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Abstract

Force fields, such as Amber’s ff12SB, can be fairly accurate models of the physical forces in 

proteins and other biomolecules. When coupled with accurate solvation models, force fields are 

able to bring insight into the conformational preferences, transitions, pathways and free energies 

for these biomolecules. When computational speed/cost matters implicit solvent is often used -- at 

the cost of accuracy. We present an empirical grid-like correction term –in the spirit of cMAPs-- 

to the combination of the ff12SB protein force field and the GBneck2 implicit solvent model. 

Ff12SB-cMAP is parameterized on experimental helicity data. We provide validation on a set of 

peptides and proteins. Ff12SB-cMAP successfully improves the secondary structure biases 

observed in ff12SB+Gbneck2. Ff12SB-cMAP can be downloaded (https://github.com/

laufercenter/Amap.git) and used within the Amber package. It can improve the agreement of force 

fields + implicit solvent with experiments.
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Introduction

Atomistic force fields can have small systematic errors when using implicit-solvent 
models

Atomistic force fields are widely used to simulate a broad range of biomolecular structures 

and properties1. These force fields are usually most accurate when combined with explicit 

water solvent modeling. However, implicit-solvent modeling is often used instead when 

computational efficiency is needed. This is particularly important in cases where the 
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numbers of explicit waters added are too large for computations (e.g. protein folding starting 

from extended chains) or when using advanced sampling methods that scale with the 

number of particles (N) (e.g. the number of replicas needed for replica exchange is 

proportional to the square root of N)2. For example, recently implicit solvent modeling has 

been used to fold several small proteins3 on lab-sized computer clusters. The computational 

requirement is orders of magnitude larger when explicit solvent is used4.

On the one hand, implicit water has the disadvantage of lacking the details of explicit water 

models, in treating hydrogen bonding or bridging waters or dipole reorientation5, for 

example. On the other hand, implicit water is computationally efficient, and often useful for 

simulating large systems. In our experience, simulations of protein folding using ff12SB6 

and GBneck27 show secondary-structure biases favoring helical conformations. Some of the 

limitations in this specific combination might come from: (1) ff12SB backbone parameters 

were derived to improve experimental agreement of the alanine backbone in combination 

with explicit solvent, (2) known deficiencies of GB implicit solvent and absence of a surface 

area term3,7,8 (3) absence of coupling terms between backbone dihedrals (Φ and Ψ).

In this work we aim at a correction term for the combination of protein force field (ff12SB)6 

and implicit solvent (GBneck2)7 that improves agreement with experimental data. This 

correction term acts as a way to cancel the errors of coupling this specific force field and 

implicit solvent and is not expected to be transferable to other force field/solvent 

combinations. We adopt an approach that has been used extensively in the parameterization 

of Charmm 22 and beyond which is to introduce coupling between backbone dihedrals with 

a spline based correction map (cMAP)9–12. Correction maps have already been used in the 

past as a way to cancel errors arising from combining an implicit solvent model with a force 

field12. To disambiguate the different cMAPS available for different force fields13 we call 

this map ff12SB-cMAP.

We show that rather than deriving an individual correction map for each amino acid, it is 

enough to make two corrections. The first applies to alanine, which is less helical than 

expected. Glycine and proline need no correction. The second correction applies to the rest 

of the amino acids, which are too helical in simulations. The resulting force field exhibits 

improved behavior in the folding of small peptides and has been used successfully for 

predicting native structures of proteins in the presence14 and absence15 of experimental data.

Theoretical Background

The ff12SB-CMAP Approach

There is no unique or perfect approach for deriving a grid correction to the force field. 

Hence, we first outline below the philosophy and approach that we use to evaluate 

agreement with experimental data. Next, we outline the training set that we use to develop 

the correction maps. We then validate our resulting empirical correction on two test sets: (1) 

folding of small peptides and (2) stability of protein native states.

Correction maps represent an energetic modification to the force field. For every X(ϕ,ψ) 

there is an energetic correction that has been tabulated in a grid. C-splines16 are then used to 
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derive forces. In that way, the corresponding correction can be used for molecular dynamics 

simulations or similar techniques.

Ideally, this correction to the force field would be derived by considering the “real” free 

energy map of each amino acid and comparing them with maps derived from simulations. 

Unfortunately, we cannot access the “real” energy map, but we can find approximations to 

it: (1) from quantum mechanics or (2) from the plethora of protein structures deposited in 

the PDB or (3) from other experimental data. We have opted for a hybrid approach, in which 

we first use data for all amino acids (except proline, glycine and pre-proline) present in a set 

of high resolution crystal structures selected by the Richardson lab17 (top500) to evaluate 

weaknesses in the standard energy profiles for the ff12SB force field. Then, guided by these 

results, we use experimental data for helical propensities (α region) and folding simulations 

(β region) to develop correction maps that are used in subsequent simulations.

We first make a 2D histogram of populations for phi and psi dihedral values based on amino 

acids from the top500 dataset that are not involved in secondary structures. The Boltzmann 

relation is used for deriving a qualitative approximation to the free energy maps based on 

populations18 (see Figure 1 and methods). Regions with low populations are not accurately 

represented in this model, so we only look at regions where the predicted energy is no 

further than 5 kcal/mol away from the lowest energy structure. We compare these qualitative 

maps to those derived from simulations of trialanine (see methods),19 using the same 

5kcal/mol threshold for the free energies (see methods). We use trialanine because it is too 

short to form secondary structures, and we make the approximation that the ensemble of 

structures sampled by trialanine is representative of the presented in coil regions of protein 

structures. At this level of approximation, we can compare the shapes of the two maps and 

the relative depths of the minima around the beta (β) and alpha regions (α), which are 

statistically better represented in the top500 than other regions of the map (see Figure 1). 

Even though we are only using this approach to qualitatively identify problematic regions in 

this work, there are several statistical potentials in the literature that have used similar 

approaches for refining structures, scoring and sampling202122.

Results and discussion

The shape of the Ramachandran differs between current-model simulations and 
experiments

The important minima comprising the various stable basins: alpha (α), beta (β), polyproline 

type II (ppII) and left-handed alpha (Lα) conformations can be identified in both experiment 

and simulations (see Fig. 1 and Fig. S1,S2). The differences between simulations and 

experiment are mainly in the shapes of the Ramachandran maps surrounding these 

metastable regions. The forbidden region is quite different in the two maps, in particular the 

region between α and Lα is much narrower and is tilted clockwise in the simulated map. 

Examining the α region, we can see that not only is the simulated basin broader and more 

diffuse, it has also some specific features: a favorable region (Φ ∈ [−180, −120]) not 

identified in the PDB and the region in between alpha and ppII is different: the force field 

stabilizes the region near alpha, whereas in the pdb it is the area near ppII that is more 

stable. Likewise the Lα region has substantial additional density trailing down into the Ψ ∈ 
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[−180,0] region. Finally, the β region is smaller and rounder than in experiment, it is also 

less favorable than ppII. On the other hand, ppII structures are more favorable than in 

experiment. Due to the assumptions discussed above, differences between the map derived 

from the PDB and the one derived from simulations are expected23,24. We compare 

backbone preferences for residues not involved in secondary structure – rather than all 

amino acids-- to understand the natural tendencies of backbones when not influenced by 

stabilization from hydrogen bonds in α-helices or β-strands. Ideally the position of the 

global minima and the predicted relative populations of the different basins should be 

roughly the same both in experiment and in simulation. However, the current combination of 

force field and implicit solvent does not satisfy this, favoring helical conformations (see 

Figure 2, panel A). Hence, we derive ff12SB-cMAP to modify the potential in the α and β 

regions in order to recover the observed experimental balance between the two.

In summary, high-resolution structures from the top500 suggest that there is a helical bias in 

the force field, but not how to correct it. In the next section we describe what training set we 

used to correct it.

TRAINING SET

We aim to improve the balance between the helical (α) and extended (β) regions of the 

conformational landscape. Hence, only ff12SB-cMAP corrections for those regions (see 

methods) will be derived.

Helical propensities can be calculated for each amino acid from experiments25. These 

propensities can also be calculated from computations by following the approach outlined 

by Best and coworkers26. We try to match the tendencies from experiment and computation 

iteratively by systematically applying a grid correction to the helical region, running new 

simulations and comparing to experiment.

There is no similar experimental propensity data to correct the β-region. Hence, we use 

folding simulations of protein G using restraints. The restraints guide the protein towards 

native in such a way that if the force field has the right balance between β-strands and α-

helices the native topology should form14.

Modifying the force field for the α or β regions independently has an overall effect on the 

α / β balance. Hence, an iterative approach is used until both the experimental helicities and 

successful folding are achieved.

Correction of helical propensities and comparing to experimental data

The helix-forming region of the Ramachandran map is defined as ϕ ∈ [−100,−30] and Ψ ∈ 

[−67,−7]. This is the region were we will apply the grid correction.

In both cases a peptide system is studied where a guest residue is introduced. By changing 

only the guest residue, the effect on helicity from each amino acid can be estimated. There 

are some differences in the peptides used for the experimental25 (WKm
tL3-A9XA9-tL3Km; 

where m is 6 or 8 and X represents each amino acid and tL3 represents tert-Leucine) and 

computationally (AAXAA)3
26,27 peptides. In particular in computations, the peptide is 
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placed three times in the 15-mer to improve statistics, but in some cases with large side 

chains this can lead to side chain interactions not possible in the experiment (e.g. 

tryptophan). Both the experimental data and our computations are post-processed by using 

the Lifson-Roig model28,29 (see methods) which returns two parameters (w,v) 

corresponding to helix extension (w) and helix nucleation (v). They are specific to each 

amino acid, and a comparison between experiments and computation is shown in Figure 2.

Initially, we ran this procedure by simulating the peptides with the unmodified ff12SB force 

field to explore the helical tendencies of the different amino acids (Figure 2A). We saw 

three general patterns: alanine is not helical enough, glycine and proline are in good 

agreement with experiments, and all the other amino acids have a strong helix bias. Because 

alanine is the basis for the peptides in our test set, we made a correction grid that only 

accounts for alanine residues. All (AAXAA)3 simulations were repeated with this correction 

(Figure 2B). Our goal was then to make the rest of the amino acids have values between two 

times and half the experimental value (corresponding to an error of 0.69 kBT). These 

thresholds are shown as dashed lines in Figure 2B.

To do this without over fitting we notice that most amino acids are off by a similar amount 

(linear trend in the plot), hence we derive a correction map that involves all amino acids 

except glycine, proline or alanine. This yields corrected helical propensities, but we have no 

information for the β-region. In the next section we show how we address this region. Fixing 

both regions is an iterative process, and the end result for helicities is seen in Figure 2C.

Since experimental information on the (AAXAA)3 peptide system is only available for 

X=Q30, we have used the dataset derived from the (WKm
tL3-A9XA9-tL3Km) peptides25. 

Although the helicity of the different amino acids should be transferable to different 

systems, there are possible problems with side chains of guest residues interacting in the 

(AAXAA)3 system. We have observed this not to be an issue for most amino acids. 

However, tryptophan does tend to create conformations where the three Trp residues are 

interacting with each other, usually via stacking interactions. By using the same grid 

correction on all non-glycine, proline or alanine residues we avoid some of the problems of 

over fitting to different computational and experimental systems.

Correction of the β-region using folding simulations

Deriving a correction term to improve the relative stability of the β-region is more difficult 

since there is no direct or indirect experimental data we can use. Instead, we have used a 

procedure based in the methodology that first identified the problem: simulations of protein 

folding guided by structural data (see methods for details). We use protein G, a small 56 

residues protein containing both a helix and four β-strands. We apply restraints14 (see 

methods, Fig. S3 and table 1) that guide the protein toward the folded state. The number of 

restraints is defined to be sparse and uses flat bottom potentials in such a way that it does not 

over-constrain the system. The restraints guide the system to topologies close to native and 

--if the force field is accurate-- the structure will rapidly equilibrate to the native 

conformation. Using this approach we circumvent the slow kinetics of folding. We assess 

the success by looking at RMSD distributions for simulations of equal length with different 
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grid corrections. The larger the population beneath a certain threshold the more accurately 

the force field behaves.

We prepared different grid correction strengths (βff12SB-CMAP=(0, −0.25, −0.50, −0.75 

and −1.00 kcal/mol)) for the β-region (see Fig. 1). Using the RMSD as a success criteria, we 

chose −0.75kcal/mol as the initial β-map correction (see Fig. S4).

However, the limitation of fixing the α and β regions independently is that changes in either 

one alter the overall balance between helical and extended conformations. Hence, the helical 

propensities need to be recalculated (data not shown). We iterated several times to obtain 

parameters that reproduced both helicity and folding with the constraints that we did not 

want to deviate significantly from the initial solutions. The final parameters are shown in 

Table S1 and can be downloaded online (https://github.com/laufercenter/Amap.git). The 

helical propensities with the last set of parameters can be observed in Figure 2C. Figure 3 

shows the RMSD distribution obtained by folding protein G with two different set of 

restraints: we first used 12 restraints to guide to the correct topology and as a more stringent 

test took a subset of 4 restraints. Using fewer restraints places more demands on the force 

field. In both cases we show that our final set of corrections is a significant improvement to 

the initial force field (nearly doubling the population close to native).

In order to check for the sensitivity of the parameters to small changes in the ff12SB-cMAP 

we used a perturbational approach31 (see Figure S5 and Methods). We conclude that the 

parameters are robust to small changes and that the currently derived ff12SB-cMAP sits in 

an optimal region.

TESTING ff12SB-cMAP

We used two different test systems to assess the quality of the ff12SB-cMAP correction. We 

first checked that simulations of native proteins did not systematically diverge from the 

experimentally determined native structure of a set of proteins. If our correction is 

appropriate then we expect the native state to be kinetically stable; therefore, simulations 

should not diverge substantially from the native state. Second, a more stringent test is to 

look at the ability of the original/corrected force fields to reproduce secondary structure 

preferences of seven small peptides starting from extended conformations.

Native stability tests: proteins are stable with FF12SB-CMAP

One of the main difficulties in identifying the shortcomings in force field-implicit solvent 

simulations is that in native-like simulations, proteins are usually stable in the sub-

microsecond timescale. Indeed, the corrections we applied to the force field are small, 

meaning that there are subtle effects that displace the overall balance of the force field (see 

Figure 1). The first test of the force field is to see if native structures are stable in the 100 ns 

timescale. In native-like simulations, the entropic penalty for forming secondary structure is 

already paid. Hence, the balance of interacting hydrogen bonds, hydrophobic effect, salt 

bridges, and others present in the native structure might be enough to keep native states 

stable for long periods of simulation time.
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We chose six representative structures from the pdb (1nkl, 6lyz, 3gb1, 1ubq, 1cqg and 1d3z) 

and ran simulations starting from the native structure with and without ff12SB-cMAP. We 

assessed success as RMSD distributions referenced to the native structure being close to 

native. Force field failures can be identified by increasingly larger RMSD values with 

respect to the native structure.

Figure 4 shows the results in terms of Cα RMSD from the native structure. Overall both 

force fields have similar behavior, remaining for the majority of the simulation time within 

3.0 Å to the native state. Figure S6 shows the propensity for each amino acid along each 

protein’s chain to be in either helical or extended conformation. As expected, most of the 

differences with the crystal structure remain in loop regions. As noted by others3 

development of more accurate non-polar terms in solvation methods might further increase 

protein stability.

Peptides fold to correct structures with ff12SB-CMAP

Folding simulations are more challenging tests of thermodynamic quality of force fields, and 

they can unveil deeper problems in secondary structure preferences. For this purpose we 

simulated seven different peptides32–41 that have been reported to have a particular fold in 

solution (some of them –such as Trp-cage or trpzip2– are considered miniproteins). We 

chose three systems that fold into hairpins and three that fold into helices, with an additional 

system that has been crystallized as both an α-helix and β-hairpin in the same crystal (see 

Table 2). The main challenge in comparing with experiment is that it is not clear what 

percentage of the time these peptides should be structured in solution, and even what the 

exact structure should be in some cases.

We performed simulations using ff12SB with and without ff12SB-cMAP, in both cases 

using the GbNeck27 solvent model as described in Methods. Their tendency to fold correctly 

was assessed by quantifying the overall tendency to adopt different kinds of secondary 

structure (see Table S1), the individual tendencies of each amino acid in the sequence and 

the consensus fold of the sequence.

Table S1 shows that the helix forming tendencies remain the same with both force fields for 

peptides that are supposed to be helical (EK, Ribo and Tc5b). The biggest difference 

between force fields comes from the ability to form β-strands (labeled ProtG, Nrf2 and 

Trpzip in Table S1). For ff12SB we detect strand formation only in Nrf2, whereas with 

ff12SB-CMAP the experimental tendency is captured in all cases. Trpzip2 experimental 

structure is a hairpin, but in simulations the population of hairpin is not dominant (see Table 

S1). This difference is not surprising as Trpzip2 is a structure with a higher amount of 

tryptophan than most proteins, where stacking interactions play an important role and where 

not including a non-polar term to the solvation energy in our simulations is likely to account 

for the differences observed7. Looking at the RMSD to native of tripzip2 with time (see 

Figure S7) we observe structures closer than 1.5 Å to native 24% of the time when using 

ff12SB-cMAP (see Figure S7). As a final descriptor for these peptides, the population of 

turns (Table S1) increases in ff12SB-cMAP simulations in all cases where hairpins are 

formed.
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The individual amino acid tendencies to form α/β in each sequence are shown in Figure 5 

(defined as  for each amino acid in each peptide; 

where the 0.01 semi count ensures that we never take the log of 0). With this definition, 

values >0 favor the formation of helices, <0 formation of extended strands and =0 means 

there is no overall preference for either one. Both force fields have a favorable tendency 

towards helical for peptides that are experimentally determined to be helical. However, the 

standard deviations (calculated as the standard deviation after dividing the trajectories in 5 

blocks of equal length), are very different. Ff12SB has very small deviations, indicating a 

strong tendency to sample only one kind of conformation, whereas with the correction term 

greater standard deviations indicate the ability to sample different structures in these REMD 

trajectories.

The rest of the peptides can form hairpins and are mostly misrepresented by the original 

force field. With ff12SB-cMAP, these propensity plots (Figure 5) have a characteristic ‘W’ 

shape. The valleys in this “W” correspond to parts of the peptide that are in extended 

conformation and the peaks correspond to turns and termini.

Interestingly, the MAT peptide has been crystallized as both a hairpin and a helix in 

identical conditions (they are both present inside the same crystal structure)39. In this case 

we would expect an overall ΔG≈043. In Figure 5, the C-termini has a ΔG≈0 reflecting the 

possibility of being in helical or extended conformation. The turn region is never extended 

in the hairpin, so the overall preference is for being helical in the plot and the N-termini –

which is never helical— favors the beta region. Without an ff12SB-cMAP term, the 

structure is helical throughout the simulation for all amino acid positions.

These results showcase the use of ff12SB-cMAP to correct for secondary structure 

tendencies and to be helpful in folding simulations. We have successfully used this modified 

force field in several protein folding studies14. An alternative way to use the benefits of the 

new force fields with correct backbone helical propensities in implicit solvent is to combine 

ff99SB backbone parameters with ff14SB side chain parameters3,6.

COMPUTATIONAL METHODS

Here we define the experimental and computational data we use to compare ϕ/ψ and SSE 

tendencies between force fields and experiment.

Deriving an experimental Ramachandran plot from the top500 data

We used the top500 dataset from Duke university for the Ramachandran plots based on high 

resolution crystal structures to compare the features of the protein’s energy surface (http://

kinemage.biochem.duke.edu/databases/top500.php)17. This data allows us to represent the 

tendencies for all amino acids whether they are involved in secondary structure or not and 

separate special cases like glycine and proline. From the population densities in the 

Ramachandran plot, an approximation to the shape of the free energy can be built 

qualitatively to compare to force fields by binning the space and using eq. 1.
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(eq. 1)

Where all symbols have their usual meaning. To transform between populations and 

energies we consider an arbitrary effective temperature for the crystal ensemble of 300K44. 

While not strictly correct, it nevertheless provides a qualitative guide to what the 

experimentally derived energy map looks like.

Tripeptides allow us to identify the force field’s preferences

The Ramachandran maps of alanine, glycine and proline were studied with molecular 

dynamics simulations on small tripeptides (see Fig. 6) both in explicit (TIP3P water 

model45) and implicit water (IGB=87 and mbondi=3 Born radii); no solvent accessible term 

was used to reproduce the non-polar term. We set a 2 fs time step, with a Langevin 

thermostat46 (coupling constant of 1ps−1) and temperature of 300K. Additionally, the 

explicit simulation parameters included the use of periodic boundary conditions and particle 

mesh Ewald47. The Berendsen algorithm48 was used to keep temperature and pressure in 

explicit solvent, both with a coupling time of 1ps.

Each tripeptide was simulated in 6 independent replicas, roughly 2µs (6 µs) total simulation 

time in explicit (implicit) solvent. All simulations were performed with the GPU accelerated 

version of AMBER49,50.

Ff12SB-CMAP

Grid corrections have already been reported for explicit10,5152 and implicit12 solvent, and 

here we follow the same form. For each residue, the energy is modified according to a grid-

based correction on the ϕ/ψ torsion angles in the Ramanchandran space. Forces and energies 

are obtained from bicubic spline interpolation (see the original cMAP9 paper for details). 

We defined 24×24 bin grids (resolution of 15° for each dihedral) as in the original cMAP9. 

Additionally, the machinery to run calculations with cMAP like grids is already in place in 

popular molecular dynamics packages13,53–56, making the application of ff12SB-cMAP 

straightfoward. Ff12SB-cMAP can be obtained from the github (https://github.com/

laufercenter/Amap.git).

Ff12SB-CMAP Sensitivity

Using thermodynamic perturbation theory31 the helical propensity of the test set of ploy-

peptides was computed as function of the scaling of the ff12SB-cMAP corrections. Test sets 

were obtained scaling alpha and beta region corrections from 80% to 120% of the original 

one in steps of 2%. The coefficient of determination (R2) between the result of every set of 

parameters and experimental results was used to assess the quality of the set (see Figure S5).

Helical propensities are a good way to match force field and experimental behavior

We compared experimental helical propensities25 with computational ones in a similar 

fashion to Best and coworkers26. We simulated the (AAXAA)3 peptide, with X representing 

each of the 20 amino acids, in implicit solvent using the protocol described above, except 
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where noted. T-REMD simulations with 10 replicas were setup using the MELD14 plugin to 

OpenMM54. Implicit solvent was used and replicas were assigned temperatures between 300 

and 425K (exponential spacing of temperatures). Langevin dynamics with a 1ps−1 coupling 

constant was used. Simulations were run for 1.75 µs, exchanging every 175 ps. At every 

exchange step 128 swaps were attempted. Each swap consists of attempting to exchange 

temperature conditions between neighboring replicas and accepting on the basis of the 

metropolis criteria. After the 128 trials, some replicas that have exchanged successfully 

several times might have gone up or down several slots in replica index. We used a 3.5 fs 

time step and hydrogen mass repartitioning57. In this scheme hydrogens are three times 

heavier than usual and the extra mass is removed from the heavy atom to which they are 

attached. After the runs, secondary structures were derived using Stride58 as implemented in 

VMD59 for post-processing by using the Lifson-Roig model (see below).

Lifson-Roig model

Following Best’s work27, we use the Lifson-Roig Model28,60 to identify the helical 

propensities of each amino acid. This model measures the equilibrium properties of coil to 

helix transitions. In particular, three states are defined: coil, start/end of helix and within a 

helix. Their relative weights are 1, vi and wi respectively. A residue (i) is considered helical, 

if it inside the region: φ ∈ [−100 : −30] and ψ ∈ [−67 : −7]. Everything else is considered 

random coil within the model. The partition function for a protein of length N is defined as:

And the log-likelihood of having a sequence have a specific helical content is given by: lnL 

= ∑i Nw,i ln(wi) + ∑i Nv,i ln(vi) − Nk ln(Z). From our simulations we can get the populations 

of helical and within a helical fragment and then estimate wi and vi. We do this with a 

genetic algorithm to optimize the log-likelihood function. Wi can be understood as the 

equilibrium constant for a residue in coil conformation to extend an existing helical segment 

and is related to the free energy of helix extension by: ΔGext = −kBTln(wi). We can then 

compare the values of wi to experimental measurements25. Additionally, we can get 

estimates for the initial grid correction to apply by noting that .

Guided folding simulations of protein G

Guided folding simulations refer to the fact that we use native-like information to make the 

process of folding faster14. In particular, we use two kinds of restraints based on secondary 

structure and contact information. We have selected 12 contacts (see Table 1 and Figure S3) 

between different SSE elements in the native structure (pdbid 1GB1). We impose those 

contacts in the simulation with flat bottom potentials in such a way that for Cα-Cα distances 

between 0 and 6 Å have no penalty, the penalty increases quadratically with a force constant 

of 0.6 kcal/mol/Å2 until 8 Å and linearly after that. These restraints are zero at short 

distances allowing the force field to guide the details. At the same time, they are strong at far 
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away distances, guiding towards the right kind of topology. Furthermore, for rapid 

convergence the simulations are simulated using a one-dimensional Hamiltonian and 

temperature replica exchange (H,T-REMD).

H,T-REMD was setup using the MELD plugin14 with 20 replicas, in which temperatures 

were assigned between 300 and 550K increasing exponentially. Exchanges were attempted 

every 50ps (2304 swap trials between neighboring replicas at each exchange). The strength 

of the contact restraints was reduced from 0.6 kcal/mol/Å2 at low replica index to 0 

kcal/mol/Å2 at high replica index, using a MELD nonlinear scaler14 (http://github.com/

maccallumlab/meld). In this way, structures at high replicas are unfolded and anneal to 

folded structures at low temperatures. Simulations were carried out for 500ns starting from 

an extended state. The lowest replica corresponding to 300K and 0.6kcal/mol/Å2 restraints 

was used for analysis. Input scripts for the exact setup are given in https://github.com/

laufercenter/Amap.git.

Testing of ff12SB-cMAP using simulations of small peptides

We validated our runs with a collection of seven peptides that have defined secondary 

structure (see Table 2). We started each simulation from an extended state as produced by 

the tleap53 sequence command and ran T-REMD with 8 replicas whose temperatures were 

exponentially spaced between 270 and 420 K using the gbneck2 implicit solvent7 and the 

protocol described above, exchanging every 175ps (128 swap trials every time an exchange 

was attempted). Simulation times were at least 1.75µs, with some trajectories being extended 

to check for convergence. Input scripts for exact setup are given in https://github.com/

laufercenter/Amap.git.

Testing of ff12SB-cMAP using simulations of native like proteins

In order to see how the current force field improvement affected simulations around the 

native state we simulated a small set of 6 proteins for 350 ns each using the different force 

field modifications. The protocol is the same as described above for tripeptides in implicit 

solvent simulations, running in OpenMM. Simulated proteins correspond to pdb ids: 1cqg, 

1d3z, 1nkl, 1ubq, 3gb1 and 6lyz. Structures where minimized before starting the MD runs, 

two trajectories were carried out for each system. A sample script is given in https://

github.com/laufercenter/Amap.git.

Conclusions

Biomolecular simulation force fields, such as AMBER ff12SB, are usually fairly accurate 

when used with explicit solvent models. Simulations are subject to greater errors when used 

with implicit solvent models. Because implicit solvent is useful where computational 

efficiency is needed, there is value in developing corrections for such force fields used with 

implicit solvent. Here we develop ff12SB-cMAP, which provides a grid-based correction for 

AMBER ff12SB when used with the GBneck2 implicit solvent model. Ff12SB-cMAP 

reduces bias in predicting secondary structures, with the added benefit of introducing 

correlations between phi and psi dihedrals. Ff12SB-cMAP is easily downloaded, can be 
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readily used within most simulation packages and can be useful where improved agreement 

is needed between force field simulations and experimental data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Free energy ϕ,ψ map. The color scale indicates relative energies with respect to the lowest 

energy conformation. Energies are truncated at 5 kcal/mol. The experimental plot (A) was 

derived from data from the top500 dataset by looking at all the non glycine, proline or pre-

proline residues, binning them in a 2D histogram, counting populations and using the 

Boltzmann relation to estimate free energies. The calculated plot (B) was derived from 

simulations of trialanine (ff12SB force field + Gbneck2 implicit solvent). Plot C shows the 

effect of ff12SB-cMAP on top of ff12SB for Alanine; the regions directly influenced by 

cMAP are outlined in white for clarity. The cMAP energy correction we apply is shown by 

itself in panel D.

Perez et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2016 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Computational vs. experimental helical propensities for the 20 amino acids. The black line 

indicates perfect agreement between theory and experiment. Dotted lines on each side 

correspond to having helical propensity (Wx) theoretical values that are double (or half) of 

the experimental ones. This corresponds to a kBT*ln(2)≈0.41 error in free energy. Panels A: 

ff12SB, B:ff12SB+ CMAP on Alanine; C: ff12SB+ CMAP.
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Figure 3. 
RMSD distributions from native in protein G folding simulations with different force fields 

and number of restraints. The percentages refer to the RMSD populations below 2.5Å 

sampled in the last 50 ns of a 60 ns restrained folding trajectory. We use a stringent value of 

2.5Å as a cutoff since the use of restraints already favor a native like topology; notice that in 

all cases most conformations are within 4Å from the experimental structure.
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Figure 4. 
All residue, Cα rmsd distribution from native state (x-ray and NMR structures from the 

PDB). All 350 ns long simulations were started from the experimental structure.
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Figure 5. 
Tendencies for helical (>0) or extended conformations (<0) for each amino acid in different 

peptides. Different force field's tendencies are shown, as well as the experimental structure 

for comparison (see table 1). Orange: ff12SB, blue: ff12SB-CMAP. Error bars correspond to 

one standard deviation as calculated from dividing the trajectory in 5 blocks.
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Figure 6. 
Blocked tri-alanine peptide as a model system.
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Table 1

Pairs of residues chosen as contacts for folding simulations of protein G and their distance in the native state. 

Two folding simulations were attempted, in the first all contacts in this table were used, in the second, only the 

ones in bold were used.

Residue number Residue number 1GB1 Cα-Cα distance (Å)

8 13 4.90

46 51 5.04

4 17 4.27

42 55 5.56

44 53 5.10

6 15 4.32

2 19 4.41

39 56 5.63

9 39 5.92

8 55 4.61

6 53 4.40

4 51 4.36
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Table 2

Peptides used and their corresponding native structures. Residue numbers indicate which part of the 

corresponding PDB was used.

Name Sequence Structure Pdb id

Matα2/MCM1EK VFNVVTQDMINKST α-helix/β-hairpin 1MNM
(residue 115–128)

39

EK peptide YAEAAKAAEAAKAF α-helix Ideal (Circular
Dichroism; 40%
helical)32,42

Ribonuclease A
C-peptide analog

AETAAAKFLRAHA α-helix 5RSA analog34,40

Tc5b NLYIQWLKDGGPSSGRPPPS α-helix/coil 1L2Y36

Protein G
C-termini

GEWTYDDATKTFTVTE β-hairpin 1GB135

(residue 41–56)

41

Trpzip2 SWTWENGKWTWK β-hairpin 1HRX38

Nrf2 peptide AQLQLDEETGEFLPIQ β-hairpin 2FLU
(resid 72–l87)

33
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