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Pro-fibrotic mesenchymal cells are known to be the key effec-
tor cells of fibroproliferative disease, but the specific matrix sig-
nals and the induced cellular responses that drive the fibrogenic
phenotype remain to be elucidated. The key mediators of the
fibroblast fibrogenic phenotype were characterized using a
novel assay system that measures fibroblast behavior in
response to actual normal and fibrotic lung tissue. Using this
system, we demonstrate that normal lung promotes fibroblast
motility and polarization, while fibrotic lung immobilizes the
fibroblast and promotes myofibroblast differentiation. These
context-specific phenotypes are surprisingly both mediated by
myosin II. The role of myosin II is supported by the observation
of an increase in myosin phosphorylation and a change in intra-
cellular distribution in fibroblasts on fibrotic lung, as compared
with normal lung. Moreover, loss of myosin II activity has
opposing effects on protrusive activity in fibroblasts on normal
and fibrotic lung. Loss of myosin II also selectively inhibits myo-
fibroblast differentiation in fibroblasts on fibrotic lung. Impor-
tantly, these findings are recapitulated by varying the matrix
stiffness of polyacrylamide gels in the range of normal and
fibrotic lung tissue. Comparison of the effects of myosin inhibi-
tion on lung tissue with that of polyacrylamide gels suggests that
matrix fiber organization drives the fibroblast phenotype under
conditions of normal/soft lung, while matrix stiffness drives the
phenotype under conditions of fibrotic/stiff lung. This work
defines novel roles for myosin II as a key regulatory effector
molecule of the pro-fibrotic phenotype, in response to biophys-
ical properties of the matrix.

Fibrotic disorders can occur as a consequence of failure of
normal tissue regeneration after either acute or chronic injury,
resulting in organ dysfunction of lung, liver, kidney, heart, vas-
culature, and others (1). As such, fibroproliferative diseases
account for nearly half of the deaths worldwide (1, 2). For exam-
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ple, idiopathic pulmonary fibrosis (IPF)? is an incurable and
fatal fibrotic lung disorder. It is characterized by excessive con-
nective tissue accumulation and continuous tissue contraction
that creates a cycle of progressive organ deterioration (3). Acti-
vated fibroblasts and myofibroblasts are the key “pro-fibrotic”
effector cells in this disease and fibroblastic foci, the histological
hallmark of IPF, are enriched with these activated fibroblasts
and myofibroblasts (4). During pulmonary fibrogenesis, fibro-
blasts migrate toward and accumulate in fibroblastic foci where
they differentiate into myofibroblasts, which produce high lev-
els of pro-fibrotic mediators and have a contractile phenotype
(5-7). However, the signals driving this aberrant accumulation
and activation of fibroblasts and the intracellular pathways
that induce this fibrogenic phenotype have not been fully
elucidated.

Enhanced migration and myofibroblast differentiation are
characteristic pro-fibrotic phenotypes of mesenchymal cells in
IPF (8 —11). A number of soluble mediators (e.g. TGF-B, PDGF,
LPA) are capable of inducing the pro-fibrotic phenotype in
fibroblasts (12-14). However, a growing body of published
research demonstrates that fibroblasts can also be activated by
specific biophysical properties of their surrounding matrix (15—
18). For example, the dimensionality of the matrix (three-di-
mensional versus two-dimensional) can affect migration rate,
and increasing substrate rigidity can induce alpha-smooth
muscle actin (a-SMA) expression and its incorporation of into
F-actin stress fibers, the hallmarks of myofibroblast differenti-
ation (15, 19, 20). It has recently been shown that fibrotic lung is
“stiffer” than normal lung and this difference in rigidity can
drive phenotypic changes in fibroblasts (16). Furthermore, lung
tissue is 1 X 10° orders of magnitude less rigid than tissue cul-
ture plastic (21). As such, traditional cell biological assays using
cells plated on plastic may not provide an accurate representa-
tion of in vivo fibroblast behavior. Recent advances allowing the
seeding of fibroblasts into normal or IPF-cell-derived matrices
have demonstrated that IPF-derived ECM promotes the up-
regulation of “pro-fibrotic” gene transcription (22) and can
induce TGF-B-independent myofibroblast differentiation (23).
In this study, we have taken an additional step forward by uti-

2 The abbreviations used are: IPF, idiopathic pulmonary fibrosis; HLF, human
lung fibroblast; SMA, smooth muscle actin; p-MLC, phosphorylated myosin
light chain.
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lizing a more physiologically-relevant matrix system that more
closely mimics the in vivo environment of the lung fibroblast.

Myosins are a family of motor proteins that are involved in
many cellular processes that require force. Contractile tension
generated within the cytoskeleton by non-muscle myosin II is
known to play an important role in both fibroblast migration
and differentiation (24-28). Although activation of signals
upstream of myosin II has been recently implicated in pulmo-
nary fibrogenesis in an experimental model of human IPF, the
direct involvement of myosin I as an effector molecule of fibro-
genesis has yet to be documented (20). Furthermore, the mech-
anisms whereby myosin II contributes to the activation of mes-
enchymal cells on physiologically relevant matrices, and in vivo,
have not been described. Thus, we sought to understand the
role of myosin Il in mediating the behavior of pro-fibrotic fibro-
blasts as they interact with physiologically relevant matrices. In
doing so, we have uncovered unique and context-specific roles
of myosin II in fibrogenesis.

Experimental Procedures

Materials—Normal human lung fibroblasts (HLF, 19Lu, pas-
sages 4—9) were purchased from ATCC (Manassas, VA) and
maintained/propagated as previously described (29). C57Bl/6
mice were purchased from The Jackson Laboratory (Bar Har-
bor, ME). PKH26 Red Fluorescent Cell Linker Kits, monoclonal
anti-a-SMA, monoclonal anti-vinculin, and blebbistatin were
purchased from Sigma. AF 594 Phalloidin and AF 488 goat anti-
mouse antibody were purchased from Life Technologies
(Carlsbad, Ca). Antibodies to myosin IIA, myosin IIB, phospho-
myosin light chain 2 (p-MLC, Thr-18/Ser-19), and myosin light
chain 2 were purchased from Cell Signaling Technology (Bev-
erly, MA). Rabbit IgG was from Jackson Immunoresearch
(West Grove, PA). Normal mouse IgG was from R&D Systems
(Minneapolis, MN). GAPDH antibody was from Fitzgerald
(Acton, MA). MYH9 and MYH10 siRNA were purchased from
Thermo Fisher (Waltham, MA). Non-targeting pooled siRNA
control was from Dharmacon Inc. (Lafayette, CO). Silentfect
lipid transfection reagent was purchased from Bio-Rad Labora-
tories (Hercules, CA). Glass-bottom plates (12-well) containing
activated polyacrylamide gels of 1 kPa, 8 kPa, 25 kPa, and glass
were custom-made by Matrigen Life Technologies (Brea, CA).

Lung Tissue Assay System—All animal protocols were per-
formed as approved by the Cleveland Clinic institutional ani-
mal care and use committee and using methods in the guide-
lines for the humane care of animals by the American
Physiological Society. Lungs from C57Bl/6 mice (18-20 g,
8 —12-week-old females) that had received intratracheal instil-
lation of 4 units/kg bleomycin sulfate (Bristol Laboratories, Syr-
acuse, NY) 2 weeks prior were inflated with OCT as described
previously (9, 30, 31). Cryotome-cut, OCT-preserved lung tis-
sue sections (10 wm) were washed in 37 °C PBS to remove the
OCT, and blocked with 5% albumin. Normal and fibrotic
regions were identified using light microscopy and confirmed
with serial H&E-, DAPI- (Fig. 14), and trichrome- (not shown)
stained sections. Samples were mechanically characterized
using an atomic force microscope (AFM, MFP-3D; Asylum
Research) using methods previously published (16) (Fig. 1B).
PKH-labeled normal HLFs were allowed to attach to pre-
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blocked 10-um sections (25,000 cells per section) of normal and
fibrotic lung as previously published (10, 31), placed in 1% BSA,
serum-free medium (5% CO, at 37 °C) = blebbistatin, followed
by time-lapse video microscopy on an inverted microscope
(Leica DM IRBE). Migration tracking was analyzed using
ImagePro software (Media Cybernetics, Rockville, MD).
Greater than 50 cells from five independent experiments were
analyzed. For myofibroblast differentiation, immuno-fluores-
cence was performed as described below on non-labeled,
attached cells = blebbistatin after 24 h. HLFs were transfected
with 100 nM siRNA (MYH9, MYH10, or non-targeting control)
using Silentfect lipid and OptiMEM medium (GIBCO/Invitro-
gen) for 48 h, as previously published (10). Viability of attached
cells at 24 h was 91.34 * 6% on normal lung and 91.25 = 5% on
fibrotic lung (Fig. 1C).

Immunofluorescence Staining—Fixed and permeabilized
cells were labeled for a-SMA, F-actin stress fibers, and/or
p-MLC2 as previously published (31). Immunofluorescence
intensity was analyzed using Image] Pro software (NIH).
Greater than 20 cells for each condition (normal versus fibrotic)
were analyzed in triplicate.

Western Blot Analysis—Immunoblotting was performed for
the indicated proteins as previously published (10). GAPDH
band density was used as a loading control. To selectively har-
vest cell lysates from normal and fibrotic lung, HLFs were
plated inside cloning rings (6.4-mm diameter) onto lung tissue
sections, followed by trypsinization to remove the attached
cells. To remove any soluble lung proteins, cell suspensions
were centrifuged (1000 X g, 5 min). The cell pellet was re-sus-
pended and passed through a 30-micron cell filter. Preliminary
experiments demonstrated no significant detection of a-SMA
or p-MLC in the absence of added cells.

Polyacrylamide Gel Assays—Custom made 12-well glass-
bottom plates containing activated polyacrylamide gels of 1
kPa, 8 kPa, 25 kPa, and glass (Matrigen Life Technologies) were
coated with 1 pg/ml fibronectin for 2 h (37 °C). Polyacrylamide
gels with stiffnesses of 1 kPa and 25 kPa were chosen to repre-
sent the stiffness of normal and fibrotic lung, respectively,
based on AFM analysis of our lung tissue sections and on pre-
viously published data (16). For migration analyses, HLFs pre-
viously labeled with PKH dye were allowed to attach for one
hour, and non-adherent cells were washed away. Blebbistatin or
vehicle only (DMSO) in 1% BSA in serum-free medium was
added, and time-lapse microscopy was performed over 6 h. For
differentiation assays, non-labeled HLFs were allowed to attach
for one hour, and non-adherent cells were washed away. The
gels containing attached cells were incubated for 24 h, followed
by permeabilization, fixation, and immuno-fluorescence stain-
ing. For vinculin staining, gels with attached cells were incu-
bated in serum-free medium = TGF-B1 (1 ng/ml, 24 h).

Quantitative Analysis of Cell Phenotype—Time-lapse
microscopy was performed at 10X magnification with images
captured at 10-min intervals for 6 h. Migration tracking on
single cells was performed with ImagePro software (Media
Cybernetics). Migration persistence was calculated by dividing
the displacement by the total distance. The number of protru-
sions was manually counted for each cell over the 6 h time
period. Polarity was determined by dividing migration persis-
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FIGURE 1. Characterization of lung tissue assay system. Panel A, representative photomicrographs of hematoxylin and eosin (H&E, 20X original magnifica-
tion, inset 2X magnification) and DAPI (10X original magnification) stained normal and fibrotic lung tissue sections, demonstrating the presence of native
nuclear material. Panel B, histogram of stiffness in normal and fibrotic (lesion) lung tissue sections measured using atomic force microscopy. Data indicate
median Young’s modulus is 3.78 kPa for normal lung and 6 kPa for fibrotic lung. Panel C, comparison of viability of cells seeded onto lung tissue sections over
24 h.% cell viability defined as the number of labeled cells per section actively spreading, migrating, or demonstrating protrusive activity at 24 h, divided by the
number of total labeled cells per section at Time 0. n>50 cells from three independent experiments.

tence by the number of protrusions. Cell area was derived from
manual tracings of individual cells using Image] Pro software.
Elongation (the inverse of circularity) was calculated using the
formula 1 — (47 X area/[perimeter]?). Greater than 50 cells for
each condition (normal versus fibrotic) were analyzed in five
independent experiments.

Statistical Analysis—All data were analyzed using SigmaPlot
(SPSS Inc.) with unpaired/paired ¢ test or Mann-Whitney-Wil-
coxon test (for non-parametric data), or by ANOVA (for more
than 2 groups). Data are expressed as means = S.E. unless oth-
erwise indicated. A p value < 0.05 was considered statistically
significant.

Results

Fibroblasts Have a Different Morphology When Interacting
with Normal and Fibrotic Lung—To determine the effect of
normal and fibrotic lung on fibroblast phenotype, HLFs were
seeded onto murine lung tissue containing both normal and
fibrotic areas. Upon attachment, HLFs on both substrates had a
rounded appearance and similar area (mean area, normal lung
1162 * 555 um? versus fibrotic lung 1189 *+ 560 um?, Fig. 2, A
(green) and B). However, after 6 h, HLFs on fibrotic lung spread
less (change in area, fibrotic lung 809 + 1192 um? versus nor-
mal lung 1674 + 1475 um?, p = 0.007 (Fig. 2, A (red) and B) and
continued to maintain a rounded appearance. In contrast, HLFs
on normal lung consistently became elongated and spindle-
shaped (elongation factor at 6 h, normal lung 0.745 = 0.12 AU
versus fibrotic lung 0.5 = 0.17 AU, p < 0.001, and these differ-
ences persisted through 24 h (Fig. 2C). These data demonstrate
that fibroblasts interacting with normal lung assume an elon-
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gated, spindle-shaped morphology, while fibroblasts interact-
ing with fibrotic lung assume a rounded morphology.

Fibroblasts Are Less Motile and Less Polarized on Fibrotic
Lung—On fibrotic lung, HLFs consistently migrated over a
shorter distance (fibrotic; 63 = 36 versus normal; 102 * 48 wm,
p <0.001) and with a slower speed (fibrotic; 10 = 6 versus normal;
17 = 8 um/hr, Fig. 3, A-D) than on normal lung. Migration on
fibrotic lung occurred in a significantly more random, less persis-
tent fashion than on normal lung (migration persistence, fibrotic;
0.5 * 0.18 versusnormal; 0.8 = 0.11 AU, p < 0.001, values closer to
1 indicate more persistent migration, Fig. 3, B and C). There were
nearly 3-fold more protrusions per cell in HLFs on fibrotic lung
than on normal lung (fibrotic; 13 = 5 versus normal; 5 * 2, p <
0.001, Fig. 3C). Overall, HLFs on fibrotic lung were less polarized
than those on normal lung, as they exhibited less migration persis-
tence with increased protrusive activity (polarity, fibrotic; 0.05 *
0.02 versus normal; 0.2 £ 0.07 AU, p < 0.001, higher values indi-
cate greater polarization, Fig. 3C). These differences in migratory
behavior persisted over a 24-hour time period (Fig. 3D). Taken
together, these data show for the first time that HLFs interacting
with fibrotic lung have a less motile, less polarized phenotype than
those interacting with normal lung.

Fibrotic Lung Enhances Myofibroblast Differentiation—As
myofibroblast differentiation occurs at longer time points we
examined the attached HLFs at 24 h. HLFs on fibrotic lung were
more spread with increased dense, thicker stress fibers and
increased a-SMA than those on normal lung (Fig. 4A4). Fibro-
blasts on fibrotic lung more frequently possessed phenotypic
characteristics of myofibroblasts: HLFs with prominent F-actin
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FIGURE 2. Fibroblasts spread less and are less elongated on fibrotic lung. Panel A, representative photomicrographs of fibroblast spreading on
normal versus fibrotic lung. Green: cell shape immediately following attachment; Red: cell shape 6 h after attachment. Panel B, comparison of fibroblast
spreading as characterized by mean cell area (¥, p = 0.007 compared with change in area on fibrotic versus normal lung) and shape (¥, p < 0.001
compared with change in shape on fibrotic versus normal lung). Elongation: 1 — (47 X (area/[perimeter]?). Panel C, comparison of area and shape over
24-h time period.
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FIGURE 3. Fibroblasts are less motile and less polarized on fibroproliferative lesions. Normal human lung fibroblasts were fluorescently labeled and
allowed to migrate on bleomycin-treated lung tissue sections (6 h, 37 °C). Panel A, kymograph representing a single cell migrating on normal lung (top panel)
and fibrotic lung (bottom panel). Each image represents a 1-h interval, 10X magnification. Panel B, wind rose plots with 10 representative migration tracks from
each condition (6 h). Panel C, comparison of quantitative migration characteristics of HLFs on normal versus fibrotic lung (6 h), *, p < 0.001 compared with
normal lung. Panel D, comparison of HLF speed on normal versus fibrotic lung over 24-h time period.
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FIGURE 4. Fibroproliferative lesions enhance fibroblast transdifferentiation into myofibroblasts. Normal human lung fibroblasts were fluorescently
labeled and attached to bleomycin-treated lung tissue sections (24 h, 37 °C). Panel A, representative 10X photomicrographs of fibroblast transdifferentiation
on normal and fibrotic lung, labeled for F-actin and a-SMA. Panel B, fibroblasts on fibrotic lesions express a-smooth muscle actin and F-actin stress fibers more
frequently, and at higher levels, than fibroblasts on normal lung, *, p < 0.001, compared with fibroblasts on normal lung. Panel C, average a-SMA/GAPDH band
density in HLFs from normal (NL) versus fibrotic (FL) lung, from three independent experiments, *, p < 0.001 compared with HLFs on normal lung. Inset shows

representative Western blot for a-SMA and GAPDH.

stress fibers were 2-fold higher and a-SMA integrated density
was >1.5 fold higher on fibrotic lung (*, p < 0.05 versus normal,
Fig. 4B). In attached HLFs, a-SMA expression was ~2.5 fold
greater on fibrotic lung than normal lung (*, p < 0.001, Fig. 4C).
Together, these results demonstrate that fibrotic lung enhances
the myofibroblastic phenotype. Key experiments performed on
serial decellularized lung tissue sections (32) revealed similar phe-
notypes to that on non-decelluarized lung tissue (Fig. 5, A—C).

Mpyosin II Activity Is Increased in Fibroblasts on Fibrotic
Lung—As myosin II has been shown to be important for gener-
ating intracellular tension necessary for both cell migration and
myofibroblast transdifferentiation (24 -28), we first analyzed
whether phosphorylated myosin light chain (p-MLC) levels, a
metric for myosin II activity, was different in HLFs seeded on
normal or fibrotic lung. Immunofluorescence for p-MLC in
fibroblasts on fibrotic lung demonstrated increased p-MLC ori-
ented along stress fibers diffusely throughout the cell (Fig. 64,
bottom). In contrast, p-MLC was less in HLFs on normal lung,
and localized more to the periphery of the cell (Fig. 64, top). By
analyzing either the integrated density signal (Fig. 6B) or pro-
tein levels in cells attached to lung tissue (Fig. 6C), we deter-
mined that myosin phosphorylation was more than 2-fold
greater on fibrotic lung (*, p < 0.05 compared with normal
lung,). In summary, p-MLC is increased and more diffusely dis-
tributed in HLFs on fibrotic lung.

SASBMB

MARCH 18, 2016+VOLUME 291 +NUMBER 12

Inhibition of Myosin II Restores Migration and Polarity on
Fibrotic Lung—T o determine the effects of myosin II inhibition
on HLF motility in our system, the small molecule inhibitor of
myosin ATPase activity, blebbistatin (10 um), was added. In
HLFs on normal lung, myosin II inhibition resulted in a
decrease in migration distance (bleb; 51 * 30 versus no bleb;
85 £ 55 um; *, p < 0.001) and migration speed by 45% (bleb;
8.5 = 5.1 versus no bleb; 14.2 + 9.3 um/hr; *, p < 0.001) (Fig. 7,
A, top; B, white bars). Migration persistence in HLFs on normal
lung was decreased (bleb; 0.37 = 0.23 versus no bleb; 0.86 *
0.08 AU; *, p = <0.001), while the number of protrusions sig-
nificantly increased (bleb; 13 %+ 5 versus no bleb; 6 = 3; *, p =
<0.001), resulting in a 76% decrease in cell polarization (bleb;
0.03 £ 0.02 versus no bleb; 0.16 = 0.06 AU; *, p = <0.001). On
the other hand, HLFs on fibrotic lung in the presence of bleb-
bistatin showed an ~33% increase in migration distance (bleb;
70 = 37 versus no bleb; 51 = 38, *, p = 0.03) and speed (bleb;
11.6 £ 6.3 versus no bleb; 8.5 £ 6.4; *, p = 0.03) (Fig. 7, A,
bottom; B, black bars). On fibrotic lung, migration persistence
was increased (bleb; 0.8 * 0.1 versus no bleb; 0.5 = 0.2 AU, *,
p < 0.001) with formation of fewer protrusions (bleb; 11 * 7
versus no bleb; 14 = 5;*, p = 0.03), leading to a >2-fold increase
in polarity (bleb; 0.1 * 0.07 versus no bleb; 0.05 = 0.02 AU; *,
p <0.001). Using a second complementary method of myosin II
inhibition, siRNA to myosin heavy chain IIB (MYH10, 100 nm,
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>70% knockdown efficiency, Fig. 84), effects similar to those motes polarized migration in HLFs on normal lung, while

using blebbistatin were observed (Fig. 8, B and C). These data  enhancing protrusive activity and limiting polarized migration
demonstrate that myosin II limits protrusive activity and pro- in HLFs on fibrotic lung.
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Inhibition of Myosin II Selectively Blocks Myofibroblast
Transdifferentiation of Fibroblasts on Fibrotic Lung—To deter-
mine the effects of myosin I inhibition on myofibroblast trans-
differentiation in our system, HLFs seeded on normal and fibrotic
lung were incubated for 24 h in the presence of blebbistatin or
serum-free media with vehicle (DMSO). On normal lung, inhibi-
tion of myosin II had no effect on F-actin stress fibers or a-SMA
expression (Fig. 9). In contrast, inhibition of myosin II in HLFs on
fibrotic lung significantly decreased the number of cells expressing
F-actin stress fibers and those expressing a-SMA, compared with
untreated cells. The mean intensity of F-actin stress fibers was
decreased by 68% and a-SMA was reduced by 70%. Inhibition of
myosin II using MYH10 siRNA (100 nm) resulted in a similar
reduction in stress fiber and a-SMA intensity selectively on
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fibrotic lung (68% decrease in F-actin, 54% decrease in a-SMA, *,
p < 0.001), as compared with HLFs on normal lung (Fig. 10). In
summary, myosin II inhibition almost completely abrogated
fibrotic lung induction of myofibroblast differentiation, suggesting
that myosin II plays a key role in myofibroblast differentiation
selectively on fibrotic lung.

Myosin II Inhibition on Substrates of Different Stiffness Reca-
pitulates What Is Seen in Normal and Fibrotic Lung—To deter-
mine if differences in tissue stiffness between normal and
fibrotic lung were the driving signal for the observed pheno-
typic changes, HLFs were allowed to attach to and migrate on
fibronectin-coated polyacrylamide gels of 1 kPa (representing
the stiffness of normal lung) and 25 kPa (representing the stiff-
ness of fibrotic lung) (16) = blebbistatin. Inhibition of myosin II
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fibroblasts on normal and fibrotic lung stained for F-actin stress fibers. Panel B, representative 10X photomicrographs of HLFs on normal and fibrotic lung
stained for a-SMA. Panel C, effect of blebbistatin on myofibroblastic phenotype on normal versus fibrotic lung; *, p < 0.05 relative to fibrotic untreated control.

resulted in a >3-fold increase in the number of protrusions on
1 kPa gels, but caused a 22% decrease in protrusions on 25 kPa
gels (Fig. 11A). In addition, blebbistatin resulted in a greater
than 75% decrease in polarity on 1 kPa gels, while having the com-
pletely opposite effect in polarity on 25 kPa gels (40% increase, Fig.
11B). When HLFs were incubated on 1 kPa gels for 24 h, there was
no difference in actin density with TGF- or blebbistatin (Fig.
11C). The increased stiffness of 25 kPa gels resulted in increased
actin density, which was augmented by TGF-B. Blebbistatin
reduced actin density by more than half selectively on 25 kPa gels.
On 1 kPa gels there was a paradoxical increase in a-SMA with
blebbistatin, but a-SMA density was otherwise unaffected by
TGF-pB (Fig. 11D). Similar to the results with actin density, blebbi-
statin significantly reduced a-SMA selectively on 25 kPa gels. In
the absence of blebbistatin, there were clear differences in baseline
motility between HLFs on normal lung and 1 kPa gels, and
between HLFs on fibrotic lung and 25 kPa gels. However, the effect
of blebbistatin on migration was similar in both systems (Fig. 11E).
Further, increased stiffness resulted in the formation of vinculin-
containing focal adhesions, which was decreased by myosin II
inhibition (Fig. 12). Together, these data demonstrate that both
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myosin [I-mediated polarized migration and myofibroblast differ-
entiation are recapitulated under conditions of matrix stiffness in
the pathophysiological range.

Discussion

In this study, we utilize our unique murine lung tissue model
to explore the effect of either normal or fibrotic lung matrix on
the activation of myosin II in fibroblasts and its consequences
on migration or myofibroblast differentiation. The major find-
ings in this study are that normal lung matrix promotes fibro-
blast motility and polarization, while fibrotic lung matrix
immobilizes the fibroblast and promotes myofibroblast differ-
entiation. These context-specific phenotypes are both medi-
ated through non-muscle myosin II activity, as demonstrated
using two independent methods to inhibit myosin II function.
Importantly, differences in matrix stiffness alone can mediate
this context-specific phenotype through activation of myosin
II. These data expand the role of myosin Il in fibrosis as a down-
stream effector of the pro-fibrotic phenotype, and predict that
the biophysical properties of the matrix play a critical role in
influencing fibroblast pro-fibrotic behavior through myosin II.
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We show for the first time that normal and fibrotic lung
tissue matrices have opposing effects on polarized migration of
fibroblasts, through opposing actions on protrusive activity in
the direction of migration. Several findings suggest that the
underlying fiber topography is the dominant driver of the polar-
ized migration pattern on normal lung. The highly polarized
nature of the migration, myosin-dependence of polarized migra-
tion, and myosin-inhibitory effect on lateral protrusive activity in
fibroblasts on normal lung all strikingly resemble that seen in prior
work using linear pre-patterned substrates (33, 34). Indeed, nor-
mal lung exhibits a predominantly unidirectional fiber organiza-
tion in contrast to the random fiber organization in fibrotic lung
and PA gels (34, 35). Moreover, the observed cortical localization
of activated myosin in fibroblasts on normal lung further supports
the previously described role of cortical myosin in limiting lateral
protrusions, and thereby establishing cell polarity (25, 36, 37).
Taken together, these data suggest that cortical myosin inhibits
lateral protrusions to drive polarized migration when the underly-
ing matrix substrate is linearly organized.

Conversely, under combined conditions of increased stiff-
ness and disorganized fibers (fibrotic lung and stiff PA gels), the
high level of protrusive activity did not lead to polarized migra-
tion. Moreover, high levels of activated myosin were diffusely
distributed throughout the cell. Computer modeling of protru-
sive force coupling to matrix compliance suggests that
increased myosin II-generated intracellular tension, in
response to high matrix stiffness, can actually decrease polar-

SASBMB

MARCH 18,2016 +VOLUME 291 +NUMBER 12

ized migration through myosin’s enhancing effect on random-
ly-directed focal adhesion maturation (38 —44). Extending the
work of Hinz (41) and Dugina et al. (45), we demonstrate that
fibrotic lung-range stiffness induces myosin II-dependent mat-
uration of vinculin-containing focal adhesions. Moreover,
myosin inhibition on fibrotic lung or stiff PA gels decreased
lateral protrusive activity and enhanced polarized migration,
effects noted previously on infinitely stiff tissue culture plastic
(25,46, 47). Taken together, these data suggest that diffuse high
levels of myosin activity immobilize fibroblasts on stiff sub-
strates through inducing lateral focal adhesion maturation.
We observed that that the basal level of myofibroblast differ-
entiation on normal lung and soft gels was independent of
myosin. However, enhanced myofibroblast differentiation on
fibrotic lung and stiff gels, which share the common features of
increased stiffness and disorganized fibers, exhibited strict
myosin dependence. Stiff matrices composed of either chemi-
cally immobilized fibronectin matrix (48), tissue-derived three-
dimensional matrices (49), or collagen (41) all support the
development of myofibroblasts. Furthermore, increases in
intracellular tension upon application of force to the cell mem-
brane have been shown to initiate myofibroblast differentiation
(43). Along with these observations, our data highlight the
dominance of increased matrix stiffness above matrix fiber
organization in driving myofibroblast differentiation. Interest-
ingly, we observed a significant increase in a-SMA on 1 kPa gels
with myosin inhibition (Fig. 11D) and a tendency toward
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increased a-SMA on normal lung with myosin II inhibition or = shown similar results upon inhibition of the mechanosensing
down-regulation (Fig. 10, C and D). A similar soft substrate- ion channel, TRPV4 in fibroblasts (51). Taken together, these
specific effect on actin polymerization has been noted upon data provide evidence to suggest that the balance between acto-
myosin inhibition in fibroblasts (50). Further, we have recently myosin intracellular tension and matrix stiffness conditions the

6092 JOURNAL OF BIOLOGICAL CHEMISTRY SASBMB  VOLUME 291-NUMBER 12-MARCH 18, 2016



cell response to myosin inhibition. We hypothesize that, under
conditions of soft matrix, where the intracellular tension is
greater relative to matrix stiffness, release of this excess tension
by inhibition of myosin Il induces compensatory actin polymer-
ization. This actin polymerization results in release of MRTEF-A
(MLK-1) from actin monomers, and consequent a-SMA tran-
scription (52, 53). As similar results were noted with blebbista-
tin inhibition of myosin activity as with down-regulation of
myosin IIB expression, our findings are unlikely to be a conse-
quence of off-target effects of blebbistatin.

We demonstrate that the consequences of activating myosin
II on fibroblast pro-fibrotic behavior appears to be an inte-
grated function of matrix fiber organization and stiffness. Our
key findings were replicated using decellularized lung tissue
sections, validating our model system and suggesting that
matrix components, rather than cellular components, drive the
cellular responses. Unmeasured variables such as ECM ligand
density, spatial dimensionality, and composition, or integrin
signaling and de novo protein synthesis, were not directly exam-
ined, and could also play a modifying role in vivo. However, the
changes observed as early as 6 h remained stable through 24 h,
making it unlikely that new protein synthesis had a significant
bearing on the phenotype. We also recognize that our murine lung
tissue model system may not fully recapitulate the iz vivo environ-
ment of human IPF. The data generated using this model is com-
plementary to that generated in decellularized matrix systems and
clearly demonstrate novel complexities of interaction between
fibroblasts and actual lung tissue matrix, which are lost in tradi-
tional assays on protein-coated tissue-culture plastic.

Our laboratory and others have shown that IPF-patient
derived fibroblasts migrate faster than normal lung fibroblasts.
Much of this work was performed with cells on tissue-culture
plastic, which exhibits a stiffness 1 million-fold greater than the
physiological range of normal lung in vivo (8, 10, 11, 54, 55). The
interpretation of this prior work bears some refinement as our
current findings of myosin-dependent migration on actual lung
tissue contrast with the myosin-independent migration noted
on infinitely stiff tissue-culture plastic. There are clear differ-
ences in baseline motility on normal lung versus soft gels and
fibrotic lung versus stiff gels suggesting stiffness is not the pre-
dominant driver of motility. However, the effects of varying
stiffness on lateral protrusions and polarized migration are
recapitulated on both PA gels and lung tissue, and similarly
reversed with myosin inhibition. This data suggests that myosin
II facilitates polarized migration through inhibition of protru-
sions lateral to the direction of migration in response to
mechanically transduced signals. The purpose of this study was
to characterize the response of normal human lung fibroblasts
to normal and fibrotic lung tissue. Future work will explore and
compare migration and differentiation of diseased/fibrotic and
normal lung fibroblasts to normal and fibrotic matrix.

Prior work has demonstrated that, on tissue culture plastic,
myosin II plays a critical role in establishing cell polarity and
limiting lateral protrusions (36, 56, 57). It has also been shown
that myosin-actin interactions in stress fibers and enlarging
focal adhesions play a role in the increased intracellular tension
of fibroblast-to-myofibroblast transition (19, 58, 59). In sum-
mary, our data demonstrate for the first time that fibroblast
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FIGURE 13. Effect of normal versus fibrotic lung on fibroblast phenotype.
The consequence of Myosin Il activation differs depending on whether a
fibroblast is interacting with normal or fibrotic lung ECM. In normal lung,
myosin Il activation drives highly directional, polarized migration. In fibrotic
lung, myosin Il activation results in myofibroblast differentiation. The end
result is migration of fibroblasts from normal to fibrotic lung where myofibro-
blast differentiation is enhanced.

behavior is driven in a context- specific manner through acti-
vation of myosin II. In the soft substrate of normal lung, we
hypothesize that myosin activation in the periphery of the
fibroblast limits lateral protrusions, thereby driving migration
along routes dictated by the inherent linear lung fiber architec-
ture. Upon encountering the stiff matrix of fibrotic lung, myo-
sin is diffusely activated in stress fibers extending to focal adhe-
sions, resulting in increased intracellular tension, thereby
immobilizing the fibroblast and promoting myofibroblast differ-
entiation. Such a mechanism would lead to progressive accumula-
tion of myofibroblasts in fibrotic lung (Fig. 13). These findings
open the door to the possibility that a therapeutic intervention
aimed at inhibiting myosin II could impede fibrosis through mul-
tiple mechanisms in a matrix context-specific manner.
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