the overall reactivity of individual antisera and
viruses in HI assays. In the model, we account for this variability
through “antiserum potency,” which raises or lowers the expected
titer of all HI measurements against an antiserum, and “virus
avidity,” which raises or lowers the expected titer of all HI mea-
surements against a virus.
Specifically, in the tree model, the measured standardized log2

titer Haβ between virus a and antiserum β (corresponding to the
reference virus b) is modeled by Ĥaβ defined as

Haβ ≈ Ĥaβ = va + pβ +Dab [1]

where va, pβ, and Dab denote the avidity of virus a, the potency of
antiserum β, and the genetic component of HI titer differences,
respectively. The latter is decomposed into a sum of contribu-
tions di along internal branches i in the path ða . . . bÞ separating
the test (a) and reference viruses (b), i.e., Dab =

P
i∈ða...bÞdi. In the

substitution model, the sum over branches is replaced by a sum
over amino acid substitutions between reference and test viruses.
The parameters of our model are determined by fitting the
model to available HI titer measurements while penalizing large
values for the parameters.
The virus avidity va accounts for systematic variations of HI

titers of virus a across multiple antisera, i.e., a row of the HI
matrix in Fig. 1. Within our model, va can be positive or negative.

Large absolute values of va are penalized by adding a term
proportional to v2a to the cost function (ℓ2-norm regularization).
Similarly, the antiserum potency pβ captures variation in HI titers
of antiserum β across many test viruses, i.e., a column of the HI
matrix. Part of the latter variation is already removed by using
standardized titers Haβ relative to the homologous titer Tbβ, but
systematic variation remains that is absorbed by pβ. Potencies are
regularized by their ℓ2-norm, as well, and allowed to be positive
or negative.
Titers tend to decrease with increasing genetic distance between

the reference and test virus. We therefore constrain the contri-
butions di to be nonnegative. While similar, the tree and sub-
stitution models differ slightly in how the genetic component of HI
titers is parameterized. The tree model associates one term di with
each branch, and the contribution of the branch is independent of
the direction of the path running through the branch. The sub-
stitution model associates a nonnegative effect with each amino
acid difference—Dab is modeled as a weighted sum of amino acid
differences between reference virus b and test virus a. We give the
model the additional freedom of independent effects for forward
and backward substitutions, e.g., F159S vs. S159F.
In contrast to the potencies and avidities, we regularize the di

using their ℓ1-norm, i.e., the di contribute to cost function via
their absolute value rather than their square. This regularization
encourages a sparse model in which a minority of di explain most
antigenic evolution while many di = 0. Only internal branches of
the tree or substitutions observed in more than one virus are
candidates for nonzero contributions. Contributions of terminal
branches or singletons can be absorbed into the virus avidities.
For a detailed description of the models and inference proce-
dures, see Material and Methods.

The Tree and Substitution Models Accurately Predict HI Titers. We
evaluated the performance of the models in predicting HI titers for
different influenza lineages A(H3N2), A(H1N1)pdm09, B/Yam,
and B/Vic. We trained the models on 90% of the data and used the
remaining measurements to validate the models as in ref. 5. The
number of viruses, number of antisera, HI measurements, etc., for
each lineage are provided as Table S1.
We found that the models were able to predict titers of

antiserum−virus combinations to an accuracy of approximately
0.5 log2 titer levels for A(H3N2) with somewhat lower accuracy for
the influenza B lineages (Table 1 and Fig. 2A).
To quantify the prediction accuracy for viruses for which no

antigenic data exist, we selected 10% of the viruses and excluded
all measurements involving these viruses from the training data.
Both models predicted titers for viruses not part of the training
set to an accuracy of approximately 0.75 log2 titer levels (Table 1
and Fig. 2B). Having completely excluded a virus from the
training data implies that no avidity of a virus can be estimated
(and va = 0 is used instead). The increased prediction error is
therefore largely due to virus-to-virus variability that is not cap-
tured by the HA phylogeny.

A

B C

Fig. 1. Antigenic data and models for HI titers. (A) A typical table reporting
HI titer data. Each number in the table is the maximum dilution at which the
antiserum (column) inhibited hemagglutination of red blood cells by a virus
(row). The red numbers on the diagonal indicate homologous titers. A typ-
ical HI assay consists of all reciprocal measurements of the available antisera
and reference viruses, and a number of test viruses that are measured
against all antisera, but for which no homologous antiserum exists. To make
measurements using different antisera comparable, we define standardized
log-transformed titers Haβ relative to the homologous titer. (B) Each HI titer
between antiserum α and virus b can be associated with a path on the tree
connecting the reference and test viruses a and b, respectively, indicated as a
thick line. The tree model seeks to explain the antigenic differences as ad-
ditive contributions of branches. (C) In the substitution model, the sum over
branches on the tree is replaced by a sum of contributions of amino acid
substitutions.

Table 1. Prediction accuracy of the tree and substitution models
across influenza viruses

Model Tree Substitution

Untrained unit Titer Virus Titer Virus

A(H3N2) (12 y) 0.52 0.66 0.5 0.73
A(H1N1)pdm09 (7 y) 0.44 0.72 0.45 0.9
B/Yam (12 y) 0.64 0.88 0.65 1.0
B/Vic (12 y) 0.77 0.8 0.73 0.84

“Titer” and “virus” in the row “Untrained unit” refer to predictions for
test sets in which individual titer measurements or all measurements involv-
ing a particular virus, respectively, were omitted from the training data.
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To infer the genetic component Dab of an HI titer, the relevant
branches in the tree or the substitutions that separate test and
reference virus have to be constrained by measurements in the
training data set. For a completely novel clade in the tree,
the model would predict HI titers equal to that of the base of the
clade for all subtending viruses. Similarly, accurate inferences by
the substitution model require the effects of the relevant sub-
stitutions to be constrained by training data.
Using the tree and substitution models, we can predict HI ti-

ters for every combination of antiserum and virus in a phyloge-
netic tree (with prediction confidence varying by quality and
amount of antigenic data). Because the substitution or branch
effects pick up antigenic changes associated with a larger number
of antiserum−virus pairs, whereas antiserum potencies and virus
avidities absorb serum- and virus-specific variation, the resulting
model of antigenic distances Dab is a smoothed and coarse-
grained description of the HI titer data.
Note that the model correctly predicts titers in excess of ho-

mologous titers (negative values in Fig. 2A). These higher titers
often coincide with large negative virus avidities, which explains
the absence of titers predicted to be strongly negative in Fig. 2B,
where no virus avidities are available.

Cumulative Antigenic Evolution. By summing all contributions to
antigenic change on branches on the path between a virus and the
root of the tree, we can estimate the total past antigenic change,
cHI, for each node in the tree. This cumulative antigenic change is
roughly comparable to “dimension 1” in antigenic cartography
(more precisely analogous to the length of a path on the map
corresponding to the trunk of the tree). Our models infer that A
(H3N2) viruses advance by ∼0.7 log2 titer units per year (Fig. 3A),
whereas influenza B virus lineages advance 0.15 (Vic) and 0.1
(Yam) units per year (Fig. 3B). Previous estimates of these rates
using cartography (5) suggested higher absolute values, but the
relative magnitude of rates in different lineages were found to be
similar. Forcing the antigenic distance matrix into two dimensions
causes distortions that might result in an exaggeration of the dis-
tances. Very little consistent temporal change in antigenic prop-
erties is observed in A(H1N1)pdm09 (Fig. 3B).
We estimate that, for A(H3N2) viruses, approximately half the

cumulative antigenic evolution is due to a large number of sub-
stitutions with effects smaller than one unit, whereas 20% is
accounted for by a few substitutions with effects greater than two
units (Fig. S1). However, some of the largest effects are associ-
ated with clusters of colinear amino acid substitutions, and their
individual effects cannot be resolved.

tree model, untrained titers tree model, untrained virusesA B

Fig. 2. A(H3N2) HI titers are accurately predicted by the tree model. The figure scatters predicted titers Ĥaβ (y axis) against a test set of measurements Haβ not
used for training of the model (x axis). This test set either consists of (A) a random sample of 10% of all measurements or (B) all measurements for 10% of all
viruses. In the latter, no avidity can be estimated for viruses in the test set because these viruses are completely absent from the training data (va = 0 is
assumed). Hence prediction accuracy is lower but still comparable to the measurement accuracy. The figure shows data obtained using a 12-y set of A(H3N2)
viruses. Other time intervals and lineages are predicted similarly well.

A B

Fig. 3. Cumulative antigenic change (cHI) from phylogeny root to tips across influenza viruses. (A) A(H3N2) antigenic evolution over the past 30 y. The trunk
of the tree is shown as a thick line, and side branches are shown as thin lines. The dashed straight line indicates the linear regression vs. time. (B) The
corresponding traces for the two influenza B lineages (past 20 y) and A(H1N1)pdm09 (past 7 y).
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As we have shown, the two models of HI titers accurately
predict HI titers of all seasonal influenza virus lineages. How-
ever, A(H3N2) viruses have been monitored more closely and
over a larger number of years than the other lineages. We
therefore focus subsequent analysis of the structure of antigenic
space and the dynamics of antigenic evolution on A(H3N2).

HI Titers Define an Approximate Distance. To further evaluate the
approach of partitioning a titer into an antiserum, a virus, and a
symmetric tree component Dab, we considered all reciprocal titer
measurements, i.e., pairs of viruses a, b against which antisera α, β
have been raised and that have been measured against each other.
Subtracting the virus avidities and antiserum potency contributions
from titers, the remainders Δaβ = Haβ − va − pβ and Δbα should
reduce the titers to the symmetric tree component Dab =Dba. Fig.
4A compares the distribution of Δaβ − Δbα with the uncorrected
difference between the reciprocal titers Ha,β −Hb,α for A(H3N2).
Although raw reciprocal titer measurements often differ by several
log2 titer units (SD 2.0), the corrected tree component was sym-
metric to within one unit (SD 0.9), comparable to the accuracy of
HI titer measurements.
The degree to which titer distances have tree-like properties

can be tested using the following quartet rule: Take any four
leaves a, b, c, d and construct the sum of the distances Dab +Dcd,
Dac +Dbd and Dad +Dbc. If the distances are given by a tree, the
two largest of the three sums of distances will be equal. The
quartet rule can only be tested on sets of viruses for which all
pairwise distances have been inferred. Hence, we determined
maximal “cliques” of reference antisera, the activities of which
had been measured against all other reference viruses within the
clique. Out of these cliques, we repeatedly selected, at random,
four viruses, calculated the three distance sums, and compared
the largest and second largest distance sum. As a control, we
constructed the analogous distribution for triplets of random
variables with the same distribution as the distance sums, but
without the dependence via the tree: We obtained three sums of
two distances by three times randomly drawing four antisera.
Both distributions are shown in Fig. 4B. The difference between
the largest and second largest of these distance sums of quartets
has a mean of 0.41 log2 titer levels, whereas the control has a

mean of 0.96 log2 titer levels. The similarity of the largest and
second largest sums supports a tree-like structure underlying
observed HI distances.

Amino Acid Substitutions Associated with Titer Drops. The majority
of antigenic evolution tends to occur at a subset of sites (14, 15).
Seven positions near the HA receptor binding site (Koel 7) have
been shown to account for major historic antigenic transitions (16).
However, the number of substitutions at epitope sites or Koel 7 sites
alone is a poor predictor of antigenic distance, with r2 values of about
0.25 (Fig. S2), possibly because the effect of a substitution depends
on the genetic background (HA sequence) in which it occurs.
Within the substitution model, we can explicitly associate an-

tigenic changes with amino acid substitutions. Table S2 shows the
top contributions for A(H3N2) for sequences estimated from
sets of sequences and the associated HI titers in five overlapping
10-y intervals. Most of the largest contributions coincide with
substitutions at Koel 7 sites. When a substitution is present in the
same context in overlapping time intervals, the estimated effects
tend to be similar (K189N, K135E, K158R, K140E, Y159F)—
provided there are enough data to constrain the model.
By and large, the effects we infer are compatible with those

associated with cluster transitions determined in ref. 16. For
example, the transition from the Sichuan/87 (SI87) cluster to the
Beijing/89 (BE89) cluster involved the substitution N145K, for
which we infer an effect of 1.91 antigenic units (each unit is equal
to a twofold decrease in HI titer). Together with minor effects
associated with N193S, I186S, and G135N, this comes close to
the map distance 3.9 units. For the transition from SI87 to
Beijing/92 (BE92), the substitution model estimates a distance of
4.5 units that is associated with many almost simultaneous sub-
stitutions—hence the exact assignment remains difficult to pin
down. The map distance corresponding to this cluster transition
is 7.8 units, whereas the typical titer drop is ∼5 units and hence
closer to the estimate of the tree or substitution model. The
transition from BE92 to Wuhan/95 (WU95) is gradual, with
several substitutions of intermediate magnitude. From WU95 to
Sydney/97 (SY97), we estimate a distance of ∼3 units of which 2
units are attributed to the set of substitutions: K62E/V144I/
K156Q/E158K/V196A/N276K (C1). These substitutions account

BA

Fig. 4. H3N2 HI titers define an approximate a distance on the tree. (A) Reciprocal HI titer measurements often differ by several log2 units (histogram of
Haβ −Hbα). After subtracting avidities and potencies, the remainder Δaβ − Δbα is almost symmetric, with deviations on the order of the measurement accuracy
(SD 0.95). (B) On a tree, the two largest sums of distances within antisera/virus quartets are equal (see HI Titers Define an Approximate Distance). B shows the
distribution of the absolute value of the difference of the top two distance sums for quartets and for three random distance sums. Those from quartets have a
much smaller deviation. A and B both show results for A(H3N2) viruses from the last 12 years.
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for 3.6 units in cartography. Lastly, the transition from SY97 to
Fujian/02 (FU02) is attributed to Q156H (1.1 units as in ref. 16)
and N121T. Most of the distances we infer between clusters are
smaller than those estimated in cartography, which is compatible
with our finding of overall reduced antigenic drift when modeling
antigenic evolution in many dimensions (see below).
The inferred effects of substitutions suggest substantial de-

pendence on genetic background and the specific amino acid
change. For HA1 position 145, the back and forth between as-
paragine (N) and lysine (K) is associated with different effects in
1989–1992, and 2004. Interestingly, the inferred effect of the
forward substitutions (N145K in 1989–1992 and K145N in 2004)
is large in these instances, whereas the inferred effect for the
backward direction is small. Some substitutions at Koel 7 posi-
tions have very small effects, such as, for example, S189N. Other
substitutions at these positions have large effects but don’t
spread. K158R, for example, shows up repeatedly and is asso-
ciated with a 2-unit titer drop without ever reaching high fre-
quencies. A full table of all inferred effects for substitutions at
particular positions in overlapping 10-y intervals is given as
Dataset S1 and the 55 largest effects are given in Table S2.
However, the interpretation of effects is sometimes difficult due
to colinearities between substitutions.

Limitations of the Models. The tree and substitution model per-
form similarly in terms of accuracy, as summarized in Table 1,
which is expected because branches of the tree are associated
with substitutions and vice versa. In particular circumstances,
however, one model is more accurate than the other, and the two
models complement each other in a number of situations.
The tree model assumes that titers are additive along the tree.

Although this is, in general, a reasonable assumption, it is vio-
lated when the same amino acid position is mutated multiple
times in different parts of the tree. As a recent example, in-
dependent substitutions at HA1 position 159 of A(H3N2) viruses
define different genetic/antigenic clades: F159Y defining clade
3C.2a and F159S defining clade 3C.3a. The distances between
viruses in these clades are not necessarily a sum of the effects
associated with the branches separating the clades, because one
substitution at position 159 masks the other. In such cases, the
substitution model tends to be more accurate, as it has the ad-
ditional freedom to introduce the Y159S substitution (and the
reverse) that directly differentiates viruses in these clades.
Similarly, the substitution model fails when the same substitu-

tion (as opposed to different substitutions at the same position)
occurred in different places on the tree in different genetic
backgrounds, which is common in sequence ensembles covering
long time periods. The model will fit a single effect, even though
the effect of the substitution might be background-dependent.
Furthermore, the substitution model tends to be inaccurate when
predicting titers for test viruses that predate the reference virus.
Such “back-in-time” measurements are underrepresented in the
data, and although the forward substitution might have a large
effect assigned, the few back-in-time measurements do not pro-
vide enough support to include the reverse substitutions into the
model. The tree model does not suffer from this problem, as ef-
fects are assumed to be symmetric.
By and large, the models accurately predict measured HI titers

(Fig. 2), and deviations affect only isolated clades, typically,
when very few measurements are available to constrain the
model. The visualization described in Visualization of Antigenic
Evolution allows a direct side-by-side comparison of the two
models and the measurements, which makes it easy to identify
such isolated inaccuracies.

Antigenic Change and the Success of Clades. Antigenic changes
result in viruses able to reinfect individuals with immunity to
previously circulating viruses. Intuitively, large antigenic changes

should therefore be positively selected for and rapidly spread
through the virus population. We investigated the relationship
between the amount of antigenic change and success of clades in
the phylogenetic tree. Fig. 5 shows frequency trajectories of
clades reaching at least 10% at one time, and color indicates the
magnitude of the antigenic change that accumulated along the
ancestral lineage over the preceding 6 mo. Consistent with ex-
pectation, large antigenic changes fix more often than small
antigenic changes. However, there are also several clades that
evolved antigenically but failed to spread. Extinction of tran-
siently successful clades could be due to fitness cost associated
with the substitutions responsible for antigenic change or could
be the result of competition of multiple antigenically advanced
clades (17–19).
For each season, we determined the clade with highest Local

Branching Index [LBI, a predictor of clade success (10)] and the
clade with the largest antigenic advancement (cHI) relative to all
other viruses in a season. We restricted the latter to clades that
account for at least 5% of available sequences for the given
season. For each of these clades, Fig. 5B shows genetic distance
to the virus population of the following season. Antigenic ad-
vance as measured by cHI is predictive of which lineage would
dominate the following season: The distance to the future pop-
ulation of the most antigenically advanced clade is significantly
below the population average (dashed line in Fig. 5B). Predic-
tions by cHI and LBI are comparable in quality and are corre-
lated. However, clades with maximal cHI are sometimes far from
the future population, suggesting that a predictor based on an-
tigenic phenotype alone readily generates false positives, i.e.,
highest scoring clades that go extinct; the problem becomes
worse when smaller clades are included (threshold lowered to
>1% of all sequences). Nevertheless, successful clades tend to be
antigenically advanced. Fig. 5C shows the distribution of cHI of
clades closest to the next season. These clades tend to have
larger cHI than cocirculating viruses. These results suggest that
cHI correlates with spread of a clade but is not the only factor
determining clade success (see also Fig. S3).
As an alternative to clades in the tree, Fig. 6 shows the

probability of a substitution reaching a certain frequency as a
function of its inferred antigenic effect. The probability to rise to
a high frequency increases with antigenic effect, but even sub-
stitutions with very large effect can fail to spread—an effect that
limits predictive power. This occasional lack of fixation happens
despite the fact that antigenic effects of successful substitutions
are more likely to be detected.

Visualization of Antigenic Evolution. Antigenic evolution can be
visualized by mapping titer distances into the plane using a
variant of multidimensional scaling (4). This 2D representation,
however, is not readily superimposed with the sequence evolu-
tion of the viruses. Instead of squeezing the sequence evolution
onto the plane (5), we map the HI titer data onto the phyloge-
netic tree using nextflu (8).
The application nextflu tracks, in near-real time, the evolution

of seasonal influenza viruses and allows users to explore recent
changes at particular positions, spot rapidly growing clades, and
analyze the geographic distribution of viruses. We have integrated
the tree and sequence models of titer data into nextflu’s Python-
based processing pipeline augur. The titer data and the models are
exported along with the tree and visualized using auspice, the
JavaScript-based front end of nextflu. The resulting visualization is
available at nextflu.org/h3n2/3y/, and Fig. 7 shows a screen shot.
This web visualization allows exploration of HI distance rela-

tive to specific antisera. All reference viruses against which
antisera have been raised are indicated by gray squares. A focal
reference virus can be chosen by clicking on one of these squares,
thereby coloring the tree according to the average antigenic
distance between viruses and antisera raised against the focal
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virus. Tooltips—information boxes that pop up when the mouse
hovers over a virus—display all available measurements along
with the predicted titers relative to the focal virus. The nor-
malized and log-scaled titers can be optionally corrected using
estimates of antiserum potency and virus avidity.
The tree can be colored either by measured titers (which are

available only for a subset of the viruses) or the predictions by
either the tree model or the substitution model. Toggling be-
tween coloring by measured and predicted titers gives an in-
tuitive visual impression of the noise in titer data and possible
inaccuracies of the model predictions.
In addition to titer measurements and titer predictions, the

website allows coloring of the tree according to the antigenic evo-
lution that accumulated along branches starting from the root of the
tree. The latter is similar to dimension one in antigenic cartography.

Discussion
We have shown that antigenic evolution of seasonal influenza
viruses can be accurately predicted from HA sequences using
models parameterized by branches separating test and reference
virus in a phylogenetic tree or by amino acid substitutions sep-

arating the two sequences. Both of these models predict titers
with similar or better accuracy than cartographic approaches (4).
In addition to prediction of HI titers, the models and the map-
ping of HI data onto the HA phylogeny provide insight into the
structure of antigenic space and allowed us to investigate the
relationship between antigenic evolution and clade success.
Previous analyses had concluded that two dimensions provide

the optimal embedding for antigenic evolution of human sea-
sonal H3N2 viruses, and adding additional dimensions did not
improve the predictive power (4, 5). Here we find that a model
based on the tree structure—effectively infinite dimensional—
predicts titers with similar or better accuracy. This apparent dis-
crepancy has its roots in the number of parameters necessary
to specify the model. A d-dimensional antigenic map of V
viruses and S antisera has dðV + S− 1Þ location parameters. If, in
addition to locations, avidities and potencies are inferred, the
parameter count increases by V + S. Because the number of
parameters increases rapidly with the number of dimensions of
the map, the predictive power can decrease at high d due to
overfitting. In contrast, the tree model requires only one pa-
rameter for every internal branch in the tree (of which there are,

A

B C

Fig. 5. Antigenic evolution and the success of A(H3N2) clades. (A) Trajectories of clades colored by inferred cumulative antigenic evolution in the past 6 mo
on branches ancestral to the clade. The majority of the clades with substantial recent antigenic change fix, but several antigenically evolved branches go
extinct. B quantifies the power of cumulative antigenic change (cHI) to predict clade success. B shows the nucleotide distances of clades with maximal cHI
among clades that account for at least 1% and 5% of all viruses. Predictions based on maximal LBI are also shown. Distances are relative to the average
distance between present and future populations shown as the dashed line at 1. The solid black line indicates the distances of the best possible pick in each
year. Predictions based on maximal LBI and cHI are correlated, but maximal cHI is sensitive to false positives (highest scoring clades that go extinct).
(C) Histogram of centered cHI of the clade closest to the next season for each year, suggesting that successful clades tend to be antigenically advanced.
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at most, B<V − 2) and V + S parameters for avidities and po-
tencies. In practice, the number of internal branches B is sub-
stantially lower than V − 2 (often severalfold) due to the many
polytomies in the tree. For A(H3N2) viruses from the past 12 y,
HI data were available for 1,772 out of a total of 2,502 viruses in
the tree. Of the 610 internal branches constrained by HI data,
231 branches were inferred to affect HI titers (with effects
>0.001). Hence, with substantially fewer parameters, we achieve
a better or comparable fit to the data than d= 2 cartography,
which suggests that the phylogenetic tree is a more natural space
for antigenic change. We corroborated this interpretation by
explicitly testing “treeness” using quartet distances and symmetry
between reciprocal measurements (Fig. 4).
We find substantial differences in the overall rate of antigenic

evolution across viruses with fast antigenic drift in H3N2 and
slow antigenic drift within both influenza B lineages, in agree-
ment with ref. 5. Overall, antigenic drift estimated by our method
tends to be somewhat lower, in particular for influenza B. This
discrepancy in drift is likely due to the different model space:
The phylogenetic tree provides more freedom for different
clades to evolve in different directions, and antigenic distances
are accommodated on side branches rather than the trunk. On a
2D antigenic map, however, the space for side branches and
subclusters is limited, such that more antigenic distance is picked
up by the backbone of the map.
Current efforts to predict the evolution and dynamics of sea-

sonal influenza viruses (9–13) are based solely on virus HA se-
quences. By mapping the phenotypic HI data onto sequences
and phylogenetic trees, it should be possible to improve pre-
diction accuracy. Using HI data to predict is, however, not as
straightforward as it might seem, and, by itself, it does not predict
better than the sequence-based LBI predictor (10). HA substi-
tutions associated with large antigenic changes have a higher
probability of fixation, but many causing substantial antigenic
change (e.g., K158R) fail to spread in the population. Similarly,
in many years, clades that are antigenically more distant from
previously circulating viruses die out. The high frequency of
such “false positives” interferes with the use of HI measure-
ments for early detection of emerging strains that are the likely
founders of future generations of the virus. We observe sub-
stantial false positives at the 1% clade frequency level, but fewer
false positives at the 5% frequency level (Fig. 5B). However,
using a 5% frequency threshold results in the loss of much of the

early detection capacity, limiting HI-based prediction to the re-
gime accessible to the sequence-based genealogy approaches,
such as LBI.
The main challenge is hence to find a way to reduce the false

positive rate in HI-based prediction. Success of strains with
smaller HA antigenic advancement over the ones with a larger
advancement could be rationalized in two ways: (i) by some al-
ternative improvement of infectivity, immune system avoidance,
or lower mutational load or (ii) by a fitness cost associated with a
large antigenic effect substitutions. Competition between clades
in terms of antigenic advancement and mutational load has been
demonstrated in computational models (18) and is the basis of
recent efforts to predict influenza virus evolution (9). Supporting
the second scenario, it is known that adaptive mutations are
sometimes not tolerated in certain genetic backgrounds because
they destabilize the encoded protein and further stabilizing
mutations are required to compensate for the loss of virus fitness
(17, 20) and have also been studied in computational models
(19). Better understanding of the context dependence of large
antigenic effect HA substitutions may therefore be a promising
path toward reducing the false positive rate and improving pre-
diction capacity. The problem of false positive detection is
also seen at the Koel 7 positions: Although most past dramatic
changes in antigenic phenotype are associated with substitutions
at these positions, they do not always have antigenic effects and/or
may fail to spread. Hence Koel 7 substitutions alone are poor
predictors of clade success.
In conclusion, our study demonstrates that HI data integrate

naturally onto the sequence-derived phylogeny of the virus. Al-
though, at present, HI-based prediction does not outperform
sequence-based methods, better understanding of genetic con-
text dependence of HI data may provide a path toward improved
performance. Characterizing HA substitutions that have histor-
ically been associated with antigenic transitions and placing HI
data directly into genealogical context may also help with opti-
mizing targeted acquisition of HI data.

Fig. 6. Substitutions with large antigenic effect fix preferentially. The fig-
ure shows the fraction of all substitutions in A(H3N2) that reach the in-
dicated frequency for different magnitudes of the inferred antigenic effect
of this substitution. The plot combines data from substitution models fitted
to five overlapping 10-y intervals from 1985 to 2015 and contains all sub-
stitutions that reach at least 10% population frequency. There are few
substitutions in the highest HI category; error bars show SDs of boot strap
replicates of substitutions.

Fig. 7. Visualization of antigenic evolution on the tree. Tree tips are col-
ored according to the predicted log2 titer distance relative the focal virus
(A/Texas/50/2012 in this case). The tool tip shows titers relative to all available
antisera and titer predictions as a table. Each reference virus (gray squares) can
be chosen by clicking with the mouse, upon which the tree color is updated.
Crosses indicate vaccine strains. The tool tip shows all available measurements
and the predictions by both models, and the color averages measurements
relative to different antisera. Visualizations are available for all seasonal in-
fluenza lineages.
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Materials and Methods
Data HA Sequences of Influenza. A and B viruses isolated from humans were
downloaded from the Global Initiative on Sharing Avian Influenza Data
(GISAID). Accession numbers of all sequences are provided as Datasets S2−S5.
We collected HI data from references (4, 21, 22) and annual and interim
reports of the WHO CC London between 2002 and 2015 (23–35). HI data
before 2011 were curated in ref. 5. Original HI data tables are available from
the website of the Worldwide Influenza Centre at the Francis Crick Institute
at https://www.crick.ac.uk/research/worldwide-influenza-centre/annual-and-
interim-reports/.

Although the modalities of HI assays have changed over the years (red
blood cells from different species, addition of NA inhibitors, etc.), we find that
themodel describes data spanningmany years with reasonable accuracy. This
insensitivity of the model is likely due to the fact that differences in HI assay
methodologies can largely be absorbed in the model terms for antiserum
potency and virus avidity. However, the most recent data, largely provided by
WHO CC London, are modeled with greater accuracy.

Data Processing and Model Fit. The data processing pipeline is based on nextflu
(8), which subsamples viruses, aligns sequences, and builds a phylogenetic tree.
To make use of as much HI data as possible, viruses that are antigenically
characterized were preferentially included. This pipeline was modified for the
current purpose to enforce the inclusion of all strains for which antigenic data
were available. Then, in addition to the standard “augur” pipeline of nextflu,
the tree and substitution models were fitted to the HI data as follows.

For each combination of virus i and antiserum α, we define standardized
log titer as Haβ = log2ðTaβÞ− log2ðTbβÞ, where Taβ is the titer of antiserum to
reference virus b required to inhibit virus a and Tbβ is the homologous titer.
In case multiple measurements are available, we average the standardized
log titers. When no homologous titer is available, the maximal titer is used
as a proxy for the homologous titer. The path between test virus a and
reference virus b extends over branches of the phylogeny i∈ ða . . .bÞ, where
each branch makes a contribution di. Our model of HI titers Ĥaβ between
viruses a and serum β is defined in Eq. 1. The parameters di, pα, and va are
then estimated by minimizing the cost function

C =
X
a, β

�
Haβ − Ĥaβ

�2
+ λ

X
i

di + γ
X
a

v2a + δ
X
α

p2
α [2]

subject to the constraints di ≥ 0. To avoid overfitting, the different param-
eters of the model are regularized by the last three terms in Eq. 2. Large titer
drops are penalized with their absolute value multiplied by λ (ℓ1 regulari-
zation), which results in a sparse model in which most branches have no titer
drop (36). Similarily, the antiserum and virus avidities are ℓ2-regularized by γ
and δ, penalizing very large values without enforcing sparsity. This con-
strained minimization can be cast into a canonical convex optimization
problem and solved efficiently; see below. In the substitution model, the
sum over the path in the tree is replaced by a sum over amino acid differ-
ences in HA1. Sets of substitutions that always occur together are merged
and treated as one compound substitution. The inference of the substitution
model parameters is done in the same way as for the tree model (see refs. 6
and 7 for a similar approach). Because there are only a small number of
antisera and differences in antiserum potency are often on the order of one
or two antigenic units, δwas assigned a small value of 0.2; λ= 1.0was used to
regularize branch or substitution, and γ = 2.0 for virus effects. The quality of
the fit depends weakly on these parameters.

The total numbers of adjustable parameters are S antiserum potencies, V
avidities of viruses, and M internal branches of the tree, of which there are,
at most, V − 1, but typically fewer due to many polytomies in the trees. In
practice, only a fraction of the branches have nonzero branch effects, and
the total number of nonzero parameters is not much larger than the num-
ber of test viruses. In the substitution model, the number of nonsingleton
substitutions found in an HA1 alignment is typically on the order of 100,
most of which are inferred to have no antigenic effect.

This optimization of Eq. 2 can be cast into a canonical quadratic pro-
gramming problem of the form

minimize :
1
2
xQx+qx

subject  to : Gx≤h
[3]

where x is the vector of unknowns, and the matrix Q and the vector q specify
the cost function. The matrix G and the vector h encode inequality con-
straints on x.

To formulate Eq. 2 in this canonical form, we concatenate the titer drops
di associated with internal branches i of the tree, the potencies pα of each
antiserum, and avidities va of virus isolates into a single vector x,

xs =

8<
:

ds, for  s= 1 . . .B
vs, for  s=B+ 1 . . .B+V
ps, for  s=B+V + 1 . . .B+V + S

[4]

where B are the number of branches in the tree connecting measurements,
V is the number of viruses with titer measurements, and S are the number of
antisera. Next, we construct a large binary matrix A of dimension N × ðB+V + SÞ,
where N is the total number of measurements. Each row of the matrix A codes
for a titer prediction Ĥaβ. Using the double index aβ to label measurements,
entries of A are given by

Aaβ,s =
�
1, for  s  in  path,   potency,   or  avidity
0, otherwise

[5]

i.e., Aaβ,s = 1 for all s that correspond to a branch of the path ða . . .bÞ, the
virus avidity va, and the antiserum potency pβ; otherwise, Aaβ,s = 0. All titer
predictions of Eq. 1 are hence given by

Ĥ=Ax [6]

where x is the vector of parameters.
Using these definitions, the cost function Eq. 2 can be written as

C = ðH−AxÞT ðH−AxÞ+ 2λ
XB
s=1

xs + γ
XB+V
s=B+1

x2s + δ
XB+V+S

s=B+V+1

x2s [7]

subject to xs ≥ 0 for s= 1 . . .B. Dropping constant terms and defining

Qrs =

8>><
>>:

X
a
AarAas, if  r, s≤B

γ if  r = s, s>B, s≤B+V
δ if  r = s, s>B+V
0 otherwise

, [8]

we have

C = xQx− 2HAx+ 2λ
XB
s=1

xs. [9]

To enfore the ℓ1 regularization and the positivity of the titer drops corre-
sponding to xs, s= 1 . . .B, we define inequality constraints

xs ≥ 0 [10]

for s= 1 . . .B, which forces all titer drops to be positive. In addition, we set

q=−HA [11]

and add λ to qs,   s= 1, . . .B to penalize large effects. With these definitions,
we have cast Eq. 2 in the form of Eq. 3. The resulting quadratic programming
problem is then solved with cvxopt by M. Andersen and L. Vandenberghe.

The HI titer data and the inferred model parameters are integrated into
the json data structure describing the tree or saved in an additional data file
for later visualization using auspice.

Visualization. The HI titer coloring and tool tips is implemented via straight-
forward extension of nextflu’s visualization software auspice. In addition to
the standard nextflu tree display, a structure showing the positions at which
the substitution model inferred large contribution to antigenic change are
shown on the pages for each individual virus lineage. The structures are vi-
sualized with JSmol (37). For H3N2, we use structure 5HMG (38); for H1N1pdm,
we use 4LXV (39); and, for the influenza B Victoria and Yamagata lineages,
we use 4FQM (40) and 4M40 (41). The structure visualization is available at
hi.nextflu.org/H3N2/3y/.
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