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Cdk5 is a versatile protein kinase that is involved in various
neuronal activities, such as the migration of newborn neurons,
neurite outgrowth, synaptic regulation, and neurodegenerative
diseases. Cdk5 requires the p35 regulatory subunit for activa-
tion. Because Cdk5 is more abundantly expressed in neurons
compared with p35, the p35 protein levels determine the kinase
activity of Cdk5. p35 is a protein with a short half-life that is
degraded by proteasomes. Although ubiquitination of p35 has
been previously reported, the degradation mechanism of p35 is
not yet known. Here, we intended to identify the ubiquitination
site(s) in p35. Because p35 is myristoylated at the N-terminal
glycine, the possible ubiquitination sites are the lysine residues
in p35. We mutated all 23 Lys residues to Arg (p35 23R), but p35
23R was still rapidly degraded by proteasomes at a rate similar to
wild-type p35. The degradation of p35 23R in primary neurons
and the Cdk5 activation ability of p35 23R suggested the occur-
rence of ubiquitin-independent degradation of p35 in physio-
logical conditions. We found that p35 has the amino acid
sequence similar to the ubiquitin-independent degron in the
NKX3.1 homeodomain transcription factor. An Ala mutation at
Pro-247 in the degron-like sequence made p35 stable. These
results suggest that p35 can be degraded by two degradation
pathways: ubiquitin-dependent and ubiquitin-independent.
The rapid degradation of p35 by two different methods would be
a mechanism to suppress the production of p25, which overac-
tivates Cdk5 to induce neuronal cell death.

Cyclin-dependent kinases (Cdks)2 are a family of Ser/Thr
kinases that are activated by binding a regulatory subunit called
cyclin. Most members of Cdks are expressed in proliferating
cells to promote cell cycle progression (1). In contrast, Cdk5 is
activated by p35 or p39 non-cyclin proteins, which are mainly
expressed in post-mitotic neurons (2). Cdk5 is a versatile kinase
that is involved in many neuronal activities, including neuronal
cell layer formation, synaptic transmission, membrane traffick-
ing, and neuron cell death (3). p35 and p39 appear to share

common and/or distinct functions for Cdk5, with p35 being the
predominant activator. This is shown by the phenotypes of
knock-out (KO) mice; p35 KO mice display abnormal neural
layers in the cerebral cortex (4), and p39 KO mice do not show
apparent abnormalities, whereas p35 and p39 double KO mice
are perinatal lethal with abnormal neural layers, as are the Cdk5
KO mice (5–7). To understand the precise function of Cdk5-
p35 in various neuronal activities, it is important to reveal the
regulation mechanism of Cdk5 activity.

As well as being cell cycle Cdks, Cdk5 is a stable protein and
is expressed more abundantly than p35 in neurons (8, 9). There-
fore, Cdk5 activity is determined primarily by the available
amount of activator protein p35, and the protein amounts of
p35 are regulated by the balance between synthesis and degra-
dation (2). Although the synthesis of p35 is stimulated by NGF
or BDNF (10, 11), the degradation of p35 is carried out by pro-
teasomes (12, 13). The degradation is a major determinant of
the p35 level, which is reduced by treating neurons with excit-
atory neurotransmitter glutamate (14). p35 associates with
membranes via myristoylation at the N-terminal glycine (15,
16), and this association enhances the degradation of p35 (17).
On the other hand, p35 is cleaved by a calcium-dependent pro-
tease calpain to produce the C-terminal stable fragment p25
(15, 18, 19). Although the physiological function of Cdk5-p25
has been recently reported (20, 21), its abundance induces neu-
ronal cell death in neurodegenerative diseases (22). Rapid turn-
over of p35 is suggested to be a mechanism to prevent p25
production (2). Therefore, it is particularly important to deter-
mine the degradation mechanism of p35. Interestingly, the
addition of the N-terminal hepta-peptide containing the myr-
istoylation site of p35 facilitates p35 lability (17), indicating that
the degradation of p35 occurs selectively on membranes.
Although p35 has previously been demonstrated to be post-
translationally modified by ubiquitination (12), the E3 ligase
responsible has not been identified yet in the neuron, and its
degradation pathway is not completely understood.

The ubiquitin-proteasome system is a major component of
the proteolytic machinery that performs the degradation of
proteins in cells (23, 24). Ubiquitin is a small protein that is
tagged to substrate proteins to be degraded. The proteasome is
a large complex of multicatalytic proteases that degrades pro-
teins to small peptides. The 26S proteasome is a complex of 20S
proteasome and 19S particles. The 20S proteasome is the core
of the proteasome, and 19S is a regulatory particle (PA700) that
recognizes and unfolds ubiquitinated proteins. The unfolded
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proteins are proteolyzed by being inserted into the 20S cham-
ber. Ubiquitination is a critical step in the ubiquitin-protea-
some system for selective degradation, which is catalyzed by E3
ubiquitin ligases. There are large numbers of E3 ligases with a
specific substrate (25). The E3 ligase for p35 has not been found
in the brain, although in pancreatic �-cells, Pja2 has been
recently reported to have E3 ligase activity to p35 (26).

However, polyubiquitination is not an absolute requirement
for proteasomal degradation. Ornithine decarboxylase is a well
known example of ubiquitin-independent proteasomal degra-
dation (27, 28). The number of proteins susceptible to
ubiquitin-independent proteasomal degradation had recently
been increasing. They include thymidylate synthase, Rpn4, p21
Cdk inhibitor, p53 tumor suppressor, c-Fos, Nkx3.1, and so on
(29 –35). Degron sequences recognized by proteasomes have
been investigated in these proteins, but their degradation
mechanisms and physiological meanings are largely unknown.
Herein, we intended to identify the ubiquitination sites on p35
for a better understanding of its ubiquitin-proteasome-depen-
dent degradation mechanism. Unexpectedly, however, we
found that non-ubiquitinated p35 was degraded at a compara-
ble rate to wild-type p35. Our results indicate that p35 is
degraded by proteasomes by two pathways: ubiquitin-depen-
dent and ubiquitin-independent.

Experimental Procedures

Antibodies and Chemicals—Anti-HA (Y11, SC805), anti-p35
(C19), and anti-Cdk5 (DC17) antibodies were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). Anti-actin
(A2066) anti-Myc (9E10) antibodies and cycloheximide
(CHX) were purchased from Sigma. Benzyloxycarbonyl-leu-
cyl-leucyl-leucinal (MG132) and epoxomicin were obtained
from Calbiochem. Protein A-Sepharose was obtained from
GE Healthcare.

Construction of Mammalian Cell Expression Vectors—
Expression vectors of p35, N7-p25-myc, and Cdk5 were previ-
ously described (17). Lys-to-Arg mutants were constructed by
polymerase chain reaction (PCR) with Pfu Ultra DNA polymer-

ase (Agilent Technologies, Santa Clara, CA) using the primers
listed in Table 1. Mutant p35 P247A and mutant p35 23R
P247A were constructed by PCR using pCMV5-p35 and
pCMV5-p35 23R, respectively, as a template using primers
included in Table 1. pCAG-p35 and pCAG-p35 23R were con-
structed by insetting p35 and p35 23R, respectively, into the
pCAG-MCS2 vector (36) at the BamHI/HindIII sites.

Cell Culture and Transfection—Neuro2a and HEK293T cells
were obtained from the JCRB Cell Bank (Osaka, Japan) and
cultured in Dulbecco’s modified Eagle’s Medium (DMEM,
Sigma) containing 10% fetal bovine serum, 100 units/ml peni-
cillin, and 0.1 mg/ml streptomycin. Neuro2a and COS-7 cells
were transfected with expression plasmids using Hilly Max
transfection regent (Dojindo, Kumamoto, Japan), Lipo-
fectamine 2000 (ThermoFisher, Waltham, MA), or PolyFect
transfection reagent (Qiagen, Valencia, CA) according to the
manufacturer’s protocol.

ICR mice were obtained from Sankyo Laboratory Service
(Tokyo, Japan). Animal experiments were performed according
to the guidelines for Animal Experiments of Tokyo Metropoli-
tan University (approval numbers: 23-13, 24-15, and 25-12).
The mice were housed in a temperature-controlled room under
a 12-h light/12-h dark cycle with free access to food and water.
Primary neurons were prepared from mouse brain cortex at
embryonic day 16 (E16) and plated on polyethyleneimine-
coated dishes in DMEM and Ham’s F-12 (1:1) supplemented
with 5% fetal bovine serum, 5% horse serum, 100 units/ml pen-
icillin, and 0.1 mg/ml streptomycin at a density of 2.5 � 105

cells/cm2 (37). The medium was then changed to neurobasal
medium supplemented with 1% B-27 (Invitrogen), 1 mM L-glu-
tamine, 100 units/ml penicillin, and 0.1 mg/ml streptomycin.
Primary cortical neurons were transfected at 3 days in vitro by
the calcium phosphate method using the ProFection Mamma-
lian Transfection System (Promega, Madison, WI).

Immunoprecipitation and Kinase Assay—Neuro2a cells
expressing Cdk5 and N7-p25, N7-p25 11R, p35, or p35 23R
were collected and lysed in 20 mM MOPS at pH 6.8, 1 mM

TABLE 1
List of primers using for mutations

Name of primers Forward sequence Reverse sequence

K13R CCCCAGCTATCGGAGGGCCACACTGTTTG CAAACAGTGTGGCCCTCCGATAGCTGGGG
K34R CGTGCAGAACAGCAGGAACGCCAAGGACA TGTCCTTGGCGTTCCTGCTGTTCTGCACG
K34R/K37R CAGCAGGAACGCCAGGGACAAGAACCTGA TCAGGTTCTTGTCCCTGGCGTTCCTGCTG
K37R/K39R GAACGCCAGGGACAGGAACCTGAAGCGGC GCCGCTTCAGGTTCCTGTCCCTGGCGTTC
K39R/K42R GGACAGGAACCTGAGGCGGCACTCCATCA TGATGGAGTGCCGCCTCAGGTTCCTGTCC
K53R GGTGCTGCCTTGGAGGAGGATCGTGGCGG CCGCCACGATCCTCCTCCAAGGCAGCACC
K61R/K62R/K63R GGTGTCAGCGAGGAGGAGGAACTCCAGGA TCCTGGAGTTCCTCCTCCTCGCTGACACC
K66R/K67R GAAGAAGAACTCCAGGAGGGCGCAGCCCA TGGGCTGCGCCCTCCTGGAGTTCTTCTTC
K87R/K88R CAATGAGAACCTGAGGAGGTCGCTGTCCT AGGACAGCGACCTCCTCAGGTTCTCATTG
K126R/K127R CTCCTCTTCTGTCAGGAGGGCCCCGCACC GGTGCGGGGCCCTCCTGACAGAAGAGGAG
K140R TGCAGGGACACCCAGACGGGTCATCGTCC GGACGATGACCCGTCTGGGTGTCCCTGCA
K167R GTGCTACCGCCTGAGGCACTTGTCCCCAA TTGGGGACAAGTGCCTCAGGCGGTAGCAC
K246R CTCCTACCCGCTCAGGCCCTTCCTGGTAG CTACCAGGAAGGGCCTGAGCGGGTAGGAG
K254R GGTAGAGAGCTGTAGGGAAGCCTTTTGGG CCCAAAAGGCTTCCCTACAGCTCTCTACC
K271R CCTCATGAGCTCCAGGATGCTGCAGATCA TGATCTGCAGCATCCTGGAGCTCATGAGG
K290R GTTCTCTGACTTGAGGAATGAGAGCGGTC GACCGCTCTCATTCCTCAAGTCAGAGAAC
K298R/K299R CGGTCAGGAGGACAGGAGGCGACTCCTCCTGG CCAGGAGGAGTCGCCTCCTGTCCTCCTGACCG
MycKtoR GGATCGGGAACAAAGACTCATCTCAGAAG CTTCTGAGATGAGTCTTTGTTCCCGATCC
R126K/R127K CTCCTCTTCTGTCAAGAAGGCCCCGCACC GGTGCGGGGCCTTCTTGACAGAAGAGGAG
R167K GTGCTACCGCCTGAAGCACTTGTCCCCAA TTGGGGACAAGTGCTTCAGGCGGTAGCAC
R298K/R299K CGGTCAGGAGGACAAGAAGCGACTCCTCC GGAGGAGTCGCTTCTTGTCCTCCTGACCG
P247A TACCCGCTCAAGGCCTTCCTGGTAGAGA TCTCTACCAGGAAGGCCTTGAGCGGGTA
23R-P247A TACCCGCTCAGGGCCTTCCTGGTAGAGA TCTCTACCAGGAAGGCCCTGAGCGGGTA
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EGTA, 0.1 mM EDTA, 0.15 M NaCl, 1 mM MgCl2, 10 �g/ml
leupeptin, 0.4 mM Pefabloc, and 0.3% (v/v) Nonidet P-40. After
centrifugation, the supernatants were immunoprecipitated
using anti-Cdk5 (C8) as previously described (17). The kinase
activity of the immunoprecipitates was measured with histone
H1 and [�-32P]ATP as substrates.

For the polyubiquitination assay, Neuro2a cells expressing
N7-p25 or its mutants were treated with 20 �M MG132 for 5 h.
At the end of the treatment the cells were collected, and the cell
extracts were incubated with anti-p35 for p35 or anti-myc for
N7-p25, which was followed by coprecipitation with protein
A-Sepharose beads (17).

SDS-PAGE, Immunoblotting, and Statistical Analysis—Sodi-
um-dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) was performed with 12.5% polyacrylamide gels. The
phosphorylation levels of p35 were assessed by Phos-tag SDS-
PAGE with 10% polyacrylamide gels containing 50 �M Phos-tag
and 100 �M MnCl2 as previously described (38). Immunoblot-
ting was performed as previously described (17). All of the sta-
tistical treatments were performed by one-way analysis of vari-
ance with Tukey’s post hoc test.

Results

Effect of Arginine Mutation of the Lysine Residues in the C-ter-
minal p25 Region on the Stability of p35 or N7-p25—p35 has
been shown to be degraded by proteasomes through its polyu-
biquitination (15, 17, 39). To better understand the regulation
of p35 degradation, a good goal would be to identify the E3
ligase that catalyzes its ubiquitination. An approach toward
identifying the E3 ligase is to determine the ubiquitination sites
in p35. Ubiquitin conjugation occurs on the amino group of
lysine residue(s) or the N-terminal residue of the protein. The
�-NH2 group of the N-terminal glycine of p35 is blocked by
myristoylation (15, 16, 17). Therefore, as candidates for possi-
ble ubiquitination sites, we first focused on the lysines at amino
acids 126/127, 140, and 167 because they are relatively close to
Thr-138, the phosphorylation of which is involved in the deg-
radation of p35 (37, 40). Also, amino acids 298/299 in the C-ter-
minal region share homology with double Lys residues that
serve as ubiquitination sites in p53, a tumor suppressor protein
with a short half-life (41) (Fig. 1A). We mutated these Lys to Arg
and cotransfected the mutant with Cdk5 in Neuro2a cells to
observe the degradation in the presence of cycloheximide, a
protein synthesis inhibitor, for 1 and 3 h. However, none of the
mutations stabilized p35 (Fig. 1B).

Although p25 is a stable C-terminal fragment of p35 (15, 18,
19), the addition of the seven N-terminal amino acids (N7),
including the myristoylation motif, confers p25 with suscepti-
bility to proteasomal degradation (17). The results suggest that
the ubiquitination site(s) is present in the p25 region because
there is no lysine in the N7 sequence. Accordingly, we mutated
the Lys residues in N7-p25 in the order described in Fig. 1C. We
expected that N7-p25 would become stable when the critical
Lys is replaced with Arg. In this experiment we used N7-p25
with a myc tag at the C terminus because we wondered if mul-
tiple Lys-to-Arg mutations might affect the reactivity of anti-
p35 antibodies. Mutations at the N-terminal Lys residues at
126, 127, 140, and 167 did not change the stability (Fig. 1D,

1R-4R). Arg mutants of N7-p25 became more labile when Lys
residues in the C-terminal region were further changed (Fig.
1D, 5R-7R). Additional mutations at Lys at 246, 254, and 271 in
the core of the Cdk5 activation domain did not further alter the
stability (Fig. 1D, 8R-10R). Although we mutated all of the Lys
residues in p25, N7-p25 was still unstable. There was a Lys
residue in the myc-tag EQKLISEEDL. The Lys null version of
N7-p25 11R was constructed, and its stability was examined.
Surprisingly, however, N7-p25 11R was still unstable (Fig. 1D,
11R).
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FIGURE 1. Effect of Lys-to-Arg mutations in the C-terminal p25 region of
p35 on degradation. A, schematic representation of the p35 molecule. p35
consists of the N-terminal p10 and the C-terminal p25 Cdk5 activation
domain (Cdk5AD). Lysine residues that we thought possible ubiquitination
sites are indicated by K. B, effect of Arg mutations at these possible ubiquiti-
nation sites on the degradation of p35. Neuro2a cells expressing p35 (WT) or
its Arg mutants K126R/K127R, K140R, K167R, or K298R/K299R were treated
with CHX for 1 or 3 h. The amounts of p35 protein were assessed by immuno-
blotting with anti-p35 (top). Cdk5 is shown in the middle. Actin is the loading
control. C, N7-p25 molecule and its Arg mutants at Lys residues. N7-p25 is p25
fused with the seven N-terminal amino acids (N7), where there is a myristoy-
lation consensus motif. The positions of the Lys residues are indicated by
arrows. The sequential mutation of all of the Lys to Arg in p25 is shown on the
left. 11R contains an Arg mutation at the Lys in the myc-tag sequence. D,
degradation of Arg mutants of N7-p25 in Neuro2a cells. N7-p25 and its Arg
mutants coexpressed with Cdk5 into Neuro2a cells were detected by Immu-
noblotting with anti-myc after treatment with CHX. Quantification is shown
in the lower panel (mean � S.E., n � 3).
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We confirmed that N7-p25 11R was not ubiquitinated.
N7-p25 11R as well as 10R was cotransfected with HA-ubiqui-
tin into Neuro2a cells. After immunoprecipitation with anti-
myc, ubiquitination was assessed by immunoblotting with
anti-HA or anti-polyubiquitin antibodies. In contrast to the
strong ubiquitination of N7-p25, it was greatly reduced in
N7-p25 11R. Some signal of N7-p25 10R suggested ubiquitina-
tion at Lys in the myc-tag sequence. We also tested whether
there are preferential ubiquitination sites among the Lys resi-
dues in the p25 region using several add-back mutants.
Although Lys at amino acid 167 did not induce ubiquitination
at all, Lys add-back mutants at residues 126/127 or 298/299
showed intermediate strength ubiquitination signals (Fig. 2A).
These results indicate that N7-p25 can be ubiquitinated at mul-
tiple Lys residues if they are available.

We investigated whether N7-p25 11R would lose its confor-
mation and, therefore, be degraded by proteasomes as a mis-
folded protein. To test this possibility, the N7-p25 11R ability to
bind or activate Cdk5 was compared with that of N7-p25.
N7-p25 11R was immunoprecipitated with Cdk5 as much
as N7-p25 (Fig. 2B, left). The kinase activity of Cdk5 bound to
N7-p25 11R was measured with histone H1 phosphorylation.
No significant difference was observed between Cdk5-N7-p25
and Cdk5-N7-p25 11R (Fig. 2B, right). These results suggest
that N7-p25 11R retains the same capacity for activating Cdk5
as does N7-p25.

Lys Null Mutant of p35, p35 23R, Is Also Degraded by
Proteasomes—The above results with N7-p25 raised the possi-
bility that p35 would be degraded without ubiquitination. How-

ever, there are still 13 additional Lys residues in the N-terminal
p10 region. To test for the possibility that the Lys residues in the
N-terminal p10 region provide ubiquitination sites, we con-
structed a lysine-null mutant of full-length p35 (p35 23R) in
which all 23 lysine residues of p35 were change to arginine (Fig.
3A). Here, we used p35 WT and p35 23R without any tag
because the Arg mutations in the C-terminal region of p35 did
not affect the immunoreactivity to anti-p35 antibodies (C19).
Because the N terminus of p35 is blocked as described above,
p35 23R has no ubiquitination sites, and in fact, polyubiquiti-
nation was not detected in p35 23R (Fig. 3B). We observed the
degradation of p35 23R in Neuro2a cells. p35 23R was
decreased in the presence of CHX, and this decrease was sup-
pressed with the proteasomal inhibitor MG132 as well as the
more specific proteasome inhibitor Epoxomicin (Fig. 3C).
These results indicate that p35 23R is degraded by proteasomes
without ubiquitination. We confirmed the proper folding of
p35 23R by its binding and activation of Cdk5. p35 23R was
co-immunoprecipitated with anti-Cdk5, and Cdk5-p35 23R
displayed histone H1 phosphorylation activity as much as
Cdk5-p35 WT (Fig. 4A).

Degradation of p35 is affected by phosphorylation at Thr-138
(37, 40). Phosphorylation of p35 was assessed by the electro-
phoretic mobility shift in Phos-tag SDS-PAGE. p35 was sepa-
rated into three bands; the intense lowest band is unphosphor-
ylated p35, the slightly higher band is Thr-138-phosphorylated
p35, and the upper band is p35 phosphorylated at Thr-138 and
Ser-91 according to our previous results (38). Co-expression
with Cdk5 reduced the mobility of p35 mainly by phosphoryla-
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tion at Ser-8 (Fig. 4B). p35 23R showed a similar but not iden-
tical banding pattern to p35 in the presence or absence of Cdk5,
which was probably because of the presence of Arg mutations at
as many as 23 sites. However, we believe that Arg mutations did
not affect the phosphorylation at Thr-138 because bands con-
taining Thr-138 phosphorylation were detected. Furthermore,
we observed that p35 23R showed the same cellular localization
of p35 by immunofluorescent staining (data not shown). These
results suggest that p35 23R retains a conformation that is capa-
ble of binding and activating Cdk5 as well as that wild-type p35
is degraded by proteasomes ubiquitin-independently.

Effect of Cdk5 Binding on the Degradation of p35 and p35
23R—When p35 or p35 23R alone was transfected into Neuro2a
cells, the expression levels were higher with p35 23R than with
p35. In contrast, p35 and p35 23R showed similar expression
levels when Cdk5 was co-expressed (Fig. 5A). The results sug-
gest that Cdk5 affects the stability of p35 23R and p35 differ-
ently, and we examined the effect of exogenous co-expression
of Cdk5 on the degradation of p35.

We measured the degradation rates of p35 and p35 23R in the
presence of Cdk5 by CHX chase assay. p35 23R showed the
same degradation rate as p35, and the p35 and p35 23R levels
were reduced to �60% in 1 h after CHX addition (Fig. 5B). In
contrast, in the absence of Cdk5, p35 23R was degraded slower
than p35 (Fig. 5C). Although p35 was decreased to �60% in 1 h,
which was as fast as in the presence of Cdk5, �70% of the p35
23R remained at 3 h after the addition of CHX (Fig. 5C). These
results suggest that the degradation of p35 23R is slowed down
in the absence of Cdk5, whereas the degradation rate of p35 is
not affected by the expression of Cdk5.

Degradation of p35 23R in Primary Cortical Neurons—We
used Neuro2a cells in the above experiments. Neuro2a is a neu-
ronal cell line that is derived from the central nervous system,
but these cells are not neurons themselves. To validate the
physiological relevance of ubiquitin-independent degradation,
we examined whether p35 23R was degraded as p35 was in
neurons. p35 or p35 23R tagged with HA, which contains no Lys
residues, were constructed and transfected into primary corti-
cal neurons at 3 days in vitro. Their degradation rates were
assessed by the CHX chase assay. The time course of degrada-
tion was quite similar between p35 and p35 23R (Fig. 5D). Their
half-life was �1 h in primary neurons, which is consistent with

our previous reports (17). This result indicated that p35 can be
degraded independently of ubiquitin by proteasomes in
neurons.

Ubiquitin-independent Degron Sequence in p35—We inves-
tigated how p35 is recognized by proteasomes without ubiquiti-
nation. The number of proteins, which are known to be
degraded by proteasomes independent of ubiquitin, have
increased recently. Among them, we were interested in a
ubiquitin-independent degron that is found in the C-terminal
region of NKX3.1, a tumor repressor (42). The ubiquitin-inde-
pendent degron sequence is composed of 21 amino acids with a
PXL motif in the middle (35). p35 has a similar, but not identi-
cal, sequence in residues 240 –258 (Fig. 6A). To determine if the
sequence is involved in the ubiquitin-independent degradation
of p35, we mutated Pro-247 to Ala in p35 WT or p35 23R and
examined the degradation of the P247A mutants. Pro-247 cor-
responds to Pro-221 in the degron of NKX3.1, a critical amino
acid for the degron activity. p35 P247A was degraded as fast as
p35 WT in the presence of exogenous Cdk5; however, the
P247A mutation made p35 23R stable (Fig. 6B). This was also
found in the absence of exogenous Cdk5. When the activators
were expressed alone, the P247A mutation did not affect the
half-life of wild-type p35, but the P247A mutation of p35 23R
became more stable than p35 23R itself, which had a longer
half-life than wild-type p35 (Fig. 6C). These results suggested
that the degron-like sequence is involved in degradation of p35
23R whether p35 23R binds to Cdk5 or not.

Discussion

p35 is an unstable protein with a half-life of 30 – 60 min, and
it is degraded by proteasomes after ubiquitination (12, 13, 17).
Because the p35 protein amount is a critical determinant of
Cdk5 activity, elucidating the p35 degradation mechanism is
central for understanding Cdk5 functions. To this end we
searched for the polyubiquitination site(s) in p35, but unex-
pectedly, we found that the degradation of p35 can occur with-
out ubiquitination. We also showed that ubiquitin-indepen-
dent degradation was mediated by an �-helical degron-like
sequence in the C-terminal region of p35. Thus, p35 is sub-
jected to two different degradation mechanisms: ubiquitin-de-
pendent and ubiquitin-independent.
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In contrast to cell cycle Cdks, whose activation is regulated by
its phosphorylation/dephosphorylation upon cyclin binding
(43), Cdk5 is activated only by binding to its activation subunit
p35 (2). On the other hand, similar to cell cycle Cdks, whose
inactivation is induced by the degradation of cyclin, Cdk5 is
inactivated by the degradation of p35 by proteasomes. Because
Cdk5 is expressed more than p35 in neurons (8, 9), the protein
level of p35 is a limiting factor determining the total Cdk5 activ-
ity. Cyclins are typical well studied proteins to be targeted by
proteasomes via ubiquitination in a cell cycle-dependent man-
ner (44). Therefore, it is natural to expect that p35 is also tar-
geted by proteasomes when it is ubiquitinated. In fact, ubiquiti-
nation of p35 has been demonstrated by several previous
studies by groups including ours (12, 17, 45). Therefore, it was
surprising for us to find that the lysine-less mutant of p35
underwent degradation at a rate similar to wild-type p35 in
cultured cell lines and primary neurons.

Polyubiquitin works as a degradation signal for proteins tar-
geted by proteasomes (46, 47). Thus, a question arises as to how
proteasomes recognize and degrade p35 without the polyubiq-
uitin tag. Some misfolded or impaired proteins are degraded
without ubiquitination by default. There are several examples
of proteins that display default degradation, although they are
degraded physiologically in a ubiquitin-dependent manner. p53
is a tumor suppressor protein that is degraded by proteasomes
via polyubiquitination by E3 ubiquitin ligases, such as Mdm2
(33), but it is also degraded by the 20S proteasome by default if
its N-terminal unstructured region is not protected by other
proteins or modification. c-Fos proto-oncoprotein is an un-
structured protein and degraded independently of ubiquitin by
proteasomes when it does not form a transcriptional het-
erodimer with a partner protein (34). p35 functions exclusively
as the activator of Cdk5. Only a few p35 molecules exist as free
p35 in vivo because Cdk5 is significantly more abundant than
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p35. If p35 fails to bind Cdk5, however, p35 would be recog-
nized as a misfolded protein and degraded without ubiquitina-
tion by default. However, p35 23R appeared to maintain the
proper conformation to fully bind and activate Cdk5, and it
was degraded at a similar rate to that of wild-type p35. In this
study we carried out most of the experiments under excess
amounts of Cdk5 by co-expression. Thus, we think that it is
unlikely that p35 23R is degraded through the default path-
way of degradation.

There are at least three types of substrate protein recognition
by proteasomes in the ubiquitin-independent degradation sys-
tems, which are as follows: by the 19S regulatory particle of the
26S proteasome as an example of ornithine decarboxylase (48,
49); by REG�, also known as 11S or PA28, complexed with the
20S proteasome that is known for p21 Cdk inhibitor (50); by a
core subunit of the 20S proteasome as exemplified by the F
protein of hepatitis C virus (51). On the other hand, the amino
acid sequence(s) required for degradation has also been inves-
tigated with several substrate proteins. In the case of the Rpn4
transcription factor that activates the expression of proteasome
genes in yeast, the N-terminal unstructured segment and the
following folded domain are essential for ubiquitin-indepen-
dent degradation (31). A similar requirement of two elements,
including an unstructured region and a following �-helical
sequence, is shown for thymidylate synthase (30). The two ele-
ments of thymidylate synthase function as a degradation signal
if they are tagged at the C terminus of a reporter protein and
called a ubiquitin-independent degron (52). According to the
two-step model of degradation, the �-helical degron region is
recognized by the proteasome, and then the disordered region

enters into the proteasomal cavity. p35 may be degraded simi-
larly because p35 has an unstructured �13-amino acids exten-
sion at the C terminus downstream of an �-helix-rich domain
called the cyclin fold (Fig. 6D).

NKX3.1 is a homeodomain transcription factor that regu-
lates prostate cancer initiation and progression (42). NKX3.1
turnover is regulated by ubiquitination, but it is also proteo-
lyzed by proteasomes independent of ubiquitination. This
ubiquitin-independent degradation is mediated by a 21-amino
acid sequence in its C-terminal region (35). The proline residue
in the sequence is essential for its ubiquitin-independent
degron activity. p35 has a homologous (�53% identity)
sequence at amino acids 240 –258 with Pro-247 in a similar
position (Fig. 6A). The mutation of Pro-247, which is in the
ordered structure of the cyclin fold (53), to Ala slowed the turn-
over rate of p35 down remarkably. Considering that Pro-247
is positioned in the shallow concave (Fig. 6D), the structure,
but not the amino acid sequence, around Pro-247 may pro-
vide the proteasome recognition site. Thus, p35 has two ele-
ments of an unstructured and a structured region next to
each other that conform to the two-step degradation as
shown by other proteins displaying ubiquitin-independent
degradation.

The physiological role of ubiquitin-independent degradation
and its regulation are largely unknown for most proteins (46,
47). In the case of p21, however, it is indicated that the cell
cycle-regulated degradation is ubiquitin-dependent (54, 55),
and its degradation during resting conditions is ubiquitin-inde-
pendent (50, 56). Similar differential usage may be in operation
for p35. p35 is unstable endogenously in neurons or when
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expressed heterogeneously in cultured cell lines, and p35
P247A showed a similar degradation rate to wild-type p35, sug-
gesting that the degradation of p35 in resting neurons could be
ubiquitin-independent. p35 is acutely degraded in neurons
when treated with glutamate (14, 57). This stimulated degrada-
tion of p35 may be dependent on ubiquitination. In any case,
rapid p35 turnover would be crucial for neurons to serve for
their long life. Overactivation of Cdk5, which is induced by the
p25 C-terminal stable fragment, is toxic for neurons. p25 is
produced by the cleavage of p35 with calpain, and Cdk5 acti-
vated by p25 acquires a long lasting activity with free accessi-
bility to proteins (15, 18, 19), which Cdk5-p35 cannot access.
The longer half-life of p35 may enhance the probability of the
overproduction of p25. Two degradation pathways for p35
would be a mechanism to secure the long life of neurons.
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