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Cellular populations in both nature and the laboratory are com-
posed of phenotypically heterogeneous individuals that compete
with each other resulting in complex population dynamics. Predicting
population growth characteristics based on knowledge of heteroge-
neous single-cell dynamics remains challenging. By observing groups
of cells for hundreds of generations at single-cell resolution, we
reveal that growth noise causes clonal populations of Escherichia coli
to double faster than the mean doubling time of their constituent
single cells across a broad set of balanced-growth conditions. We
show that the population-level growth rate gain as well as age struc-
tures of populations and of cell lineages in competition are predict-
able. Furthermore, we theoretically reveal that the growth rate gain
can be linked with the relative entropy of lineage generation time
distributions. Unexpectedly, we find an empirical linear relation
between the means and the variances of generation times across
conditions, which provides a general constraint on maximal growth
rates. Together, these results demonstrate a fundamental benefit of
noise for population growth, and identify a growth law that sets a
“speed limit” for proliferation.

growth noise | age-structured population model | cell lineage analysis |
growth law | microfluidics

Cell growth is an important physiological process that under-
lies the fitness of organisms. In exponentially growing cell

populations, proliferation is usually quantified using the bulk
population growth rate, which is assumed to represent the av-
erage growth rate of single cells within a population. In addition,
basic growth laws exist that relate ribosome function and meta-
bolic efficiency, macromolecular composition, and cell size of the
culture as a whole to the bulk population growth rate (1–3).
Population growth rate is therefore a quantity of primary im-
portance that reports cellular physiological states and fitness.
However, at the single-cell level, growth-related parameters

such as the division time interval and division cell size are het-
erogeneous even in a clonal population growing at a constant
rate (4–9). Such “growth noise” causes concurrently living cells
to compete within the population for representation among its
future descendants. For example, if two sibling cells born from
the same mother cell had different division intervals, the faster
dividing sibling is likely to have more descendants in the future
population compared with its slower dividing sister, despite the
fact that progenies of both siblings may proliferate equally well
(Fig. 1). Intrapopulation competition complicates single-cell
analysis because any growth-correlated quantities measured over
the population deviate from intrinsic single-cell properties (10–
12). In the case of the toy model described in Fig. 1, cells are
assumed to determine their generation times (division interval)
randomly by roll of a dice. The mean of intrinsic cellular gen-
eration time is thus ð1+ 2+⋯+ 6Þ=6= 3.5 h, but population
doubling time, which is the time required for a population to
double the number of cells, is in fact 3.2 h. This counterintuitive
result is a direct consequence of growth noise in a population.
Indeed, as we will see, the population doubling time can only

equal the mean generation time when no variability of genera-
tion time exists at the single-cell level. Population growth rate
is determined not only by an average of single cells but also by
the details of heterogeneity within a population. Therefore, un-
derstanding how population growth rates and other properties
arise from single-cell heterogeneity poses a fundamental chal-
lenge to single-cell biology.
A classical study of theoretical and experimental microbiology

attempted to reveal the discrepancies between mean cellular
generation times and population doubling times in real bacterial
populations (13). Experimental methods and techniques avail-
able at that time, however, hampered reliable tests. Recently, the
techniques of single-cell time-lapse microscopy have advanced to
a great extent, revealing the heterogeneous and stochastic nature
of single-cell dynamics quantitatively (14). With the aid of
microfluidic platforms, tracking single cells over many genera-
tions in controlled constant or changing environments has also
become feasible, providing insights into the mechanisms of cell
size homeostasis and stress responses (3, 6, 7, 9, 15–22).
In this study, through microfluidics time-lapse microscopy and

single-cell analysis on large-scale, single-cell lineage trees, we
reveal that clonal populations of Escherichia coli indeed grow
with a doubling time that is smaller than the mean doubling time
of their constituent cells under broad, balanced-growth condi-
tions. We show that the observed growth rate gains and pop-
ulation age structures are predictable from cellular generation
time distributions based on a simple age-structured population
model. Furthermore, we reveal unique features of long single-
cell lineages within populations in competition, and provide a

Significance

Differences between individuals exist even in the absence of
genetic differences, e.g., in identical twins. Over the last de-
cade, experiments have shown that even genetically identical
microbes exhibit large cell-to-cell differences. In particular, the
timing of cell division events is highly variable between single
bacterial cells. The effect of this variability on long-term
growth and survival of bacteria, however, remains elusive.
Here, we present a striking finding showing that a bacterial
population grows faster on average than its constituent cells.
To explain this counterintuitive result, we present a mathe-
matical model that precisely predicts our measurements. Fur-
thermore, we show an empirical growth law that constrains
the maximal growth rate of Escherichia coli.

Author contributions: M.H. and Y.W. designed research; M.H., T.N., H.N., R.O., K.K., E.K.,
and Y.W. performed research; Y.W. contributed new reagents/analytic tools; M.H., R.O.,
S.A., and Y.W. analyzed data; and M.H., E.K., and Y.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: cwaka@mail.ecc.u-tokyo.ac.jp.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1519412113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1519412113 PNAS | March 22, 2016 | vol. 113 | no. 12 | 3251–3256

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1519412113&domain=pdf
mailto:cwaka@mail.ecc.u-tokyo.ac.jp
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1519412113


history-based formulation that connects growth rate gain with a
measure of statistical deviation between isolated and competing
lineages. Finally, we demonstrate a linear relation between the
means and the variances of generation time across conditions,
which constrains the maximum growth rate of this organism.

Results
Microfluidics Time-Lapse Microscopy Reveals Long-Term Single-Cell
Lineage Tree Structures. To investigate the role and the conse-
quences of intrapopulation growth noise, we developed a custom
microfluidics device for single-cell analysis, which we call the
“dynamics cytometer” (Fig. 2 A–C, SI Appendix, Fig. S1, and
Movie S1). The dynamics cytometer is similar to the previously
reported polydimethylsiloxane (PDMS)-based microfluidics de-
vices designed for long-term single-cell observation (7, 9, 15, 18–
21). The important differences are (i) the microchannels are
directly created on a glass coverslip, not on PDMS; and (ii) the
channel region is covered by a semipermeable membrane (SI
Appendix, Fig. S1) via biotin–streptavidin bonding by chemically

decorating the surface of a microfabricated glass coverslip with
biotin and membrane with streptavidin (23). The narrow and
shallow growth channels can harbor 25 ∼ 40 cells at a time. A
small fraction of the cells within growth channels are constantly
removed to the wide and deep flow channels, which maintains
the number of cells in the growth channels nearly constant. In
contrast to the “mother machine” (7), the width of the growth
channels is wider than a single-cell width, and both ends are open
to flow channels. This configuration introduces competition
among cells to remain within the growth channels, which is an
important feature of this device for evaluating growth properties
of both single cells and the population. Fresh medium is con-
stantly supplied to the cells both from the flows in the flow
channels and above the membrane, allowing efficient environ-
mental control. Cellular growth rates in this device were indeed
stable during the entire period of observation (SI Appendix, Fig.
S2). Furthermore, the statistics of cellular growth were indis-
tinguishable across different locations within the growth chan-
nels (SI Appendix, Fig. S3), which confirms efficient control of
environmental conditions around the cells. Using this device, we
observed clonal proliferation processes of E. coli in constant
environments by time-lapse microscopy, obtaining large-scale
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Fig. 1. Competition within a population caused by growth noise and its
consequence to population growth rate. (A) Toy model of cell proliferation.
Here, we consider a model of cell proliferation in which all of the cells in a
population determine their generation time (interdivision time) randomly
by throwing a dice to learn the consequences of intrapopulation growth
noise. In this setting, cells can take either of the six possible choices of
generation time, τ= 1,2,⋯, 6 h, with the equal probability of 1/6. The mean
generation time is thus hτig= 3.5 h. (B) Example of pedigree tree showing
competition between sibling cells. In this tree, two sibling cells were born
from the common mother cell at t = 0 h, and divided with different gen-
eration times (sibling cell 1: τs1 = 5 h; and sibling cell 2: τs2 = 2 h). The de-
scendant cells from the both sibling cells follow the same rule of cell divisions
irrespectively of the ancestral generation time. The difference of generation
time between the sibling cells 1 and 2 was caused just by chance, but the
expected number of descendant cells becomes larger for the fast dividing
sibling cell. The ratio of the expected number of descendant cells from those
sibling cells at a certain future time point is hN1i=hN2i= e−Λpðτs1−τs2Þ, where Λp

is the population growth rate. (C) Growth of cell population. When all of the
cells in the population follow the same division rule in A, the number of cells
in the population grows exponentially. The rate of this exponential growth
is the “population growth rate,” Λp. The time required for the population to
double the number of cells is the “population doubling time,” Td, i.e.,
NðtÞ=Nð0Þ2t=Td . Therefore, Td = ln2/Λp. An interesting consequence of sto-
chasticity in generation time is that population doubling time becomes
smaller than the mean generation time, i.e., Td <hτig. In the case of the dice
population, Td = 3.187 h, which is indeed smaller than hτig= 3.5 h.
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Fig. 2. Single-cell growth measurement with dynamics cytometer.
(A) Schematic drawing of the dynamics cytometer. In this device, we used the
two types of microchannels etched on a coverslip. The narrow and shallow
“growth channels” can harbor 25∼40 cells for time-lapse observation. The
proliferation of the cells in the growth channels ejects a portion of the cells to
the wide and deep “flow channels.” The flow in the flow channels removes
the cells from the device. (B) Cross-section view of A. The channel region is
covered by a flat semipermeable cellulose membrane with both ends of the
flow channels left open to introduce medium flow (see also SI Appendix, Fig.
S1C). The membrane restricts the cells to grow in a monolayer within the
growth channels, which facilitates cell detection in image analysis. (C) A mi-
crograph of E. coli in the device. (D) Single-cell pedigree of a population of
E. coli (F3 rpsL-gfp strain) in a constant environment for 5,000 min (∼100
generations). The bifurcations of the lines indicate cell division, and the end
points indicate cell removal from the growth channels. The magenta and blue
lines indicate the single-cell lineages that remained in the growth channels
for 5,000 min. The trees are obtained from the population proliferating in a
single growth channel under a constant flow of M9 minimum medium sup-
plemented with 0.2% glucose at 37 °C. (E) The time course transitions of cell
size along the long single-cell lineage. This lineage corresponds to the top
lineage in D. See also SI Appendix, Figs. S1–S5.
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single-cell lineage tree structures (Fig. 2D and SI Appendix, Fig.
S4) as well as dynamics of cell size along long, single-cell lineages
(Fig. 2E and SI Appendix, Fig. S5).

Analysis of Single-Cell Lineage Trees Reveals That Cell Populations
Grow Faster than Their Constituent Single Cells. Large-scale sin-
gle-cell lineage trees obtained by the dynamics cytometer contain
sufficient information for determining population growth rates
and cellular generation time distributions, to which we applied a
careful measurement analysis described in SI Appendix. For
population growth rate, we first evaluated the instantaneous di-
vision rate as ΛðtÞ= ð1=ΔtÞlnððNðtÞ+DðtÞÞ=NðtÞÞ, where Δt is the
time-lapse interval; N(t) is the number of cells in the growth
channels at time t; and D(t) is the number of cells that divided
between t and t + Δt. Note that N(t) + D(t) is the number of cells
at t + Δt when no cell is removed from the population. Population
growth rate Λp is then measured as the average of Λ(t), i.e.,
Λp =

Pn−1
i=0 ΛðiΔtÞ=n, where n is the number of time points in the

measurements, yielding the population doubling time Td = ln2=Λp.
A cell’s generation time is the age τ at which a newborn cell

will divide next (here “age” means time elapsed since the previous
division), which is a random variable with probability distribution
function g(τ). The generation time distribution is related to the
age-specific division rate b(τ) by gðτÞ= bðτÞexp½− R τ

0 bðτ′Þdτ′�
(SI Appendix). Thus, knowing b(τ) determines g(τ) as well. We
measured the age-specific division rate from the single-cell data
using bðτÞ= ð−1=ΔtÞlnððNaðτÞ−DaðτÞÞ=NaðτÞÞ, where Na(τ) is
the number of cells that reached age τ, and Da(τ) is the number of
cells that divided between age τ and τ + Δt. We confirmed by
simulation that these statistical estimators provide precise
measures of population growth rate and generation time dis-
tributions both with and without cell removal (SI Appendix, Figs.
S6–S10). Note that all of the information above is obtained
directly from lineage tree structures without any fitting to
elongation curves. Indeed, our precise measurement of Λp
demonstrates that comparison between population growth rate
and simple mean of individual cells’ elongation rate within a
population requires attention because they often report signif-
icantly different values (SI Appendix, Table S1).
Using the validated growth parameters above, we evaluated

generation time distributions (Fig. 3A and SI Appendix, Fig. S11)
and population growth rates of four E. coli strains listed in SI Ap-
pendix, Table S2, under several culture conditions, in which tem-
perature and nutrient supplements were altered. Under those
conditions, the mean of unbiased cellular generation time ranged
from 26 to 170min. The measured generation time distributions were
asymmetric and similar to gamma distributions [=τk−1e−τ=θ=ΓðkÞθk,
where k and θ are shape and scale parameters], although significant
deviations existed especially in the tails (SI Appendix, Fig. S11).
Comparison showed that the mean generation time hτig was greater
than population doubling time Td in most cases (Fig. 3B), which
means that clonal populations grow faster than the constituent single
cells on average under a broad range of constant environmental
conditions. The relative gain of population growth rate was positively
correlated with the noise [coefficient of variation (CV)] of the gen-
eration time distributions (Fig. 3C), indicating that generation time
noise increases population growth rate.

Growth Rate Gain and Population Age Structures Can Be Predicted
from Generation Time Distributions. To gain further insights into
the observed growth rate gain, we compared the experimental
results with the prediction of an age-structured population model
(Fig. 3D) (12, 13, 24) in which cells divide according to an age-
dependent division probability. An important prediction of this
model is that the generation time distribution g(τ) and population
growth rate Λp must satisfy the so-called Euler–Lotka equation:Z ∞

0
2gðτÞe−Λpτdτ= 1 [1]

(see SI Appendix for derivation). This equation allows us to
calculate Λp using knowledge of g(τ). We thus calculated
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Fig. 3. Relationships between generation time distribution and population
doubling time. (A) An example of generation time distribution obtained
from the lineage tree structures in Fig. 2D. The gray histogram shows the
probability distribution constructed from the lineage trees containing 3,285
cells (corresponding to the left axis), and the red curve shows the survival
function (corresponding to the right axis), which represents the probability
for a cell to remain undivided until the age on the x axis. In this example, the
mean generation time was 55.9 min [54.8–57.0 min, 95% bootstrap confi-
dence interval (CI)], and the coefficient of variation (CV) was 0.39 (0.37–0.41).
(B) Ratios of mean cellular generation time to population doubling time
plotted against population doubling time. The red points are for the three
W3110 derivative strains (circle, F3 rpsL-gfp; square, F3 T7-venus; and tri-
angle, F3 LVS), and blue for the B/r derivative strain, BrF2. Error bars rep-
resent 2SD bootstrap error ranges. (C) Relationship between CV of generation
time and growth rate gain. Growth rate gain is defined as ðhτig − TdÞ=Td =
ðΛp − λÞ=λ, where λ= ln  2=hτig is single-cell growth rate, and corresponds to the
distance of the points from the y = 1 line in B. Error bars on x axis are 95%
bootstrap CI, and those on y axis are 2SD bootstrap error ranges estimated
from the errors in hτig and Td. The correspondence between the point types
and the strains is the same as in B. The black broken curve represents the re-
lation when generation time distributions are gamma [y = ðð2x2 − 1Þ=x2ln  2Þ− 1=P∞

i=1ððln  2Þi=ðði+ 1Þ!ÞÞx2i, where x is CV and y is growth rate gain]. (Inset)
Relationship between mean and CV of generation time. The gray curve rep-
resents the trend for the F3 strains expected from the linear relation between
mean and variance of generation time in Fig. 6. Error bars are 95% bootstrap
CI. (D) Schematic explanation of age-structured population model. In this
model, cells are assumed to divide according to age-specific division probability
b(τ)δτ, and each division produces two newborn cells with the age τ = 0, which
increase their age and divide again probabilistically according to the same
b(τ)δτ. (E) Ratios of theoretically predicted population doubling time to ex-
perimental value. Population doubling time was predicted from generation
time distribution based on the Euler–Lotka equation [1]. Error bars on x axis
are 95% bootstrap CI, and those on the y axis are 2SD bootstrap error ranges.
See also SI Appendix, Table S1 and Figs. S6–S12.
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Λp
(theory) [=ln(2)/Td

(theory)] from experimentally obtained g(τ)
according to the computational method described in SI Ap-
pendix, finding good agreement with the directly measured
value (Fig. 3E). When generation time follows a gamma dis-
tribution, i.e., gðτÞ= τk−1e−τ=θ=ΓðkÞθk, where k and θ are shape
and scale parameters, Eq. 1 is analytically solvable, and
growth rate gain is determined solely by the CV. Despite
the fact that the generation time distributions were not per-
fectly gamma, the result in Fig. 3C agrees in trend with
this relation.
In addition to population growth rate, this simple model

predicts the steady-state age distribution of the population as
follows:

ψpðτÞ= 2Λpe−Λpτ

Z ∞

τ
gðτ′Þdτ′ [2]

(SI Appendix). This equation shows that the generation time dis-
tribution of single cells determines the age distribution of the
population because Λp is itself determined by g(τ) using [1]. We
compared experimentally measured age distributions of the pop-
ulation with those predicted from g(τ) using [2] according to the
method described in SI Appendix, finding excellent agreement in
all of the conditions without any adjustable parameters (Fig. 4).

Age Distributions Along Long Single-Cell Lineages in Populations
Exhibit Optimal Lineage Statistics. In addition to population growth
rates and age distributions, the model makes testable predictions
regarding the histories of individual cells within a population. The-
oretical analysis of the cell proliferation process from the viewpoint

of cellular lineages shows that the distribution g*ðτÞ  = 2gðτÞe−Λpτ,
which appeared in [1], is in fact the typical generation time distri-
bution along a lineage extracted by randomly choosing a descendant
cell and tracking back to its ancestor over many generations (SI
Appendix). We previously showed that the distribution g*(τ) corre-
sponds to a set of lineages that optimize the population growth rate
(12); hence we call such lineages “optimal lineages.” Importantly,
optimal lineages possess a generation time distribution that is distinct
from that of single cells in isolation. Focusing on the experimental
datasets in which we were able to obtain lineages longer than 100
generations, we confirmed that their age distributions correspond to
that of optimal lineages, rather than that of single cells in isolation
(Fig. 5).
Analyzing the cell proliferation processes from the viewpoint

of cell lineages offers an illuminating mathematical interpreta-
tion of these differences, as we prove within the context of the
simple age-structured model that

hτig −Td

Td
=D

�
g 
����  g*�,

Td − hτig*
Td

=D
�
g*  

����  g�,

hτig − hτig*
Td

=D
�
g 
����  g*�+D

�
g*  

����  g�,
whereD½g����g*�≡ R∞

0 gðτÞlog2ðgðτÞ=g*ðτÞÞdτ is the Kullback–Leibler
divergence (relative entropy), a nonnegative quantity that measures
the dissimilarity between two probability distributions (SI Appen-
dix). Noting that g*ðτÞ is the typical lineage generation time distri-
bution within a population, we can understand from the above
relations that growth rate differences are linked with the different
statistics along cell lineages in isolation and within a population.
The advantage of the lineage viewpoint in analyzing population
dynamics has been explored theoretically (12, 25–28); our study
provides an experimental foundation behind this powerful concept.

The Means and the Variances of Generation Time Across Conditions
Are Linearly Related. The relations we examined thus far do not
impose any constraints on generation time distributions. How-
ever, we noticed that the means and variances of the three E. coli
strains derived from W3110 (F3 series) were approximately lin-
early related (Fig. 6). In general, such a relation suggests that the
dominant contribution to stochasticity in the cell division time
may arise from a number of discrete steps within the cell division
cycle, each contributing comparable and largely independent
portions of the variance in timing. If the number of steps in-
creases as growth conditions deteriorate, a linear mean–variance
scaling relation would arise. It is noteworthy that the X inter-
cept of the linear scaling relation is positive (24.4 ± 0.8 min) and
close to the minimum generation time of E. coli in rich media
(∼20 min). Thus, this relation may be relevant for establishing
the upper bound of growth rate of these strains in any constant
environments. Because the X intercept is positive, the CV of
generation time is expected to take the maximum value at an
intermediate position, where the mean generation time is twice
the minimum (X-intercept value). This is indeed seen in Fig. 3C
(Inset). The variances of BrF2 strain were significantly smaller
than this trend, suggesting that the intrinsic level of generation
time heterogeneity is strain specific.

Discussion
The growth of cells constitutes an important physiological pro-
cess that contributes critically to the fitness of an organism, while
also imposing global constraints on intracellular gene expression

 0

 0.02

 0.04

 0.06

 0  20  40  60

Measurement
Prediction

 0

 0.03

 0.06

 0  20  40  60
 0

 0.01

 0.02

 0.03

 0  40  80  120

 0

 0.008

 0.016

 0  100  200
 0

 0.004

 0.008

 0  100  200  300
 0

 0.004

 0.008

 0  100  200  300  400

 0

 0.01

 0.02

 0  80  160
 0

 0.004

 0.008

 0.012

 0  100  200  300

 0

 0.01

 0.02

 0  40  80  120

Age (min)

P
ro

ba
bi

lit
y 

de
ns

ity

 0

 0.01

 0.02

 0  80  160

F3 rpsL-gfp
M9 casamino acids

F3 rpsL-gfp
M9 1% LB

F3 rpsL-gfp
M9 glucose

F3 rpsL-gfp
M9 glucose

F3 rpsL-gfp
M9 glycerol

F3 rpsL-gfp
M9 glycerol

F3 T7-venus
M9 glucose

F3 T7-venus
M9 glucose

F3 LVS
M9 glucose

BrF2 rpsL-gfp
M9 glycerol

 0

 0.02

 0.04

 0  20  40  60  80

BrF2 rpsL-gfp
M9 glucose

Fig. 4. Comparison of age distributions between measurements and the-
oretical predictions. The gray distributions represent the experimentally
measured population age distributions, and the magenta curves the theo-
retical predictions from the generation time distribution based on the re-
lation [2]. Strain and culture conditions are indicated in each panel.

3254 | www.pnas.org/cgi/doi/10.1073/pnas.1519412113 Hashimoto et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519412113/-/DCSupplemental/pnas.1519412113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1519412113


levels (29), metabolic efficiency (1), and macromolecular com-
position (2). Most studies on cellular growth have referred to
bulk population growth rates in measurements, but recent re-
search on the heterogeneous and stochastic nature of growth at
the single-cell level poses new, fundamental questions regarding
(i) how precisely the insights gained through population mea-
surements apply to single-cell properties (3), and (ii) how single
cells as a whole bring about the observed population properties
(12, 13). Our study tackled the latter issue both experimentally
and theoretically, showing that a simple age-structured pop-
ulation model explains the intricate relationships between the
growth rates of the cells and the population.
The result that the growth rate gain increases with the CV of

generation time (Fig. 3C) clearly demonstrates the importance of
growth noise in determining population growth rate. This sug-
gests that there are two routes for an organism to evolve to a
higher population growth rate in a constant environment: one is
simply to decrease the mean generation time; and the other is to
increase the heterogeneity of generation times in a population.
In reality, a single mutation may affect both mean and variance
of generation times simultaneously, resulting in a synergetic or
antagonistic effect on the population growth rate. Discriminative
measurements on these two contributions have never been per-
formed to our knowledge. In experimental evolution, an increase
of population growth rate has usually been attributed exclusively
to the change of mean growth properties; measuring single-cell
growth heterogeneity over the course of an evolutionary process
may reveal the dominant contribution to an increase of pop-
ulation growth rate at each step of the evolutionary trajectories.
The measurements in this study are restricted to the stress-free

conditions where cells can grow and divide stably for hundreds of
generations. Generally, cells placed in stressful environments show

increased levels of phenotypic heterogeneity (16, 30). One apparent
role of large phenotypic heterogeneity is to increase the chance of
producing fitter individuals to be selectively amplified within a
population. Additionally, as our results suggest, heterogeneity in-
creases the population growth rate achievable for a fixed, mean
generation time, a result that may clarify the role of stress-induced
phenotypic heterogeneity observed in previous experiments.
It is remarkable that a simple population model, using only an

age-dependent cell division process, can explain the relationships
between the growth rates of cells and the population across such
broad culture conditions. We attribute this to having focused
only on the age-related growth parameters and cell division
statistics, while not modeling cell-size related parameters. In-
deed, cell size at birth and generation time are weakly correlated
negatively (Pearson correlation coefficient, −0.48 ∼ −0.22; SI
Appendix, Fig. S12), and this effect must be considered to ac-
count for cell size stability (3, 31–35). Nevertheless, our results
suggest that, as far as age-related parameters and population
growth rates are concerned, cell size information does not play a
predominant role in E. coli over a broad set of culture condi-
tions. It is also important to note that this model assumes no
correlation of generation time between mother and daughter
cells. Generally, positive mother–daughter correlation increases
population growth rate, and negative correlation decreases it
(13). However, our experimental results show that mother–
daughter correlations of generation time are weak: a positive
correlation of 0.2 would increase population growth rate by ∼2%
(13), and most of the observed correlations are below this level
(SI Appendix, Table S5).
With regard to cell size stability, our study highlights the im-

portance of lineage differences. As recognized by previous
studies (6, 7), a small fraction of E. coli cells in clonal populations
often become filamentous even in constant environments. We also
observed such filamentous cells in our measurements across the
population (SI Appendix, Fig. S5 A and B), but importantly these
cells are rarely observed along the optimal lineages (Fig. 2E and SI
Appendix, Fig. S5). This is likely due to the tail of g*(τ), which
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decays faster than g(τ) by the factor e−Λpτ, and thus strongly re-
duces the probability of observing in the optimal lineages a long
generation time associated with filamentous states.
The linear relation between the means and the variances of

generation time in Fig. 6 suggests that we can predict the noise
levels of generation time only from the means without knowing
the details about the environments. A similar idea has been
proposed in several recent studies. For example, Iyer-Biswas
et al. (31, 36) proposed that the distributions of generation time
normalized by their means collapses onto the universal curve
based on their experiments with Caulobacter crescentus cultured
under various temperature conditions, and that an autocatalytic
cycle model for cell cycle control might account for this scaling
property. Similarly, Taheri-Araghi et al. (3) proposed the scaling
of generation time distribution based on their single-cell analysis
on E. coli growth under different nutrient conditions at a fixed
temperature, and presented the adder model, which assumes
that cells achieve cell size homeostasis by adding a constant size
between birth and division irrespective of birth size. For this
simple scaling rule to be valid, the CVs of generation time must
be constant irrespective of the environmental conditions, and the
SDs become proportional to the means. However, our results in
Fig. 3C (Inset) and Fig. 6 do not follow this rule. Thus, our results
suggest that the scaling rule breaks down in some culture con-
ditions and/or organisms not explored in the previous studies. It
should be noted that the mean–variance linear relation is tested
only for the W3110-derived strains in our study; characterizing
which rule is obeyed by different strains and organisms might be
a fruitful subject for future evolutionary study.
In summary, our measurements have established a predictive

framework that bridges from single-cell properties to population-

level dynamics in conditions where cells can grow stably. The
same approach can be used to discover rules that govern growth
in severe stress environments, including antibiotics and chemo-
therapeutics, and to investigate the generality and prevalence of
single-cell and population growth laws across strains, species, cell
types, and environments.

Materials and Methods
Cell Strains and Culture Conditions. We used W3110 and B/r derivative E. coli
strains in this study (SI Appendix, Table S2). Cells were grown in M9 minimal
medium. The culture conditions were changed by different nutrient sup-
plements and temperature as listed in SI Appendix, Table S3. See SI Ap-
pendix for details.

Single-Cell Time-Lapse Observation. We implemented time-lapse observation
of E. coli proliferating in the dynamics cytometer using Nikon Ti-E micro-
scope controlled by micromanager (https://micro-manager.org/). The time-
lapse images were analyzed by a custom macro of ImageJ (imagej.nih.gov/ij/),
and the exported data were further analyzed using a custom C-program. See
SI Appendix for details.
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