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Abstract
A significant amount of neurobiological research regarding the development of alcohol use disorders (AUDs) has focused on
alcohol-related activation and long-term alterations in the mesocortical dopaminergic reward pathways. However, alcohol
does not only interact with brain reward systems. Many of its acute and chronic effects may be related to allostatic adaptations
in hypothalamic and extrahypothalamic stress regulation pathways. For example, acute binge intoxication is associated with
hypothalamically driven increases in blood cortisol, norepinephrine, and sex steroid metabolite levels. This may contribute to
the development of mesocortical sensitization to alcohol. Furthermore, chronic alcohol exposure is associated with systemic
dysregulation of the hypothalamic pituitary adrenal axis, sympathetic adrenal medullary system, and sex steroid systems. This
dysregulation appears to manifest as neuroendocrine tolerance. In this review, we first summarize the literature suggesting
that alcohol-induced alterations in these hypothalamic systems influence craving and contribute to the development of AUDs.
We note that for women, the effects of alcohol on these neuroendocrine stress regulation systems may be influenced by the
rhythmic variations of hormones and steroids across the menstrual cycle. Second, we discuss how changes in these systems
may indicate progression of AUDs and increased risk of relapse in both sexes. Specifically, neuroendocrine tolerance may
contribute to mesocortical sensitization, which in turn may lead to decreased prefrontal inhibitory control of the dopami-
nergic reward and hypothalamic stress systems. Thus, pharmacological strategies that counteract alcohol-associated changes
in hypothalamic and extrahypothalamic stress regulation pathways may slow the development and progression of AUDs.

Abrégé
Une portion significative de la recherche neurobiologique sur le développement des troubles liés à l’alcool (TLA) a mis l’accent
sur l’activation et les altérations à long terme, liées à l’alcool, des voies mésocorticales dopaminergiques de récompense du
cerveau. Toutefois, l’alcool n’interagit pas seulement avec les systèmes de récompense du cerveau. Nombre de ses effets aigus
et chroniques peuvent être liés aux adaptations allostatiques dans les trajectoires hypothalamiques et extra-hypothalamiques
de régulation du stress. Par exemple, l’intoxication par beuverie aiguë est associée à des hausses des taux sanguins de cortisol,
de norépinéphrine, et des métabolites stéroı̈des sexuels, d’origine hypothalamique. Ceci peut contribuer au développement
d’une sensibilisation mésocorticale à l’alcool. En outre, l’exposition chronique à l’alcool est associée à une dysrégulation
systémique de l’axe hypothalamo-hypophyso-surrénalien, du système sympathique médullaire surrénal, et des systèmes de
stéroı̈des sexuels. Cette dysrégulation semble se manifester comme une tolérance neuroendocrinienne. Dans cette revue,
nous résumons en premier lieu la littérature suggérant que les altérations induites par l’alcool dans ces systèmes hypo-
thalamiques influencent l’état de manque et contribuent au développement des TLA. Nous observons que pour les femmes,
les effets de l’alcool sur ces systèmes de régulation du stress neuroendocrinien peuvent subir l’influence des variations
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rythmiques des hormones et des stéroı̈des au cours du cycle menstruel. Deuxièmement, nous discutons de la manière dont les
changements de ces systèmes peuvent indiquer la progression des TLA et le risque accru de rechute chez les deux sexes.
Spécifiquement, la tolérance neuroendocrinienne peut contribuer à la sensibilisation mésocorticale qui à son tour peut entraı̂ner
un contrôle inhibitoire préfrontal diminué de la récompense dopaminergique et des systèmes de stress hypothalamique. Donc,
les stratégies pharmacologiques qui contrecarrent les changements associés à l’alcool dans les trajectoires de régulation du stress
hypothalamiques et extra-hypothalamiques peuvent ralentir le développement et la progression des TLA.
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cortex, relapse

Recent statistics suggest that North Americans consume

50% more alcohol than the global average and engage in

higher rates of detrimental binge drinking than residents of

most European countries.1 In addition, between 7% and 10%
of North Americans suffer from current alcohol use disorders

(AUDs).2 Two core features of AUDs are craving and

relapse. Craving can be described as a multifaceted phenom-

enon that incorporates the appetitive drive for reward, the

need for reduction of associated physiological distress, and a

compulsive motivational state characterized by strong intent

with or without loss of control.3 Colloquially, craving is

defined as an intense urge or abnormal yearning/longing4

and is often cited by those with AUDs as the reason for

relapse.5 Relapse is defined as a return to any drinking (or,

more significantly, a return to heavy drinking) after a defined

period of abstinence.6 Although the importance of craving in

the clinical experience of AUDs cannot be denied, its precise

physiological and neurobiological underpinnings remain

unclear. Historically, measures of craving have not been

consistently associated with relapse in empirical studies.7,8

For this reason, it was not included in Diagnostic and Sta-

tistical Manual of Mental Disorders (DSM) editions I to IV.

However, it was added to DSM-5 as a symptom of substance

use disorders,9 partially because with the new developments

in methodology (such as ecological momentary assessments

and refined laboratory and neuroimaging approaches), there

is a clear link to craving, its neurobiological underpinnings,

and it association with predicting future alcohol and drug use

and relapse.10

Traditionally, the neurobiological literature on the devel-

opment of AUDs has focused on the indirect and direct

effects of alcohol on mesolimbic and mesocortical dopami-

nergic pathways.11 In brief, the centrality of dopaminergic

pathways in theories of AUD development is based, in part,

on the following empirical evidence. Dopaminergic neurons

in the ventral tegmental area (VTA) are directly activated by

alcohol12,13; these dopamine (DA) neurons project to the

medium spiny neurons of the ventral striatum (VS), includ-

ing those of the nucleus accumbens (NAcc) that express

dopamine D2 receptors (D2Rs).14 Animal studies have

shown that this sharp increase of DA in the VS underlies the

initial positively reinforcing effects of alcohol: these phasic

bursts of activity from VTA DA neurons in response to

alcohol consumption increase the firing of afferents of the

NAcc, which, in turn, is associated with the positive reinfor-

cing effects of drugs of abuse.15 In addition, preclinical stud-

ies have shown that alcohol also binds at allosteric

modulation sites of gamma amino butyric acid (GABA)

receptors; this binding is associated with prolonged chloride

channel openings and inhibition of postsynaptic cells.16

GABAergic inhibition within cognitive, emotion regulation,

and motivational circuits throughout the cortex and midbrain

have been linked to the sedative and negatively reinforcing

effects of alcohol.17 Ultimately, the negatively reinforcing

effects of alcohol consumption that are associated with

GABAergic activity might also be encoded as positively

valenced by influencing dopaminergic transmission in the

VTA during rewarding processes.18

However, preclinical studies also indicate that alcohol

directly affects the functioning of the hypothalamic pituitary

adrenal (HPA) axis, the sympathetic adrenal medullary

(SAM) system, and the hypothalamic pituitary gonadal

(HPG) axis.19-21 These effects of alcohol on stress pathways

are known to influence activity in dopaminergic pathways,

but stress system activation may not only be important

because of these indirect effects on DA release. In this

review, we assess the literature suggesting that the fast and

direct coactivation of the reward systems and core hypotha-

lamic systems may be relevant in the increase in frequency

and escalation of alcohol intake and thereby contribute to the

development of AUDs. Taken together, the literature

reviewed in this article suggests that 1) the experience of

craving may be related to the development of mesocortical

reward sensitization and co-occurring neuroendocrine toler-

ance in the HPA axis, SAM system, and HPG axis and 2)

allostatic adaptations in these systems in response to binge

and heavy drinking may contribute to a state of incentive

sensitization and increased risk of relapse. Thus, medications

that impede the development or progression of mesocortical

sensitization and neuroendocrine tolerance may be useful in

the treatment of AUDs.

Acute Alcohol Intake Activates Stress
Regulation Systems

Preclinical studies suggest that several aspects of the phy-

siological response to acute alcohol are linked to alcohol’s

direct activation of neurosecretory cells of the
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hypothalamus.22 Intracerebroventricular infusion of alcohol

activates neurons of the paraventricular nucleus (PVN) to

produce corticotropin-releasing factor (CRF), or

corticotropin-releasing hormone (CRH) in humans, which

enters the portal blood vessels that link the hypothalamus

to the anterior pituitary gland.23 The CRF binds to

corticotropin-releasing factor receptor 1 on pituitary cortico-

tropes, inducing the release of adrenocorticotropic hormone

(ACTH) into the circulation. ACTH then stimulates the adre-

nal cortex to synthesize and secrete glucocorticoids (corti-

costerone in rats, cortisol in humans). Animal models of

acute intoxication indicate that this glucocorticoid release

facilitates VS reward activation.24 These stimulatory effects

are potentially enhanced by the SAM system activation that

results from alcohol’s effects on both the VS and PVN.

Specifically, CRF release by the PVN induces excitatory

signals to the sympathetic ganglia that synapse with the

adrenal medulla.25 This excitatory signal causes the release

of acetylcholine in the adrenal medulla, which triggers the

release of noradrenaline (NA) into the bloodstream.26 NA

increases blood pressure, triggers the release of glucose from

energy stores, and increases blood flow to skeletal muscles.

Thus, NA release contributes to the peripheral stimulatory

effects of acute alcohol exposure.27

In humans, acute alcohol intake has historically been

associated with elevated ACTH, cortisol, and norepinephr-

ine (NE) levels.28-32 However, these early studies involved

administration of moderate to large doses of alcohol, with

achieved blood alcohol content (BAC) at or above 0.08%.

Other data suggest that ACTH, cortisol, and NE response to

acute alcohol might depend on the dose, family history of

alcoholism, and acute stress. For example, some data suggest

that greater stimulatory effects of mild intoxication (BAC ¼
0.06%) are seen in individuals with a positive family history

for alcoholism (FHP) than in those without FHP.33 Other

data suggest that mild alcohol intoxication (average BAC

¼ 0.067%) does not raise cortisol or ACTH levels but can

inhibit HPA axis response to cortisol administration.34 Thus,

the effect of acute alcohol on the HPA axis in healthy indi-

viduals might depend on acute stress levels. Participants with

FHP without AUDs experience greater stress-related craving

and consume more alcohol in response to stress than those

without FHP.35,36 Furthermore, 1 study showed that mild

alcohol intoxication (average BAC ¼ 0.066%) resulted in

blunted HPA axis activity relative to placebo in healthy

participants without FHP and there was no difference in

HPA axis activity in healthy individuals with FHP.37 This

same study, however, showed an increased cortisol to ACTH

ratio after alcohol consumption in all participants, suggest-

ing that measures of adrenal sensitivity might be more indi-

cative of HPA axis activation to acute alcohol than measures

of cortisol or ACTH alone.

Finally, acute alcohol intake is associated with HPG axis

activation in both animals and humans, although the

mechanism by which it influences neurosecretory cells of

the hypothalamus to release gonadotropin-releasing

hormones is unclear.38-40 The presence of these hormones

in the bloodstream influences the release of neuroactive ster-

oids from the gonads into the circulation. Neuroactive ster-

oids are metabolites of progesterone and testosterone and act

on neural tissue directly.41 Neuroactive steroids are highly

potent (at nanomolar concentrations), positive allosteric

modulators of GABAA receptor function.42 When bound

simultaneously with GABA, neuroactive steroids increase

the frequency of channel opening and the duration of the

open state of the GABAA receptor.43 Because alcohol is also

a positive allostatic modulator of GABAA receptors, neu-

roactive steroids potentially contribute to the anxiolytic

properties of alcohol.44-46

Binge Alcohol Consumption Sensitizes
Reward Pathways by Altering Stress
Regulation System Function

Binge drinking is defined by the National Institute on Alco-

hol Abuse and Alcoholism as the consumption of 5 or more

standard drinks for male individuals and 4 or more for

female individuals in 1 occasion.47 Similarly, the World

Health Organization defines binge drinking as the con-

sumption of 6 or more standard drinks in 1 sitting.48 With

regular consumption of 4 to 6 drinks, alcohol-induced allo-

static overload in mesocortical and mesolimbic pathways

may be perpetuated by overactivation of the HPA axis,

SAM system, and HPG axis in an attempt to adjust to the

physiological load and facilitate neurobehavioral adapta-

tions to adapt to a new set point. Specifically, glucocorti-

coids secreted via alcohol-induced hypothalamic activation

modify reward-related behaviors by stimulating mesence-

phalic dopaminergic transmission and increasing NE levels

in the prefrontal cortex (PFC).24 Continued alcohol use

seems to sensitize striatal reward function and may inten-

sify craving.49 NE, along with other neuronally derived

catecholamines and glucocorticoids, may support mesocor-

tical sensitization to alcohol cues by increasing the dura-

tion, magnitude, and probability of induction of long-term

potentiation (LTP).50 LTP is one synaptic restructuring

mechanism that might underlie the association between

alcohol intake and its reinforcing properties, both positive

and negative.51 According to the allostatic model of addic-

tion, a sustained increase in the tonic secretion of DA and

NE may culminate in a failure to maintain homeostasis and

may result in decreased functioning of the stress-related

HPA and SAM systems.52 For example, blunted ACTH and

cortisol response to pharmacological challenges have been

demonstrated in frequent alcohol abusers.53 Of note, the

subjective experience of acute intoxication reported by

binge drinkers matches predictions based on a state of

mesocortical sensitization and neuroendocrine tolerance:

binge drinkers report that 1 drink increases craving and

stimulation, whereas light social drinkers report that 1 drink

is anxiolytic and sedating.54
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Furthermore, severe acute intoxication, such as that asso-

ciated with binge drinking, increases neuroactive steroid

levels in the brain and periphery of animal models.55,56 For

example, intraperitoneal CRF and ACTH injections that

mimic HPA activation in response to alcohol in rats result

in increased brain and plasma levels of the neuroactive ster-

oid allopregnanolone (ALLO), a derivative of progester-

one.57 In humans, the plasma concentration of ALLO is

increased after severe intoxication,58,59 and variation in

genes that encode neuroactive steroid synthesis enzymes are

associated with both the subjective alcohol effects of alco-

hol60 and AUD diagnoses.61 Notably, gender differences in

HPG axis activity may result in greater sensitization to the

reinforcing effects of alcohol during different menstrual

cycle phases.62 For women, the basal level of circulating

neuroactive steroids varies by menstrual cycle phase. Basal

circulating neuroactive steroid levels are less than 1 nM in

women in the follicular phase, similar to basal levels in

men.63 However, basal levels increase as high as 4-fold in

women during the luteal phase.64 During the luteal phase

then, the anxiolytic properties of acute alcohol intake may

be heightened in women and learning of the negative rein-

forcing properties of alcohol may be enhanced.

It is important to note that frequent alcohol abusers and

binge drinkers are often recruited from the college-age pop-

ulation, because binge drinking is an increasingly popular

recreational activity for this age group.65 However, most

binge drinkers ‘‘mature out’’ of a pattern of frequent alcohol

binges as they move through their 20s,66 a fact that could

potentially weaken theories regarding the role of physiolo-

gical adapatation of hypothalamic systems in the transition

from normative, context-driven binge drinking to sustained

AUDs. Although adoption of adult social and occupational

roles reduces this behavior for most young adults, a certain

portion persist in frequent binge drinking. A recent longitu-

dinal study suggested that those who persist in this behavior

through their late 20s and early 30s show greater initial

sensitivity to the stimulating effects of alcohol, accompanied

by lower cortisol release and lower sensitivity to the sedative

effects of alcohol than those who do not continue binge

drinking.67,68 Importantly, those who persist in binge drink-

ing show this same physiological response to an alcohol

challenge 6 years later at follow-up.69 In this set of studies,

one-third of the heavy-drinking participants met criteria for

alcohol dependence at follow-up. Thus, current research sug-

gests that the persistence of meoscortical sensitivity and a

co-occurring low HPA axis repsonse to binge/heavy alcohol

intake representative of neuroendocrine tolerance combined

with neurobehavioral sensitization in mesocortical dopami-

nergic systems may be indicative of a transition between

sucessful allostatic accomodation to binge drinking with a

dominance of allostatic overload seen in severe AUDs.

After acute alcohol exposure that is limited in both dose

and duration, the dopaminergic and hypothalamic systems

are able to return to normal tonic functioning and maintain

the ability to phasically respond to novel stimuli. This return

to a basal set point occurs via allostatic processes. By defi-

nition, allostatic processes allow the brain and body to

achieve physiological stability through challenges to home-

ostasis by altering cellular structure and function to establish

a new physiological set point.70 In the healthy basal state, the

number and sensitivity of dopaminergic, GABAergic, and

corticotropic receptors returns to preintoxication levels.

However, binge/heavy and excessive alcohol consumption

results in adaptations and wear and tear (allostatic overload)

to the reward and neuroendocrine regulation circuits.52 In

summary, adaptations in these stress system mechanisms,

in addition to altered dopaminergic function, may represent

the pathophysiology underlying the transition from con-

trolled to compulsive alcohol seeking in humans.10,71

Chronic, Heavy Alcohol Consumption Is
Associated With Neuroendocrine
Tolerance in Stress Regulation Systems

Chronic alcohol-related allostatic changes have also been

documented in AUDs in addition to the altered stress

responses to acute heavy alcohol intake. In a sample of

chronic moderate to severe inpatient treatment–engaged,

alcohol-dependent individuals who were abstinent for 4

weeks, we reported higher basal ACTH levels and blunted

alcohol cue-induced ACTH and cortisol responses compared

with healthy social drinkers.72 Furthermore, alcohol-

dependent individuals with high fasting morning basal cor-

tisol to ACTH ratios (which is a measure of sensitivity of the

adrenal glands to release cortisol in response to the ACTH

signal) were more likely to relapse after treatment discharge

from inpatient treatment in a prospective assessment of

relapse outcomes.73 Results indicated that elevated morning

cortisol to ACTH ratios more than doubled the risk of future

relapse. Such basal HPA axis hyperreactivity is associated

with blunted response to stress and alcohol cues and

increased craving levels, which in turn, may result in high

levels of alcohol intake possibly to physiologically normal-

ize or activate the HPA axis.73 This is consistent with other

studies that have reported an association between blunted

cortisol release in response to stress and alcohol cues during

early abstinence and increased risk of relapse.74 Early absti-

nence is also associated with a downregulation of both the

dopaminergic tone in mesocortical circuits and decreased pha-

sic release of DA in response to alcohol consumption.75 It is

important to note that decreased levels of striatal D2Rs persist

in patients with AUDs at least for up to 4 months after alcohol

detoxification.76 These low DA levels are associated with

relapse.77 Clinically, this state of neuroendocrine and reward

system tolerance may be linked to an unpleasant high arousal

state with increased alcohol abstinence symptoms that is only

partially mitigated by further alcohol consumption,78 thereby

continuing the cycle of alcohol intake and abstinence.

In conjunction with HPA axis dysregulation, sympathetic

dominance may develop in AUDs.79 Sympathetic
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dominance over central and peripheral processes may be

both developed and perpetuated via elevations of central

NE in the PFC and NA in the circulation.80 First, chronic

high levels of NE, acting at a1 receptors, are thought to

induce sympathomimetic states associated with with-

drawal.81,82 Second, chronic a1 receptor stimulation in the

PFC is known to impair attentional processes by attenuating

salient ‘‘signals’’ and increasing irrelevant ‘‘noise.’’83 When

the PFC cannot distinguish between relevant and irrelevant

stimuli, mesolimbic brain regions may show greater bottom-

up influence in behavior. Sustained increases in NE in extra-

hypothalamic regions and the PFC, therefore, decrease the

ability of the prefrontal cortical pathways to appropriately

inhibit habit-based responding to alcohol cues.84 Increased

NA in the circulation might further prime the brain to

depend on instinctual and habit-based responding by keep-

ing fight-or-flight bodily systems activated in the basal

state. Chronic alcoholism is associated with impaired auto-

nomic regulation characterized by high basal heart rate,

reduced heart rate variability, and increased blood pres-

sure.85-87 The development of this tonically physically

aroused state may also adversely influence neural activity

by blunting the ability of the HPA axis to respond to stress

and future binge alcohol exposures.

The risk of relapse is also increased by HPG axis dysre-

gulation. For example, the increase in neuroactive steroids

that occurs during acute intoxication counteracts HPA axis

activation, thereby contributing to the blunted response of

the HPA axis to alcohol and stress seen in AUDs.88 Further-

more, clinical studies have demonstrated that levels of neu-

roactive steroids increase during binge intoxication58,59 and

then decrease significantly during alcohol withdrawal.89

With repeated cycles of binge intoxication and withdrawal,

as is characteristic of AUDs, this neuroactive steroid

response may become desensitized and its protective effects

during acute intoxication may become diminished. This loss

may worsen the basal state HPA and SAM hyperactivity

seen in withdrawal and during early abstinence.

Furthermore, chronic alcohol exposure elevates estrogen

in both men and women.90 Estrogen is known to modulate

DA activity in the striatum and NAcc and is associated with

higher levels of cortisol, which in turn may increase vulner-

ability to relapse.91,92 For women, alcohol-induced increases

in estrogen levels are potentiated during the late luteal (pre-

menstrual) menstrual cycle phase. Thus, the late luteal phase

could be a phase of increased vulnerability to cue-related

craving.93 Female individuals with AUDs showed greater

ACTH blunting after alcohol cue exposure compared with

male individuals with similar AUD symptomatology.94,95

This may represent an important risk factor for women with

AUDs, in view of the fact that HPA axis hyporeactivity to

alcohol consumption has been associated with greater crav-

ing and a return to early drinking in those with AUDs.96,97

High estrogen levels might therefore contribute to the

blunted hypothalamic response to alcohol and to basal state

hyperactivity of the HPA and SAM. Collectively, chronic

alcohol exposure related changes in the HPA axis, SAM

system, and HPG axis result in increased neuronal signaling

of glucocorticoids and catecholamines that interact to dysre-

gulate the PFC,98 the area of the brain responsible for inhi-

biting emotion- and habit-based responding to interoceptive

and environmental alcohol cues.99

Allostatic Overload Decreases Prefrontal
Regulation of Stress Pathways

The PFC is critical for adaptive coping via executive control

of behavior through higher-order functions such as planning,

working memory, inhibition, and abstract reasoning.100

AUDs are associated with stress-related decreased PFC

function and deficits in behavioral flexibility, emotion reg-

ulation, and cognitive control.101 In healthy individuals, the

PFC modulates alcohol cue responsivity and craving via its

regulatory influences on the hypothalamic PVN and thus

autonomic system activity.102-104 The PFC has also been

shown to inhibit PVN activity via the GABAergic interneur-

ons of the bed nucleus stria termanalis.105 Its output could

therefore decrease HPA and SAM responses to alcohol cues,

including acute alcohol intake.106 However, as noted earlier,

alterations in the HPA axis, SAM system, and HPG axis

interact to take the PFC ‘‘off-line’’ via sustained excess glu-

cocorticoid and catecholamine release; these molecules

modulate ionic regulation of microcircuits,107 resulting in a

failure to maintain homeostasis and a concomitant decrease

in the function of normal reward and stress-related neurocir-

cuitry.52,108 Furthermore, chronic basal cortisol exposure

maintains excitotoxic cascades that result in decreased den-

dritic length and decreased spine density of the dendrites in

the PFC.109 These structural changes may underlie PFC dys-

function that may manifest not only as reduced cognitive

function basally but also as a loss of self-directed behavior

that may be replaced by habit and sensory-driven automatic

responding.110 Recent findings from our laboratory support

this notion by documenting that disrupted PFC function in

the neutral-relaxed state and in response to alcohol or stress

cues is predictive of a shorter time to future relapse in absti-

nent, treatment-engaged, alcohol-dependent individuals.111

Importantly, this disrupted PFC function appears to mediate

the relationship between earlier reported adrenal sensitivity

and future relapse risk (unpublished observation). The asso-

ciated lack of top-down inhibition may result in increased

craving and a resumption of drinking behavior in newly

abstinent patients.112 Resumed consumption of alcohol then

worsens autonomic and HPA axis dysfunction, making the

next recovery attempt more difficult.113

Future Research to Target Hypothalamic
and Extrahypothalamic Stress Regulation
Systems in Treatment of AUDs

In summary, this review suggests that alcohol-induced HPA,

HPG, and SAM system dysfunction promotes and
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contributes to sensitized mesocortical dopaminergic reward

circuits to influence craving and the development of AUDs.

With chronic alcohol consumption, a decreased influence of

prefrontal executive control over stress and reward systems

may result in increased craving and a greater susceptibility to

habit-based maladaptive coping (that is, relapse to drinking

behavior).112 Resumed consumption of alcohol may eventu-

ally lead to decreased reward functioning and neuroendo-

crine tolerance. The allostatic overload in these systems

may weaken the regulatory influence of the PFC over

hypothalamic and extrahypothalamic stress and reward cir-

cuits.113 Therefore, pharmacotherapies that stabilize PFC

dysfunction directly or indirectly might be efficacious in the

treatment of AUDs. Alternatively, medications that normal-

ize HPA, HPG, and SAM axis functioning may also restore

PFC functioning and prove of benefit in alcohol relapse

prevention. One of the three currently approved medications

for the treatment of AUDs, naltrexone, is thought to decrease

craving and self-reported high by modulating opioid activity

in dopaminergic reward pathways.114 However, these drug

effects may also derive from naltrexone’s normalization of

the HPA axis activity in the basal state and in response to

acute alcohol.115,116 Future research that tests the effects of

drug treatments on alcohol-induced hypothalamic stress sys-

tems may clarify not only the interaction between naltrexone

and the HPA axis but also the role of hypothalamic and

extrahypothalamic stress regulation systems in the develop-

ment and progression of AUDs.
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